山东惠民凹陷临南地区古近系沙三下亚段沉积相与储集性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
临南地区是指惠民凹陷夏口断层以北、营子街断层以南的地区,是临南洼陷油气运移的有利指向区和富集区,勘探面积约1000km2。随着研究区勘探开发进程,深层沙三下亚段将成为油田下阶段勘探的重点。论文以临南地区古近系沙三下亚段为研究对象,运用层序地层学、沉积学、储层地质学等理论方法,以钻井、测井资料和相关分析测试数据为基础,运用理论研究与实际研究相结合,宏观研究与微观研究相结合的技术思路,系统研究了临南地区古近系沙三下亚段的层序地层特征、沉积相特征和储集性能特征。
     将沙三下亚段划分为二个层序。层序一发育低位、湖侵和高位三个体系域,低位体系域划分为三个准层序组,湖侵体系域划分为二个准层序组,高位体系域划分为四个准层序组;层序二在研究层位仅发育低位体系域,划分为五个准层序组。在层序地层格架内,对沙三下亚段进行了沉积相的详细分析,层序一时期,湖盆处于初始发育阶段,水体不稳定,发育洪水-漫湖沉积体系,识别出了泥坪、砂坪、砂泥混合坪和洪水水道四种微相;层序二时期,湖盆趋于稳定,发育了三角洲前缘和下切谷沉积,细分为水下分流河道、河口砂坝、远砂坝、分流间湾、下切谷水道、水道天然堤和水道间漫溢七种微相。有利砂体主要发育于层序一的砂坪微相、洪水水道微相,层序二的三角洲前缘水下分流河道微相、河口砂坝微相、远砂坝微相和下切谷水道微相。砂坪砂体和三角洲前缘砂体连片性好,水道砂体限制性发育,为孤立条带状。
     结合研究区实际情况,根据岩石薄片、铸体薄片、扫描电镜、压汞分析等资料,对研究区砂体的储集性能及其控制因素进行了研究。沙三下亚段地层主要以岩屑长石砂岩和长石砂岩为主,胶结类型以孔隙式和镶嵌式为主,成岩作用类型比较丰富,对储集性能影响较大。储集空间主要有原生粒间孔、粒内溶孔、粒间溶孔、铸模孔、胶结物内溶孔、次生加大胶结物晶间孔、颗粒贴粒缝和构造裂缝等8种,主要以次生孔隙为主。结合岩石物性和毛管压力曲线等分析测试数据,对其物性进行综合评价,认为沙三下亚段地层孔隙度渗透率非均值系数大,非均质性较强。砂体储层储集性能主要受到沉积微相和成岩作用控制。沉积微相主要控制砂岩岩性类型,分为细粒碎屑沉积和粗粒碎屑沉积。成岩作用对细粒沉积的控制作用比较强,压实压溶作用及砂岩层顶底钙质胶结作用降低储层孔隙度,导致储集性能的差异,而溶蚀作用提高储层孔隙度,使得物性得以改善。粗粒沉积储集性能的差异主要受杂基含量控制,杂基支撑砂体储集性能差,颗粒支撑砂体储集性能比较好。此次研究对于该地区的进一步勘探开发具有重要的理论意义及现实指导意义。
The Linnan region, located in the north of Xiaokou fault and the south of Yingzijiefault, is the favorable migration and accumulation district in Linnan sag. The totalexploration area is approximately 1000km2. With the development of exploration, thelower part of the third member of Paleogene Shahejie Formation is gradually becomingthe key point. In this article we focus on the study of the sequence stratigraphy,sedimentary facies and reservoir characteristics of the lower part of the third member ofPaleogene Shahejie Formation based on cores, well-logs, and formation test dataincluding the thin sections and cast thin sections, observation of scanning electronmicroscope (SEM), pressured-mercury testing and X-ray diffraction analysis of clayminerals.
     The stratum of the lower part of the third member of Paleogene Shahejie Formationcan be divided into two sequences. Sequence one can be further divided into threesystems tracts: the lowstand systems tracts composed of three parasequence sets, thetransgressive systems tracts composed of two parasequence sets and the highstandsystems tracts composed of four parasequence sets. Sequence two only has the lowstandsystems tracts which consist of five parasequence sets in the target layer. Within thesequence stratigraphic framework, the sedimentary facies are studied. Sequence one, thelake was in the initial development stage and the water body was unstable. Theflood-overlake depositional system, involving the mud flat, sand flat, mixing flat and theflood channel mainly developed. Sequence two, the lake basin became more stable, thesedimentary facies changed to the delta front and incised valley in which containedmicrofacies of the underwater distributary channel, the channel mouth bar, the distal bar,the interdistributary estuary, the incised valley channel, the channel levee and the channeloverflowing. The favorable sand mainly deposited in microfacies of the sand flat and theflood channel in sequence one and the underwater distributary channel, the channelmouth bar and the distal bar in delta front and incised valley channel in sequence two. Onthe contrary with the isolated channel sand strips, the sand body deposited in sand flatand delta front displayed good continuous distribution.
     The reservoir characters and its controlling factors were also researched using thinsections, SEM, mercury intrusion and so on. Lithic feldspathic and feldspathicsandstones are chief rock types in the study area. The main cementation types are theporous cementation and mosaic cementation and the diagenesis had a magnificent impacton reservoir properties. Eight pore types including primary intergranular pores, theintragranular dissolved pores, the intergranular dissolved pores, the molded pores, thecement dissolved pores, the overgrowth quartz intergranular pores, the gaps along theparticles and microfractures are identified in the target layer. The secondary pores are themain pore type. By analyzing physical materials, it can be seen that the porosity andpermeability had strong heterogeneity. In general, reservoir physical properties are underthe control of the microfacies and the diagenesis. The influence of the sedimentarymicrofacies primarily reflected on the controlling of the lithological type, involving thefine-grained clastic sediments and the coarse-grained clastic deposition. For thefine-grained clastic reservoir, it is mainly controlled by the diagenesis. The calcareouscementation of the sandstone’s top and bottom result the reservoir heterogeneity andreduce the porosity and permeability. Whereas the dissolution can increase the reservoirporosity and make reservoir properties improved. For the coarse-grained clastic reservoir,the matrix content is the main controlling factors. The matrix-supported channelsandstones display bad properties, and the grain-supported sandstones are better. All inall, the whole research has an important theoretical and guiding significance for thefurther exploration and development of the study area.
引文
Catuneanu O, Abreu V, Bhattacharya J P, et al. Towards the standardization of sequencestratigraphy [J]. Earth-Science Reviews, 2009, 92: 1-33.
    Charles A. Ver Straeten, Carlton E. Brett,Bradley B. Sageman. Mudrock sequence stratigraphy: Amulti-proxy (sedimentological, paleobiological and geochemical) approach, DevonianAppalachian Basin. Palaeogeography, Palaeoclimatogogy, Palaeoecology, 2011, 304(1-2):54-73.
    Christian B, Fürstenau J rn, Lüdmann Tomas, et al. Hybrid sea-level and paleoceanographicalcontrol on carbonate sequence stratigraphy (Maldives, Indian Ocean) [A]. In: InternationalWorkshop on Sequence Stratigraphy [C]. China University of Geosciences, 2011: 8-9.
    Cross T A, Baler M R, Chapin M A, et al. Application of high resolution sequence stratigraphy toreservoir analysis [A]. In: Subsurface Reservoir Characterization from Outcrop Observations[C]. Institut Francais du Petrole, 1993, 51: 11-33.
    Fulthorpe C S. Sequence Stratigraphy on a Passive Margin Swept by Ocean Currents: CanterburyBasin New Zealand [A]. In: International Workshop on Sequence Stratigraphy [C]. ChinaUniversity of Geosciences, 2011: 38-39.
    Galloway W E. Genetic stratigraphic sequences in basin analysis (I): architecture and genesis offlooding-surface bounded depositional units [J].AAPG Bulletin, 1989, 73: 125-142.
    Jiang S. Deepwater sequence stratigraphic architecture revealed by Innovative seismicinterpretation [A]. In: International Workshop on Sequence Stratigraphy [C]. ChinaUniversity of Geosciences, 2011: 74-75.
    Jiang Z X, Chen Q, Jia S. Sequence Stratigraphy of Lacustrine Black Shales: an example from theEogene Zhanhua Sag [A]. In: International Workshop on Sequence Stratigraphy [C]. ChinaUniversity of Geosciences, 2011: 75-76.
    Jiang Z X,Lu H B,Yu W Q,et al. Transformation of accommodation space of the CretaceousQingshankou Formation, the Songliao Basin, NE China[J]. Basin Research, 2005, 17(4):569-580.
    Jiang Z X. Sequence stratigraphic division and models for Bohai Bay Basin. Proceedings of 30thInternational Geological Congress.1996.
    Johnson J G, Klapper G, Sandberg C A. Devonian eustatic fluctuations in Euramerica[J].Geological Society of America Bulletin,1995:567-587.
    Lu H B, Craig F S. Offshore Northwest Borneo Mass Transport Deposits and Implications onSequence Stratigraphyic Model [A]. In: International Workshop on Sequence Stratigraphy[C]. China University of Geosciences, 2011: 64-66.
    Mitchum R M. Seismic stratigraphy and Global Changes of Sea Level,Part 2:the DepositionalSequence as a Basic Unit for Stratigraphic Analysis.In:Payton C.E.ed..SeismicStratigraphy.AAPG,Memoir 26,1977,53-62.
    Nummedal D. High-frequency lake-level cycles in lacustrine hydrocarbon reservoir strata, SouthCaspian basin, Azerbaijan [A]. In: International Workshop on Sequence Stratigraphy [C].China University of Geosciences, 2011: 130-131.
    Payton C E. Seismic stratigraphy applications to hydrocarbon exploration [J]. AAPG Memoir,1977, (26):205-212.
    Qiu L W, Jiang Z X, Cao Y C, etal. Alkaline diagenesis and its influence on a reservoir in theBiyang depression [J]. Science in China (Series D), 2002, 45(7): 643-653.
    Roman K, Wang A J. The gamma ray logs don’t tell the truth: The influence of facies variationsand compaction in carbonate sequences: examples from the Upper Jurassic of S-Germanyand the Middle Cambrian Zhangxia Formation (Western Hills, China) [A]. In: InternationalWorkshop on Sequence Stratigraphy [C]. China University of Geosciences, 2011: 82-83.
    Shanlley K W, Mecabe P J. Respectives on the sequence stratigraphy of continental strata[J].AAPG Bulletin,1994,78(4): 544-568.
    Sloss L L. Sequence in the cratonic interior of North America. Geol. Soc. Am. Bull. [J].1962,74,93-113.
    Sloss L L. Stratigraphic models in exploration:AAPG Bulletin[J].1962,v.46,p.1050-1057.
    Steel R J. Sequence stratigraphy at the shelf edge [A]. In: International Workshop on SequenceStratigraphy [C]. China University of Geosciences, 2011: 145.
    Vail P R, Audenard F, Bowman S A. The stratigraphic signatures of tectonics, eustasy andsedimentology: an overview [A]. In: Einsele G, Ricken W, Seilacher A. Cycles and events instratigraphy[C]. Berlin: Springer-Verlag,1991.617-659.
    Vail P R, Mitchum R M, Thompson S. Seismic stratigraphy and global changes of sea level (patr3):relative changes of sea level from coastal onlap [A]. In: Seismic stratigraphy: applications tohydrocarbon exploration, Payton [C]. AAPG Memoir, 1977, 26: 63-81.
    Vail P R. Seismic stratigraphy interpretation using sequence stratigraphy. Part1: Seismicstratigraphy interpretation procedure, In: Bally C W, Atlas of Seismic Stratigraphy.AAPGStudies in Geology, 1987, 27: 1-10.
    Van Wagoner J C. An overview of the fundamentals of sequence stratigraphy and key definition.In: Wilgus C K. Sea-level changes: An Integrated Approach. SEPM. Spec.Publ., 1988, 42:39-45.
    Van Wagoner J C. Seismic stratigraphy interpretation using sequence stratigraphy. In:C.W.Bally(ed),Atlas of Seismic Stratigraphy.AAPG Studies in Geology,1987,27: 11-14.
    Van Wagoner J C..Siliciclastic sequence stratigraphy in well logs, cores, and outcrops[J]. AAPGmethods in exploration series 7,1990.
    Wilgus C W. Sea Level Changes. An Integrated Approach SEPM Special Publication42, 1988.
    William H H, Gary J.H. Trajectory analysis: concepts and applications [J]. Basin Research, 2009,21(5): 454-483.
    Zheng J M, Pang M. Diagenesis Research of Clastic Reservoirs[M]. Wuhan: China University ofGeoscience Press, 1989.
    Zhu G H. Origin and evolution and prediction of porosity in clastic reservoir rocks [J]. ActaSedimentologica Sinica, 1992, 10(3): 114-132.
    操应长,姜在兴,夏斌等.利用测井资料识别层序地层边界的几种方法[J].石油大学学报(自然科学版), 2003, 27(2): 1-5.
    操应长.断陷湖盆地层序地层学[M].北京:地质出版社, 2005.
    陈庆春,林玉祥,唐洪三等.临南地区石油运移方向与成藏期次研究[J].沉积学报,2001, 19(4):611-616.
    池英柳.可容空间概念在陆相断陷盆地层序分析中的应用[J].沉积学报, 1996, 16(4): 7-11.
    褚庆忠,张树林,黄雄伟.临南地区非构造圈闭类型及其勘探远景分析[J].西安石油学院学报(自然科学版),2003, 18(2): 1-4.
    崔世凌,杨泽蓉,李鑫等.惠民凹陷构造样式及分布规律研究[J].石油物探,2010, 49(2):187-197.
    邓宏文,钱凯.柴达木盆地渐新统红层的成因特征及石油地质意义[J].地球科学—中国地质大学学报,1987, 12(2): 149-153.
    邓宏文,钱凯.关于间歇性涨缩湖盆沉积作用的几点认识(主要以柴达木盆地早第三纪沉积为例)[J].沉积学报,1987, 5(2): 91-100.
    邓宏文.美国层序地层研究中的新学派—高分辨率层序地层学[J].石油与天然气地质,1995,16(2): 89-97.
    方少仙,侯方浩.石油天然气储层地质学[M].东营:中国石油大学出版社, 1996.
    冯有良.东营凹陷下第三系层序地层格架及盆地充填模式[J].中国地质大学学报, 1999,24(6):635-642.
    冯有良.断陷湖盆沟谷及构造坡折对砂体的控制作用[J].石油学报, 2002, 27(1): 13-16.
    付金华,刘玉亮,刘金等.临南地区断层输导体系与油气成藏模式[J].油气地质与采收率,2002, 9(3): 55-58.
    顾家裕,郭彬程,张兴阳.中国陆相盆地层序地层格架及模式[J].石油勘探与开发, 2005,32(5): 11-15.
    顾家裕,张兴阳.油气沉积学发展回顾和应用现状[J].沉积学报, 2003, 21(1): 137-141.
    顾家裕等.层序地层学及其在油气勘探开发中的应用论文集[M].北京:石油工业出版社.1997.
    郭建华.陆相断陷湖盆T-R旋回沉积层序与研究实例[J].沉积学报, 1998, 16(1): 8-14.
    韩天佑,郭正权,张才利.济阳坳陷临南地区新生界油气运聚模式研究[J].大庆石油地质与开发,2004, 23(1): 1-4.
    韩天佑,漆家福,林会喜.惠民凹陷西南缓坡带新生代构造演化与油气成藏特征[J].石油与天然气地质,2003, 24(3): 245-248.
    韩天佑,漆家福,杨桥等.惠民凹陷临南地区第三系油气运移聚集特征研究[J].油气地质与采收率,2003, 10(6): 21-23.
    纪友亮,张世奇,张宏等.层序地层学原理及层序成因机制模式[M].北京:地质出版社, 1998.
    冀登武,金强.济阳坳陷车西洼陷漫湖洪水—风暴沉积与砂体横向预测[J].西安石油大学学报(自然科学版),2005, 20(3): 53-55.
    姜在兴,操应长.砂体层序地层及沉积学研究[M].北京:地质出版社, 2000.
    姜在兴,李华启.层序地层学原理及应用[M].北京:石油工业出版社, 1996.
    姜在兴.沉积学[M].北京:石油工业出版社, 2003.
    姜在兴.层序地层学研究进展—国际层序地层学研讨会综述[J].地学前缘, 2012,19(1):1-9.
    姜在兴.沉积体系及层序地层学研究现状及发展趋势[J].石油与天然气地质,2010,31(5):535-541.
    姜振学,陈冬霞,苗胜等.济阳坳陷透镜状砂岩成藏模拟实验[J].石油与天然气地质,2003,24(3): 223-227.
    李明诚,单秀琴,马成华等.砂岩透镜体成藏的动力学机制[J].天然气与天然气地质,2007,28(2): 209-215.
    李丕龙,庞雄奇,陈冬霞等.济阳坳陷砂岩透镜体油藏成因机理与模式[J].中国科学D辑,2004, 34(增刊I): 143-151.
    李丕龙.陆相断陷盆地油气地质与勘探:陆相断陷盆地构造演化与构造样式(卷一)[M].北京:石油工业出版社, 2003.
    李思田,林畅松.大型陆相盆地层序地层学研究—以鄂尔多斯中生代盆地为例[J].地学前缘,1995,2(2-3): 133-136.
    李涛,陆永潮,陈平等.准噶尔盆地车排子地区下切谷的发现及其油气地质意义[J].石油实验地质,2008, 30(4): 363-366.
    刘传虎.陆相湖盆洼陷带浊积砂体岩性油藏地震描述技术[J].石油物探,2000, 39(4): 64-74.
    刘国臣,陆克政,徐寿根等.惠民凹陷构造特征及圈闭类型研究[J].石油大学学报(自然科学版),1993, 17(1): 16-23.
    刘建国.惠民凹陷临南斜坡带成藏条件分析[J].石油天然气学报,2009, 31(4): 19-22.
    刘玉亮,陈红汉,刘金等.临南地区沙三段砂岩体及其成藏特征[J].特种油气藏,2003, 10(4):10-13.
    刘招君,董清水,王嗣敏等.陆相层序地层学导论与应用[M].北京:石油工业出版社, 2002.
    刘招君,孙平昌,贾建亮等.陆相深水环境层序识别标志及成因解释:以松辽盆地青山口组为例[J].地学前缘,2011,18(4):171-180.
    刘中云,唐洪三,林玉祥.渤海湾盆地临南地区有效油气运聚系统分析[J].高校地质学报,2000, 6(3):447-455.
    刘中云.临南油田储集层孔隙结构模型与剩余油分布研究[J].石油勘探与开发,2000, 27(6):47-49.
    罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社, 1986.
    倪金龙,刘俊来,林玉祥.惠民凹陷西部深层断裂样式与古近纪盆地原型的性质[J].中国石油大学学报(自然科学版),2011, 35(1): 20-27.
    潘树新,卫平生,王天奇等.大型坳陷湖盆“洪水—河漫湖”沉积[J].地质论评,2012, 58(1):41-52.
    裘怿楠,薛叔浩.油气储层评价技术[M].北京:石油工业出版社, 1994.
    孙海涛,钟大康,刘洛夫等.沾化凹陷沙河街组砂岩透镜体表面与内部碳酸盐胶结作用的差异及其成因[J].石油学报,2010, 31(2): 246-252.
    覃克,赵密福.惠民凹陷临南斜坡带油气成藏模式[J].石油大学学报(自然科学版),2002,26(6): 21-32.
    谭丽娟,蒋有录,刘华等.济阳坳陷南部油气成藏特征对比分析[J].石油勘探与开发,2003,30(3): 39-43.
    王卫红,姜在兴,操应长等.测井曲线识别层序边界的方法探讨[J].西南石油学院学报, 2003,25(3): 1-4.
    王行信,周书欣.泥岩成因作用对砂岩储层胶结作用的影响[J].石油学报,1992, 13(4): 20-30.
    魏魁生,叶淑芬,郭占谦.松辽盆地白垩系非海相沉积层序模式[J].沉积学报,1996,14(4):50-58.
    吴崇筠,薛叔浩.中国含油气盆地沉积学[M].北京:石油工业出版社, 1993.
    吴崇筠,薛叔浩.中国含油气盆地沉积学[M].北京:石油工业出版社, 1993.
    鲜本忠,姜在兴,操应长等.泌阳凹陷东南部下切谷的发现及其意义[J].石油与天然气地质,2001, 22(4): 304-318.
    辛长静,何幼斌.毛管压力曲线在储层微观非均质性研究中的应用[J].河南石油, 2006, 20(3):57-59.
    辛仁臣,李桂范,向淑敏.松辽盆地盆西斜坡白垩系姚家组下切谷充填结构[J].地球科学—中国地质大学学报,2008, 33(6): 834-842.
    徐怀大等译.层序地层学原理(海平面变化综合分析).石油工业出版社, 1993.
    杨道庆,邱荣华,赵追等.泌阳凹陷北坡下切谷—低位扇沉积体系及其油气勘探意义[J].石油地球物理勘探,2002, 37(5): 485-490.
    杨剑萍,操应长.惠民凹陷西部下第三系沙四段下部洪水—漫湖沉积特征[J].石油大学学报(自然科学版),2002, 26(6): 17-20.
    杨懋新,戴跃进,李清仁等.乌尔逊凹陷下切谷的特征及成因[J].大庆石油地质与开发,2003,22(5): 11-12.
    尹微,樊太亮,许浩等.下切谷的特征及油气地质意义[J].大庆石油地质与开发,2006, 25(2):21-23.
    于均民,李红哲,刘震华等.应用测井资料识别层序地层界面的方法[J].天然气地球科学,2006, 17(5): 736-742.
    于兴河.碎屑岩系油气储层沉积学[M].北京:石油工业出版社, 2002.
    袁静.济阳坳陷南部古近系洪水—漫湖沉积[J].中国地质,2005, 32(4): 655-661.
    袁静.中国东部古近系洪水—漫湖沉积特征——以济阳坳陷南部为例[J].矿物岩石,2005,25(2): 99-103.
    曾溅辉,彭继林,邱楠生.砂—泥岩界面碳酸盐溶解—沉淀反应及其石油地质意义[J].天然气地球科学,2006, 17(6): 760-764.
    曾允孚,夏文杰.沉积岩石学[M].北京:地质出版社, 1986.
    张春明,姜在兴,张元福等.阿尔及利亚X区块泥盆系Siegenian组储层微观特征及成岩作用对其影响[J].现代地质, 2012, 26(1): 145-153.
    张金亮,戴朝强,张晓华.末端扇—在中国被忽略的一种沉积作用类型[J].地质论评,2007,53(2):170-179.
    张莉,朱筱敏,钟大康等.惠民凹陷古近系砂岩储层物性控制因素评价[J].吉林大学学报(地球科学版),2007, 37(1): 105-111.
    赵澄林.沉积学原理[M].北京:石油工业出版社, 2001.
    赵俊兴,田景春,蔡进功.惠民凹陷南坡古中生代沉积体系特征及时空演化[J].沉积与特提斯地质,2002, 22(1): 46-52.
    赵密福,刘泽容,信荃麟等.惠民凹陷临南地区断层活动特征及控油作用[J].石油勘探与开发,2000, 27(6): 9-11.
    赵密福,信荃麟,刘泽容等.惠民凹陷临南洼陷滑塌浊积岩分布规律及其控制因素[J].油气地质与采收率,2001, 8(5): 14-17.
    赵伟,邱隆伟,姜在兴等.小波分析在高精度层序单元划分中的应用[J].中国石油大学学报(自然科学版), 2009, 33(2):18-22.
    赵勇,赵密福,宋维琪.惠民凹陷临南斜坡带油气纵向运移及其控制因素[J].石油勘探与开发,2000, 27(6): 21-22.
    钟大康,朱筱敏,张琴.不同埋深条件下砂泥岩互层中砂岩储层物性变化规律[J].地质学报,2004, 78(6): 863-871.
    朱筱敏,刘媛,方庆等.大型坳陷湖盆浅水三角洲形成条件和沉积模式:以松辽盆地三肇凹陷扶余油层为例[J].地学前缘,2012, 19(1):60-68.
    朱志强,高先志,曾溅辉.惠民凹陷西南缓坡带断层的封闭性[J].中国石油大学学报(自然科学版),2009, 33(4): 1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700