先天性脊柱裂和肛门直肠畸形脊髓蛋白质双向电泳图谱差异分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     先天性脊柱裂、先天性肛门直肠畸形均为常见的小儿先天性畸形,人群发生率分别为1‰-5‰、0.2‰-0.7‰,中国发生率明显高于西方国家。根据目前研究结果普遍认为先天性脊柱裂和先天性肛门直肠畸形均为多基因遗传病,而且是内在因素(遗传因素)和环境因素(致畸因素)共同作用的结果。但是,这些畸形的发病机制尚不清楚,病理改变复杂,而且没有良好的预防和治疗措施。因此,研究这些畸形的胚胎发生规律和早期诊断的方法,可以为畸形的早期治疗和预防提供必要的前期基础,对减少出生缺陷、提高人口素质具有极其重要意义。
     经过系列研究,我们证实先天性肛门直肠畸形大多数存在明显的腰骶部脊髓神经发育异常。利用药物致畸制作动物模型过程中我们也发现维甲酸和乙烯硫脲均可同时产生先天性脊柱裂、先天性肛门直肠畸形这两种畸形。目前发现的畸形相关基因中Hox基因与这二种畸形均有关,SHH和Gli3基因是先天性脊柱裂和先天性肛门直肠畸形的共同相关基因。许多研究已经证实口服叶酸可以预防神经管畸形的发生,同时也能减少肛门直肠畸形和四肢畸形的发生。因此,我们提出一个新的假设:先天性脊柱裂、先天性肛门直肠畸形可能存在共同的发生机制,它们的发生可能都是与胚胎期脊髓神经发育异常有关。
     蛋白质组学是一个新兴的研究领域,其核心在于大规模地对蛋白质进行综合分析,通过对某物种、个体、器官、组织或细胞的全部蛋白质性质包括表达水平、结构、翻译后修饰、细胞内定位、蛋白质相互作用等的研究,对蛋白质所执行的生理性、病理性生命活动做出最精细、最准确、最本质的阐述。蛋白质本身的存在形式、活动规律仍依赖于直接对蛋白质的研究来解决。因此,直接研究蛋白质的变化具有不可替代的意义。而且,随着蛋白质组学的研究进展,基于固相pH梯度等电聚焦(IPG)的双向凝胶电泳和各种质谱技术结合,对蛋白质进行分离和鉴定,已经成为蛋白质组研究中的核心技术。以固相pH梯度等点聚焦为第一向的双向电泳技术是当前分辨率最高、信息量最大的电泳技术。
     因此本研究将采用双向电泳技术,研究两种畸形动物模型在胚胎发育阶段的脊髓神经组织蛋白质组的表达情况和变化规律,在蛋白质水平探讨两种畸形之间的共同发生规律,为畸形的胚胎早期诊断和治疗提供基础资料。
     方法
     1、建立脊柱裂、肛门直肠畸形大鼠胚胎模型
     (1)将孕10d大鼠随机分为对照组和实验组,按160mg/kg体重用灌胃法给予实验组大鼠,对照组给予相应体积橄榄油。
     (2)孕21d剖腹取出胚胎,取出脊髓组织(范围:第12胸椎下缘至脊髓末端)。
     2、模型胎鼠与对照胎鼠脊髓组织蛋白质双向电泳图谱差异分析
     (1)提取胎鼠脊髓组织的总蛋白质,Bradford法进行蛋白定量。
     (2)等电聚焦使用Ettan IPGphorⅡ等电聚焦仪。聚焦后的胶条经两步平衡后进行SDS-PAGE电泳,银染、扫描后用ImageMaster 2D Platinum 6.0软件进行图像分析,寻找差异蛋白点。
     结果
     1、成功制作了脊柱裂、肛门直肠畸形大鼠胚胎模型
     孕21d剖检共获取胎鼠127只。对照组20只,维甲酸组中剖出存活胎鼠96只,死胎及吸收胎11只,其中给药无畸形组19只,单纯肛门直肠畸形组29只,肛门直肠畸形合并腰骶部显性脊柱裂组28只。
     2、维甲酸组胎鼠和对照组胎鼠脊髓组织双向电泳图谱差异分析结果
     使用pH3~10,24cm胶条获得分离较好的蛋白表达图谱,对照组获得可识别平均斑点数为1355±30个,给药无畸形组1425±48个,单纯肛门直肠畸形组1340±55个,肛门直肠畸形合并腰骶部显性脊柱裂组1056±68个。肛门直肠畸形组与肛门直肠畸形合并脊柱裂组间差异蛋白点有164个,87个在肛门直肠畸形组中高表达,77个蛋白低表达。有3个点仅在肛门直肠畸形组中表达,70个点在肛门直肠畸形合并脊柱裂组表达。
     结论
     初步获得了脊柱裂和肛门直肠畸形模型胎鼠脊髓蛋白质双向电泳图谱,发现脊柱裂、肛门直肠畸形模型胎鼠与对照组胎鼠脊髓组织之间存在一些差异表达的蛋白点,为进一步研究脊柱裂和肛门直肠畸形发病机制奠定了基础。
Objective
     Congenital anorectal malformation and spina bifida are both common congenital disorders which greatly influence life quality,and incidence are 1‰-5‰、0.2‰-0.7‰, respectively.The causes of these disorders are generally considered as the result from synergistic action of internal agent(genetic factor)and environmental factor (teratogenic factor).However,the aetiology and pathology of these disorders are still unclear,and accordingly no good measures for prevention and therapy.Therefore, studying embryogenesis pattern and early diagnosis of these disorders is necessary to provide message for early treatment and prevention,event-rally to reduce birth defect and raise population diathesis.
     Though series investigations,we confirmed most cases of congenital anorectal malformation had lumbosacral spinal cord neural developmental anomaly.Among the process of making animal model by medicine's teratogenic effects,we found Retinoid acid and ethylene thiourea both could induce congenital anorectal malformation and spina bifida.At present,we have found Hox gene was involved in the aetiology of these disorders,and SHH、Gli3 were common related genes of these disorders.Several investigations have confirmed folic acid supplementation could prevent the development of neural tube defects,and decrease the number of anorectal malformation and dysmelia.Therefore,we propose a new hypothesis:there may be some common developmental mechanism between congenital anorectal malformation and spina bifida, and spinal nerves maldevelopment may be involved in the development of these two disorders.
     Proteomics is the science and methodology with which to simultaneously study the expression of all proteins(the protome,rather than individual protein)in a cell, tissue,or organ.Proteomic analysis of identified global proteins can provide expression profiles of the proteins and their PTMs in cell.So,direct investigation on protein profiles is not substitutional.Despite altemative technologies that have emerged, 2-dimensional(2-D)electrophoresis is currently the only technique that can be routinely applied for parallel quantitative expression profiling of large sets of complex protein mixtures.Furthermore,it delivers a map of intact proteins that reflects changes in protein expression level,isoforms,or post-translational modifications.Last but not least,today's 2-D electrophoresis technology with immobilized pH gradients(IPGs) has overcome the former limitations of carrier-ampholyte-based 2-D electrophoresis with respect to reproducibility,handling,resolution.
     Here,we employ a 2-D gel-based proteomic technique to detect the global changes of the spinal cord protein expression in rats that have developed animal models, and approach the common mechanism between congenital anorectal malformation and spina bifida at protein level,to provide elementary datas for early diagnosis and treatment during embryonic period.
     Methods
     1.Construct rat embryonic models for spina bifida and anorectal malformation.
     (1)Pregnant Wistar rats were randomly assigned to either control(n=2)or RA (n=19)groups.On E10,RA group received intragastrically all-trans-retinoic acid (160mg/Kg dissolved in olive oil at a concentration of 40mg/ml),whereas control animals received 1 ml of olive oil.
     (2)On E21,Cesarean section was carried out,and the pups were removed,then spinal cord tissue was removed(form inferior border of the 12~(th)vertebrae thoracales to the end of spinal cord).
     2.Differential protein expression analysis of spinal cord between control group and RA group in the rat fetus.
     (1)Total protein of spinal cord was extracted from control and RA rat fetus, protein concentrations were determined by Bradford.
     (2)For isoelectric focusing,Ettan IPGphorⅡwas used.Samples were applied to pH 3-10,24cm non-linear IPG strips and two-dimensional electrophoresis was performed,using 12.5%second dimension gels.Analytical gels were silver stained and scanned.Protein patterns were analyzed using ImageMaster 2D Platinum 6.0 software to find differential spots.
     Results
     1.Construct the rat model for spina bifida and anorectal malformation.
     127 rat fetus were obtained totally on E21.20 for control group,and 107 for RA group.Among the RA group,there were 19 fetus for undefect group with RA exposure,29 for isolated anorectal malformation,and 28 for anorectal malformation coincidence with spina bifida in lumbosacral area.
     2.Analyze the differential protein expression between RA group and control group.
     The 2D gel protein spot patterns were gained through pH3~10、24cm strips,on average,1355±30 protein spots were detected in control group,and 1425±48、1340±55、1056±68 spots in undefect group with RA exposure、isolated anorectal malformation group and anorectal malformation coincidence with spina bifida group, respectively.In total,we found that 164 protein spots that showed significant differences between the isolated anorectal malformation and anorectal malformation coincidence with spina bifida groups,87 spots from isolated anorectal malformation group were up-regulated,and 77 spots were down-regulated.There were 3 spots which only expressed in isolated anorectal malformation group,and 70 spots in anorectal malformation coincidence with spina bifida group.
     Conclusion
     Spinal cord protein profiles of spina bifida and anorecotal malformations were established,and some differential protein spots were found.The data obtained in this study may be helpful for further studies on pathogenesy of spina bifida and anorectal malformation.
引文
1 裴丽君,李竹,李松,等.中国神经管畸形高低发地区季节及性别分布特征.中华流行病学杂志.2003;24(6):465-470.
    2 白玉作.先天性肛门直肠畸形遗传学研究进展.中华小儿外科杂志.2002;23(3):265-266.
    3 Finnell RH,Gelineau-van Waes,J Bennett,et al.Genetic basis of susceptibility to environmentally induced tube defects.Ann.N.Y.Acad.Sci.2000;919:261-277.
    4 杜世新,吉士俊,马瑞雪,等.先天性马蹄内翻足病因的病理研究.中华骨科杂志.2003;23(11):694-696.
    5 李勇,王维林,袁正伟.脊柱裂动物模型制作与胚胎发生机制探讨.中华小儿外科杂志.2004;25(5):438-443.
    6 Yu J,Gonzalez S,Martinez L,et al.Effects of retinoic acid on the neural crest-controlled organs of fetal rats.Pediatr Surg Int.2003;19(5):355-358.
    7 Diana MJ.Muriel JH.Mouse models for neural tube defects.Human Molecular Genetics.2000;9(6):993-1000.
    8 张志波,王练英,李正,等.先天性无肛畸形HoxA-13基因的改变.中华小儿外科杂志.2001;22(5):269-270.
    9 Zzkany J,Duboule D.Hox genes and the making of sphincter.Nature.1999;401:761-762.
    10 王大佳,马瑞雪,陈秋,等.先天性马蹄内翻足与HoxD基因传递连锁不平衡研究.中华小儿外科杂志.2003;24(4):348-350.
    11 李竹.神经管畸形相关基因的研究进展.遗传.2002;24(6):695-698.
    12 Diana MJ,Muriel JH.Mouse models for neural tube defects.Human Molecular Genetics.2000;9(6):993-1000.
    13 张志波,高红,王练英,等.先天性无肛畸形Gli2基因表达的研究.中华小儿外科杂志.2001;22(6):325-327.
    14 Myers MF,Li S,Li Z,et al.Folic acid supplementation and risk for imperforate anus in China.Am J Epidemiol.2001;154(11):1051-6.
    15 Collins FS,Mao GE.Teratology of retinoids.Annu Rev Pharmacol Toxicol.1999;39:399-430.
    16 Swinbanks D.Governmnet backs proteome proposal.Nature.1995;378(6558):653.
    17 Nicholas DE,Greene,Kit-Yi Leung.Differential Protein Expression at the Stage of Neural Tube Closure in the Mouse Embryo.THE JOURNAL OF BIOLOGICAL CHEMISTRY.2002;April 15,277(44):41645-41651.
    18 Kahn P.From genome to proteome:looking at a cell's proteins[J].Science.1995;270:369-370.
    19 Lilley KS,Razzaq A,Dupree P.Two-dimensional gel electrophoresis:recent advances in sample preparation,detection,detection and quantitation.Current opinion in chemical biology.2002;6(1):46-50.
    20 郭俊彬,郭俊斌,王练英,等.维甲酸诱导大鼠产生肛门直肠畸形及其伴发畸形.中国优生与遗传杂志.2005;13(1):93-95.
    21 贾慧敏,王维林.肛门直肠及畸形发育胚胎学研究进展[J].中华小儿外科杂志.2003;24(2):166-167.
    22 郭磊,赵彦艳,吉士俊,等.IGFs系统成分在维甲酸诱导的马蹄内翻足畸形的作用.遗传学报.2004;31(8):766-770.
    23 Laboure S,Besson R,Lamblin MD,et al.Incontinence and consti2 pation after low anorectal malformations in a boy.Eur J Pediatr Surg.2000;10:23229.
    24 Levitt MA,Patel M,Rodriguezz G,et al.The tethered spinal cord in patients with anorectal malformations.J Pediatr Surg.1997;32:462-468.
    25 William PT,John CA,Patrick DB.Neuroradiologic evaluation of sacral abnormalities in imperforate anus complex.J Pediatr Surg.1987;22:58261.
    26 李正,王练英.先天性无肛与腰骶椎异常.中华小儿外科杂志.1990;11(1):19-20.
    27 Li Long,Li Zheng,Wang Lianying,et al.Anorectal anomaly:Neuropathological changes in the sacral spinal cord.J Pediatr Surg.1993;28(7):880-885.
    28 Li Long,Li Zheng,Huo Hongshen,et al.Sensory nerve endings in the puborectails and anal region of the fetus and newborn.Disease Colon &Rectum.1992;35(6):552-559.
    29 Li Long,Li Zheng,Huo Hongshen,et al.Sensory nerve endings in puborectails and anal region:normol finging in the newborn and changes in anorectal anomalies.J Pediatr Surg.1990;25(6):658-64.
    30 Yuan ZW,Lui VCH,Tam PKH.Deficient motor innervation to the sphincter mechanism in fetal rats with anorectal malformation:a quantitative by Fluorogold retrograde tracing.J Pediatr Surg.2003;38(9):1383-1388.
    31 袁正伟,王维林,谭广亨.先天性肛门直肠畸形支配盆底肌的脊髓神经元定量研究冲华医学杂志.2003;83(14):1266-1269.
    32 贾慧敏,王维林,袁正伟,等.先天性肛门直肠畸形胎鼠腰骶髓副交感神经元发育异常的研究.中华小儿外科杂志.2004;25(3):279-281.
    33 Yuan ZW,Bai YZ,Zhang ZB,et al.Neural electeophysiological studies on the external anal sphincter in children with anorectal malformation.J Pediatr Surg.2000;35(7):1052-1057.
    34 袁正伟,王维林,吉士俊,等.先天性无肛畸形患儿肛门外括约肌神经肌电生理研究.中华医学杂志.2000;80(1):34-37.
    35 HERZOG A,KUNTZ S,DANIEL H,et al. Identification of biomarkers for the initiation of apoptosis in human preneoplastic colonocytes by proteome analysis [J] . Int J Cancer.2004;109 (2) :220-229.
    36 AhnHNWS,KIM KW,BAE SM,et al. Targeted cellular process profiling approach for uterine leiomyoma using cDNA microarray,proteomics and gene ontologyanalysis [ J] . Int J Exp Pathol.2003;84 (6) :267-279.
    37 CEASER EK,MOELLERING DR,SHIVA S,et al. Mechanisms of signal transduction mediated by oxidized lipids:the role of the electrophile-responsive proteome [J] . BiochemSoc Trans.2004 ;32 (Pt 1) :151-155.
    38 Ong SE, Foster LJ, Mann M. Mass spectrometric based approaches in quantitative proteomics [J]. Methods.2003; 29(2):12421-30.
    39 CHAN LL,HODGKISS IJ,LU S,et al. Use of two-dimensional gel electrophoresis proteome reference maps of dinoflagellates for species recognition ofcausative agents ofharmful algal blooms [J] . Proteomics.2004;4 (1) :180-192.
    40 KOMATSU S,KOJIMA K,SUZUKI K,et al. Rice Proteome Database based on two-dimensional polyacrylamide gel electrophoresis:its status in 2003 [J] . Nucleic Acids Res.2004;32 (1) :D388-392.
    41 SCHRAMM A, APOSTOLOV O,SITEK B,et al. Proteomics:techniques and applications in cancer research [J] .Clin Padiatr.2003;215 (6) :293- 297.
    42 STEVENS EV.LIOTTA LA,KOHN EC. Proteomic analysis for early detection ofovarian cancer:a realistic approach [J] .Int JGynecolCancer.2003;13 (12) :133-139.
    1 Laura E Mitchell,N Scott Adzick,Jeanne Melchionne,et al.Spina bifida.The Lancet.2004;364:1885-95.
    2 Harris MJ,Juriloff DM.Mini-review:toward understanding mechanisms of genetic neural tube defests in mice.Teratology.1999;60:292-305.
    3 Diana MJ,Muriel JH.Mouse models for neural tube closure defects.Human Molecular Genetics.2000;Apr 1,9(6):993-1.000.
    4 Angeleen Fleming,Andrew JC.A genetic risk factor for mouse neural tube defects:defining the embryonic basis.Human Molecular Genetics.2000;9(4):575-581.
    5 Eskes TKAB.Neural tube defects,vitamins and homocystine.Eur J Pediari.1998;157(suppl 2):S139-S141.
    6 Kibar Z,Vogan KJ,Groulx N,et al.A mammalian homolog of Drosophila Strabismus/Van Gogh,is altered in the mouse neural tube mutant Loop-tail.Nat Genet.2001;Jul,28(3):251-5.
    7 王江雁,王仁杰,张卫宁.与神经管缺陷相关基因的研究进展.中国妇幼保健.2005;20(7):891-893.
    8 郑明明,胡娅莉.神经管缺陷及其病因学研究.国外医学妇幼保健分册.2003;14(5):282-284.
    9 曲梅,李竹.神经管畸形相关基因研究进展.遗传Hereditas(Beijing).2002;24(6):695-698.
    10 Piedrahita,Oetama JA,Bennett B,et al.Mice lacking the folic acid-binding protein Folbpl are defective in early embryonic development.Nature Genet.1999;23:228-232.
    11 Jensen LE,Hoess K,Mitchell LE,Whitehead AS.Loss of function polymorphisms in NAT1protect against spina bifida.Hum Genet.2006;May 6.
    12 Zhu H,Yang W,Lu W,Zhang J,et al.A known functional polymorphism(Ile120Val)of the human PCMT1 gene and risk ofspina bifida.Mol Genet Metab.2006;Jan,87(1):66-70.
    13 Haviland MB,Essien FB.Expression of the Axd(axial defects)mutation in the mouse is insensitive to retinoic acid at low dose.J Exp zool.1990;Dec,256(3):342-6.
    14 Essien FB,Haviland MB,Naidoff AE.Expression of a new mutation(Axd)causing axial defects in mice correlates with maternal phenotype and age.Teratology.1990;Aug,42(2):183-94.
    15 Chatkupt S,Hol FA,Shugart YY,et al.Absence of linkage between familial neural tube defects and PAX3 gene.J Med Genet.1995;32(3):200.
    16 Elizabeth CM,Timothy MG,Gordon Worley,et al.Genetic studies in neural tube defects.Pediatric Neurosurgery.2000;Jan,32(1):1-9.
    17 Gowen LC,Johnson BL,Latour AM,et al.Brcal deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities.Nat Genet.1996;Feb,12(2):191-4.
    18 Xu X,Li C,Takahashi K,et al.Murine fibroblast growth factor receptor 1 alpha isoforms mediate node regression and are essential for posterior mesoderm development.Dev Biol.1999;Apr,208(2):293-306.
    19 Schwander M,Shirasaki R,Pfaff SL,et al.Betal integrins in muscle,but not in motor neurons,are required for skeletal muscle innervation.J Neurosci.2004;Sep 15,24(37):8181-91.
    20 张丽英,李青,陈广生,等.真核表达载体pIRES22EGFP2Axin的构建及其在神经胶质瘤细胞内的表达.细胞与分子免疫学杂志(Clain J CellMol Immunol).2005;21(4):408-410.
    21 Ishibashi M,Saitsu H,Komada M,et al.Signaling cascade coordinating growth of dorsal and ventral tissues of the vertebrate brain,with special reference to the involvement of Sonic Hedgehog signaling.Anat Sci Int.2005;Mar,80(1):30-6.
    22 Samat HB,Flores-Sarnat L.Embryology of the neural crest:its inductive role in the neurocutaneous syndromes.J Child Neurol.2005;Aug,20(8):637-43.
    23 Felder B,Stegmann K,Schultealbert A,et al.Evaluation of BMP4 and its specific inhibitor NOG as candidates in human neural tube defects(NTDs).Eur J Hum Genet.2002;Nov,10(11):753-6.
    24 Nakayama T,Berg LK,Christian JL.Dissection of inhibitory Smad proteins:both N-and C-terminal domains are necessary for full activities of Xenopus Smad6 and Smad7.Mech Dev.2001;Feb,100(2):251-62.
    25 Catherine H.Regnier,Regis Masson,et al.Impaired neural tube closure,axial skeleton malformations,and tracheal ring disruption in TRAF4-deficient mice.Communicated by David V.Goeddel,Tulank,Inc,South San Fancisco,CA.2002;March 4(received for review December 12,2001).
    26 Zhu H,Lu W,Laurent C,et al.Genes encoding catalytic subunits of protein kinase A and risk of spina bifida.Birth Defects Res A Clin Mol Teratol.2005;Sep,73(9):591-6.
    27 Yongzhao Huang,Henk Roelink,G.Stanley McKnight.Protein kinase A deficiency causes axially localized neural tube defects in mice.The Journal of Biological Chemistry.2002;May,277(22):19889-19896.
    28 Volcik KA,Shaw GM,Zhu H,et al.Risk factors for neural tube defects:associations between uncoupling protein 2 polymorphisms and spina bifida.Birth Defects Res A Clin Mol Teratol.2003;Mar,67(3):158-61.
    29 Hiroo Ogura,Jun Aruga,Katsuhiko Mikoshiba.Behavioral Abnormalities of Zicl and Zic2Mutant Mice:Implications as Models for Human Neurological Disorders.Behavior Genetics.2001;May,31(3):317-324.
    30 Jun Aruga,Takashi Inoue,Jun Hoshino,et al.Zic2 Controls Cerebellar Development in Cooperation with Zic1.The Journal of Neuroscience.2002;22(1):218-225.
    31 Ohtsuka M,Kikuchi N,Yokoi H,et al.Possible roles of zic1 and zic4,identified within the medaka Double anal fin(Da)locus,in dorsoventral patterning of the trunk-tail region(related to phenotypes of the Da mutant).Mech Dev.2004;Jul,121(7-8):873-82.
    32 Takeharu Nagai,Jun Aruga,Osamu Minowa,et al.Zic2 regulates the kinetics of neurulation.Proc Natl Acad Sci U S A.2000;February 15,97(4):1618-1623.
    33 Sumanas S,Zhang B,Dai R,et al.15-zinc finger protein Bloody Fingers is required for zebrafish morphogenetic movements during neurulation.Dev Biol.2005;Jul 1,283(1):85-96.
    34 Karolin S,Julia B,Christian K,et al.Human transcription factor SLUG:mutation analysis in patients with neural tube defects and identification of a missense mutation(D119E)in the slug subfamily-defining region(J).Mutation Research Genomics.1999;406:63-69.
    35 Sheila MB,Claire MS,Ronald RW,et al.Sp8 is crucial for limb outgrowrh and neuropore closure.edited by Mario R.Capecchi,University of Utah,Salt Lake City,UT,and approved 2003August 20.
    36 Riko Klootwijk,Barbara Franke,Catharina E E M,et al.A deletion encompassing Zic3 in Bent tail,a mouse model for X-linked neural tube defects.Human Molecular Genetics.2000;9(11):1615-1622.
    37 Hildebrand JD.Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network.J Cell Sci.2005;Nov 15,118(Pt 22):5191-203.Epub 2005;Oct 25.
    38 Suzan Abu-Abed,Pascal Dolle,Daniel Metzger,et al.The retinoic acid-metabolizing enzyme,CYP26A1,is essential for normal hindbrain patterning,vertebral identity,and development of posterior.RESEARCH PAPER.2001 January 15,15(2):226-240.
    39 Karen Niederreither,Suzan Abu-Abed,Brigitte Schuhbaur.Genetic evidence that oxidative derivatives of retinoic acid are not involved in retinoid signaling during mouse development.published online:2002 April 15,DOI:10.1038/ng876.
    40 芦志红,刘凯,高英茂.维甲酸致胚胎神经管畸形过程中RARα和RA Rβ表达水平变化的实验研究.山东大学学报(医学版).2005:43(9):785-787.
    41 Narimon Honarpour,Sandra LG,Bruce TL,et al.Proc Natl Acad Sci U S A.2001;98(17):9683-9687.
    42 van Straaten HWM,Andrew JC.Curly tail:a 50-year history of the mouse spina bifida model.Anat Embryol.2001;203:225-237.
    43 Hall M,Goffiot F,Iseki S,et al.Effects of the curly tail genotype on neuroepithelial integrity and cell proliferation during late stages of primary neurulation.J Anat.2001;Dec,199(Pt 6):645-55.
    44 Harris MJ,Jurilofe DM.Genetic landmarks for defects in mouse neural tube closure.Teratology.1997;56:117-187.
    45 Benz LP,Swift FE,Graham FL,et al.NTD Collaborative Group.TERC is not a major gene in human neural tube defects.Birth Defects Res A Clin Mol Teratol.2004;Aug,70(8):531-3.
    46 Nicholas DE,Greene,Kit-Yi Leung,et al.Differential Protein Expression at the Stage of Neural Tube Closure in the Mouse Embryo.THE JOURNAL OF BIOLOGICAL CHEMISTRY.2002;277(44):41645-41651.
    47 Eggenschwiler JT, Anderson KV.Dorsal and lateral fates in the mouse neural tube require the cell-autonomous activity of the open brain gene.Dev Biol.2000; 227(2):648-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700