漠斑牙鲆性分化及性别控制技术的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
漠斑牙鲆(Paralichthys Lethostigma),是一种具有较高营养价值和商业捕捞价值的优良鱼种,其饵料转化率高,养殖成本低,是进行人工增养殖的名优品种。本论文以工厂化养殖漠斑牙鲆为研究对象,以组织切片法为监测手段,对养殖漠斑牙鲆性腺分化、温度和激素诱导性逆转、人工雌核发育等方面进行了初步研究和探讨,所得结果如下:
     1.漠斑牙鲆性腺分化的组织学观察
     本试验采用组织学和形态学观察手段,对0日龄初孵仔鱼~270日龄漠斑牙鲆成鱼的性腺分化和发育情况进行跟踪观察,以期补充和完善漠斑牙鲆性腺发育的有关资料,为单性苗种的制种和培育提供技术参考。结果表明:在水温20±0.5℃条件下,漠斑牙鲆孵化后10日龄,全长4.0±0.36mm时,PGCs呈椭圆形,体积大,核大,核膜明显,刚出现生殖嵴;35日龄,全长16.9±0.84mm时,PGCs细胞聚集,从体壁游离出来,进入腹腔后部,此时生殖嵴的大小开始分化,大的生殖嵴迅速增大,生殖细胞开始有丝分裂,生殖细胞数目迅速增多,逐渐形成了原始性腺。85日龄,全长5.9±0.32cm,部分性腺中开始出现生殖细胞的有丝分裂,形成成簇发育的PGCs群,其中少数发育成为卵母细胞,标志着性腺形态学分化的开始。120日龄,全长8.3±0.81cm,漠斑牙鲆卵巢的上下两缘不断延伸,形成分化的两支,开始形成卵巢腔,同时形成数个生殖板。180日龄,全长13.4±1.2 cm时,卵巢分化完成。漠斑牙鲆精巢分化晚于卵巢,130日龄,全长为6.3±0.52cm时,原始性腺中精原细胞有丝分裂开始,性腺体积增大,生殖上皮细胞明显;160日龄,全长为6.8±0.56cm时,精小管原基出现,标志着精巢分化开始;200日龄,全长为8.7±0.93 cm时,精小叶和输精管等结构出现,输精管的出现标志着精巢分化的完成;240日龄,全长为10.3±1.1cm时,精巢中精小叶,精母细胞,精小管等结构明显,漠斑牙鲆雄鱼进入成熟发育期。漠斑牙鲆由原始性腺逐渐发育分化为不同结构和功能的卵巢或精巢,在无外界因素干扰下,分化后的分化类型稳定不变,此种性腺分化类型的漠斑牙鲆属于雌雄异体的分化型鱼类。
     2.真鲷冷冻精子诱导漠斑牙鲆减数雌核发育研究
     本文采用紫外线(UV)灭活的冷冻真鲷精子激活漠斑牙鲆卵子发育,冷休克法抑制第二极体排出,成功获得雌核发育杂合二倍体仔鱼。试验结果显示:冷冻真鲷精子适宜的UV灭活剂量为72mJ/cm2,随着处理时间(0~100s)延长,已灭活精子受精后的胚胎孵化率呈哈特维希效应,40s灭活组胚胎孵化率达到最高29±1.9%,单倍体率100%。冷休克处理温度0~2℃,起始时刻3min、持续时间45min时,胚胎的二倍体孵化率最高9.4±0.71%。雌核发育后代经流式细胞仪、形态学观察和染色体倍性鉴定,均为二倍体(2n=48),未发现单倍体和非整倍体现象。胚胎发育时序跟踪观察表明冷休克组和单倍体组发育同比正常孵化组时间(49h45min)差异显著,分别历时64h59min和55h49min。雌核发育二倍体与正常仔鱼数量形状差异不显著(P>0.05),但单倍体仔鱼明显畸形,与正常组和雌核组仔鱼在上述指标上存在显著差异(P<0.05)。
     3.环境因子对漠斑牙鲆性腺分化的影响
     在漠斑牙鲆孵化后40~160日龄期间,以17α-甲基睾酮(17α-MT)和17β-雌二醇(17β-Estradiol)为诱导因子,分别设置20、60、80、100μg/L 4种浓度梯度,采用浸泡法处理实验样本,160日龄后转入正常水体养殖至200日龄,每组分别取样以石蜡组织切片法鉴定表型性别,结果显示:60μg/L、80μg/L、100μg/L的MT浸浴处理都能显著提高群体中的雄性比例,分别达到78.5%(P<0.05)、83.4%(P<0.05)、87.3%(P<0.05)。17β-Estradiol各试验组雌性化比例差异不明显,雌性比例分别为58.2%、66.8%、71.3%、71.8%。同批漠斑牙鲆孵化后每组随机选取120尾进行温度诱导研究,分别精确控温至14℃,18℃,22℃(正常对照组),26℃,32℃温度培养至160日龄,转到21-23℃正常水温养殖至200d,石蜡组织切片鉴定性别,结果表明:26℃和32℃高温能明显提高群体中的雄性比例,使其分别达到66.3%(0.010.05)和58.8%(P>0.05);对照组群体中雌雄个体比例接近1:1。温度能促使漠斑牙鲆原始性腺向雄性方向分化,因此该鱼属于温度依赖型性别决定类型。
Female southern flounder (Paralichthys lethostigma) grow faster than males.Therefore, all-female production will maximize farming profit of this species. In the present study, the gonadal sexdifferentiation and sex control were studied through histological observation, sex reversal induced by temperature and hormone and meiotic gynogenesis,the results and conclusions are as follows:
     1. Gonadal sex differentiation of southern flounder
     1.1 Development of primordial gonad
     The Southern flounder, 0 to 65 days after hatching (DAH), 2.3±0.31 to 37.5±3.4mm in total length (TL),were sampled and processed for histological observation.In the yolk sac stage, the primordial germ cells (PGCs), 7.1±1.5μm in diameter and nuclear 3.2±0.9μm in diameter, located between the gut and the mesonephric ducts.In larvae of 10 DAH, PGCs reached the germinal ridge and began to form the primordial gonad. In larvae of 10~35 DAH, the primordial gonad began to prolongate. In larvae of 45 DAH, the primordial gonadstretched from the ventral end of the kidney to the posterior end of the abdominal cavity after mitotic multiplication. There is no evidence of gonadal differentiation in primordial gonad until 65 DAH.
     1.2 Ovarian differentiation
     After matining at undifferentiation stage for certain time, when larvae were 85 DAH with 5.9±0.32cm in TL, the primordial gonad started the mitosis procedure, and clusters of oogonia appeared which indicated the beginning of ovarian differentiation of Southern flounder. Presumptive ovarian cavity begin to form at 7.1±0.36cm in TL (100DAH), the dorsal and ventral edges of the gonad expanded laterally and eventually fused, leaving a gap between them. At 8.3±0.81cm in TL (120 DAH), the ovarian cavity increased in size, and began to form lamellae which would ultimately develop into ovarian follicles containing clusters of oogonias. Ovarian cavity was finally formed at 180DAH. Formation of clusters of germ cells and ovarian cavity are regarded as the distinguishing cytological and anatomical features of ovarian differentiation of southern flounder.
     1.3 Testicular differentiation
     Similar to other fishes, testicular differentiation of Southern flounder was posterior to ovarian differentiation. At 5.3±0.42cm in TL (100DAH), presumptive testis began to enlarge through mitosis quickly. Formation of efferent duct and blood vessels occurred at 130DAH (6.3±0.52cm in TL), which were the anatomical features of testicular differentiation. At 160 DAH ( 6.8±0.56cm TL), the stromal cells in the testis began to diffuse and form interstitial tissue which surrounded the future seminal lobule anlage, meantime,clusters of spermatogonia (SG) appeared. At 200 DAH (8.7±0.93 cm TL), the testis began to develop spermatogonial clusters of cysts and form seminal lobule, which was the cytological features of testicular differentiation. By Testis developed into maturation stage when total length reached 15.3±1.2cm at 310 DAH. In no instance was there any evidence of intersexuality,or dimorphic characteristics in any histological sections before,during,or after gonadal sex differentiation.Southern flounder belongs to differentiated gonad type, developing directly into a testis or an ovary.
     2. Gynogenetic induction in southern flounder by cryopreserved sperm of Pagrosomus mojor
     In the present study, we developed an effective protocol to produce all-female southern flounder by using meiotic gynogenesis activated with the cryopreserved heterologous sperm of Pagrosomus mojor. UV was used to inactivate sperm and cold shock was applied to prevent extrusion of the second polar body.The results showed that diploid gynogenesis was successfully induced by activating egg development with UV irradiated sperm (72 mJ/cm2) at 3 min after fertilization,and then cold shocked (0~2℃) for 45 min. The fertilization rate was 37.2±5.1%, the lowest malformation rate was 8.3±2.5%, diploid hatching rate was up to 9.4±0.71%.Gynogenetic progeny were examined by flow cytometry, morphology and chromosome ploidy, these methods all verified that the progenies were diploid (2n = 48), haploid and aneuploid phenomena were not found.Embryonic development observations showed that the embryonic development of two treatment groups were significantly different from control group. Gynogenetic diploid larvae and normal larvae showed no significant difference in Morphology index (P> 0.05) except for haploid larvae (P <0.05).
     3. Effects of temperature and MT on sex ratio in progenies of southern flounder
     The effects of temperature and MT on sex ratio of progenies of southern flounder were assessed by distinguishing the phenotypic sexthrough histological sectioning.Juvenile southern flounder were exposed to at 14℃, 18℃, 22℃, 26℃, and 32℃from 40 DAH to 160 DAH respectively. High temperatures(26℃,32℃) produced a higher proportion of males(66.3% males at 26℃, 0.010.05;63.8%males at 16℃, P>0.05) in experimental fish. Raising southern flounder at temperature of 22℃held sex ratios close to 1:1. In a separate study, juvenile southern flounder were exposed to MT and E2 of 20μg/L,60μg/L, 80μg/L, 100μg/L from 40 DAH to 160DAH, respectively. High and low concentration of MT induced significantly higher proportion of males(78.5%males at 60μg/L, P<0.05; 83.4%males at 80μg/L, P<0.05;87.3%males at 100μg/L, P<0.05). The E2 treatment did not cause significant difference in sex ratio of southern flounder (58.2 % males at 20μg/L·H2O;66.8 % males at 60μg/L·H2O;71.3%males at 80μg/L·H2O; 71.8%males at 100μg/L·H2O). These findings indicate that sex ratio in southern flounder could be affected and controlled by temperature and MT.
引文
[1]柳学周,2004.我国北方几种新的海水养殖鱼类及其发展前景.青岛·全国水产养殖研讨会论文
    [2] Yamamoto, T.. Artificially induced sex-reversal in genotypic males of the medaka, Oryzias latipes. J. Exp.Zool., 1953,123:571~594
    [3] Yamamoto, T.. Sex differentiation. In: Fish Physiology Vol.III, Reproduction and Growth, Bioluminescence, Pigments, andPoisons.,1969,pp. 117–175. Edited by W.S. Hoar and D.J. Randall.Academic Press, New York
    [4] Tave D. Genetics for Fish Hatchery Managers (2nded)[M]. New York: AVIPublishers, 1993. 68
    [5]黄斌.鱼类性别的控制[J].科技与生活.1996,9:47~49
    [6]文爱韵,尤锋等.鱼类性别决定与分化相关基因研究进展[J].海洋科学.2008,32 (1):74~80
    [7]董在杰,袁新华等.鱼类的性别决定和分化及其研究方法综述[J].湛江海洋大学学报.2004,24(6):74~79
    [8]钱国英.鱼类的性别及人工控制.动物学杂志[J].2000,35(1):47~51
    [9]杨洁,吴宏达等.鱼类性别决定机制的研究进展.渔业经济研究.2007,,3:14~19
    [10]阮洪超,吴光宗.人工诱导鱼类的性转化.齐鲁渔业.1994,11(4):1~3
    [11]余先觉,周日敦,李渝诚等.中国淡水鱼类染色体.北京:科学出版社,1989:18~119.
    [12]孙远东,谭立军等.鱼类性别决定及其基因的研究进展.安徽农业科学.2008,36(18):7691~7695
    [13] Avtalion R R, Don J. Sex - determining genes in tilapia: amodel ofgenetic recombination emerging from sex ratio results of three generations ofdiploid gynogeneticOreochromis aureus[J]. Journal of fish biology, 1990, 37: 167~173
    [14]林岗.罗非鱼的种群控制研究与应用[J].广西科学院学报.1997,13(4):32~37
    [15]夏文才.应用性激素诱导莫桑比克罗非鱼性转换的试验小结.杭州水产科技,1980,5(1): 39~40.
    [16]王念民,孙大江等.温度对鱼类性别分化和性别决定的影响[J].水产学杂志.2007,20(2):91~93
    [17] M.A. Hurley*, P. Matthiessen, A.D. Pickering. A model for environmental sex reversal in fish[J]. Journal of Theoretical Biology.2004,227:159~165
    [18] ConoverD O, Kynard B E. Environmental sex determinations: interaction of temperature and genotype in a fish[J]. Science, 1981, 213:577~579.
    [19] Carlosa Strussmann,Tsuyoshi Saito,Meisei Usui, et al. Thermal thresholds and critical period of thermolabile sexmination in two atherinid fishes,Odontesthes bonariensisandPatagonina hatch-ery[J]. J Exp Zool,1997,278:167~177.
    [20] DesprezD.MelardC.Effeet ofambient water remperature on sex determination intheblue tilapiaoreo-hromisaure[J].Aquaculture,1998b,162
    [21]程晓春,林丹军等.温度对江黄颡鱼性分化的影响[J].动物学研究,2007,28(1):73~80
    [22]邓思平,陈杉林,田永胜,等.半滑舌鳎的性腺分化和温度对性别决定的影响[J].中国水产科学,,2007,,14(5): 714~718.
    [23]翁幼竹,张为民,方永强等. 17β-雌二醇诱导鲻鱼雌性化的机制:芳香化酶和雌激素受体双染定位研究[J].中国水产科学,2003,,10(6): 446~450.
    [24]戈贤平,夏德全等.鱼类性别决定的研究进展[J].中国水产科学,2002,9(4):71~374
    [25] Helena D, Jean-FrancoisB. Search forgenes involved in the temperature-induced gonadal sex differentiation in the tilapia,Oreochromis niloticus[J]. Journal ofExperimentalZoology, 2001, 290: 574~585
    [26]洪万树,方永强.鱼类芳香化酶活性研究的进展[J].水产学报,2000,24(3):285~288
    [27]林岗.罗非鱼的种群控制研究与应用[J].广西科学院学报.1997,13(4):32~37
    [28]杨永铨等.应用三系配套生产遗传上全雄莫桑比克罗非鱼.遗传学报,1980,7 (3):241~246.
    [29]洪万树,张其永等.外源激素诱导赤石石斑鱼雄性化[J].1994,13(4):374~379
    [30] Fiferrer F,Zanuy S,Carrillo M,et al.Brief treatmentwith an aromatase inhibitor during sex differentiation caus-es chromosomallyfemale salmon to develop as normal,functional males[J].J Exp Zool,1994,270:255~262
    [31] Sun Y D, Zhang C, Liu S J,et al.Induction of gynogenesis in Japanese crucian carp (Carassiuscuvieri) [J].ActaGenetica Sin-ica, 2006,33(5): 405~412 [孙远东,张纯,刘少军等.人工诱导雌核发育日本白鲫.遗传学报,2006,33(5):405~412
    [32]郝汉舟,杨桂军等.鱼类人工性别控制[J].水产科学.2004,23(7):42~44
    [33]谷口顺彦·染色体倍化技术出鱼类育种[J]·水产の研究,1986,24(1):80~90.
    [34]林莲英,宗琴仙,李永强·人工诱导雌核发育金鱼的研究[J]·水产科技情报,1993,20(1):15~19.
    [35]赵振山,吴青江,刘辉宇·大鳞副泥鳅雄核发育单倍体早期发育[J]·动物学报,2000,46(3):353~356.
    [36]赵振山,高贵琴,吴青江·两种泥鳅杂交及人工诱导大鳞副泥鳅雄核发育的染色体变化[J]·大连水产学院学报,2002,17(1):15~19.
    [37]吴清江,陈荣德,叶玉珍等.鲤鱼人工雌核发育及其作为建立近交系新途径的研究.遗传学报,1981,8(1)::50~55.
    [38]肖俊,彭德姣等.用团头鲂精子诱导金鱼雌核发育研究[J].水生生物学报.2009,33(1):76~81
    [39]徐永江等.性别控制技术与选择标记在牙鮃育种中的应用研究.中国海洋大学学位论文.2004,1~96
    [40] Piferrer,F.Endocrine sex control strategies for the feminization of teleost fish.Aquaculture,2001, 197:229~281
    [41] Brusle′, J. & Brusle′, S.La gonandogyne`se des Poissons. Reproduction, Nutrition,et De′veloppement, 1983, 23:453~491
    [42] Colombo, G. & Grandi, G.. Histological study of the development and sex differentiation of the gonad in the European eel. J. Fish Biology., 1996, 48:493~512
    [43]施瑔芳.鱼类性腺发育研究新进展[J].水生生物学报,1988,12(3):248~255
    [44] Goto, R., Mori, T., Kawamata, K., Matsubara, T., Mizuno, S., Adachi, S. & Yamauchi, K.. E.ects of temperature on gonadal sex determination in barfin flounder, Verasper moseri. Fisheries Science, 1999, 65:884~887
    [45] Henry, C.I., Martin-Robichaud, D. J., Benfey, T.J.. Gonadal sex differentiation in Atlantic halibut. Journal of Fish Biology , 2002, 60:1431~1442
    [46]刘少军.革胡子鲶PGCs的起源、迁移及性腺分化[J].水生生物学报,1991,15(1):1~7
    [47] Dildine, G. C.. Studies on teleostean reproduction. I. Embryonic hermaphroditism in Lebistes reticulates.J. Mor. 1936,60:261~277
    [48]廖国璋.以色列生产单性罗非鱼的试验.珠江水产, 1988, (12)::76~77.
    [49] Simpson E R,Mahendroo M S,Means G D,et al.Aromatase cy-tochrome P450,the enzyme responsible for estrogen biosynthesis[J].Endocrinol Rev,1994,15:342~355.
    [50]蒋一硅,1983.异源精子在银鲫雌核发育子代中的生物学效应.水生生物学报,8(1):1~3.
    [51] SunY D, TaoM, Liu S J,etal. Induction ofgynogenesis in redcrucian carp using spermatozoa of blunt snout bream [ J].Pro-gress inNaturalScience, 2006,16(12): 1633~1638
    [52]?郑惠东.圆斑星鲽的人工繁殖及育苗技术[J].福建水产,2003,9(3):15~17.?
    [53]施琅芳等.1964.鳝鱼性腺周年变化的研究.水生生物学集刊,5(l):7l~91.
    [54] Lee, Y.-D. & Lee, T. Y.. Sex differentiation and development of the gonad in the flounder, Paralichthys olivaceus. Bulletin of the Marine Research Institute, Cheju National University,1990,14: 61~86
    [55] Goto, R., Mori, T., Kawamata, K., Matsubara, T., Mizuno, S., Adachi, S. & Yamauchi, K.. E.ects of temperature on gonadal sex determination in barfin flounder, Verasper moseri. Fisheries Science, 1999, 65:884~887
    [56]马学坤,柳学周,温海深,等.半滑舌蝎性腺分化的组学观察.海洋水产研究,2006, 27(2):55~ 56
    [57]王开顺.石鲽(Kareius bicoloratus)性腺发生、分化及发育的周年变化.中国海洋大学,研究生学位论文. 2004,1~40
    [58] Nakamura, M., Kobayashi, T., Chang, X., Nagahama, Y., Gonadal sex differentiation in teleost fish. J. Exp.Zool. 1998.281, 362~372.
    [59] J. Adam Luckenbach, John Godwin,et.al. Gonadal differentiation and effects of temperature on sex determination in southern flounder(Paralichthys lethostigma). .Aquaculture. 2003.216:315~327.
    [60] Lou Y D. Fish breeding[M].Beijing:China Agriculture Press.1992,153~190[楼允东.鱼类育种学.北京:中国农业出版社.1992,153~190.
    [61] Str ssmann C A.Nakamura M.M orphology.Endocrinology.and environmental modulation of gonadal sex differentiation in teleost fishes[J].Fish Physiol Biochem,2002,26:13~29
    [62] Nakamura, M.. Morphological and experimental studies on sex differentiation of the gonad in several teleost fishes. ,1978, PhD Thesis, Faculty of Fisheries, Hokkaido University, Hokadate
    [63] Yamamoto, E, Studies on sex-manipulation and production of cloned populations in hirame flounder,Paralichthys olivaceus. Bull. Tottori Pref. Fish. Exp. Stn. 1995.,34, 1~145 (in Japanese, with English summary).
    [64] Tanaka, M., Sakai, N., Nagahama, Y. cDNA encoding P450 aromatase and P450c17 lyase of medaka and rainbow trout; their expression and cloning in the ovary. Program and Abstracts, Second International Marine Biotechnology Conference, Baltimore, USA,1991a,p.93
    [65]孙鹏,尤锋,张立敬等.2009.牙鲆性腺分化的组织学研究[J].海洋科学,2009 (33.):53~58
    [66] Hunter, G.A. and Donaldson, E.M.. Hormonal sex control and its application to fish culture. In: Fish Physiology Vol. IX, Part B Behaviour and Fertility Control.,1983, pp. 223~303. Edited by W.S.Hoar, J.D. Randall and E.M. Donaldson. Academic Press, New York
    [67] Luckenbach, J. A. John, G., Daniels, H.V., Borski, R. J.. Gonadal differentiation and effects of temperature on sex determination in southern flounder, Paralichthys lethostigma. Aquaculture, 2003, 216:315~327
    [68]张小雪,董元凯.黄鳝性腺发生与分化的研究[J].水利渔业,1994,73(5):54~59
    [69] Hamaguchi S. A light-and electron-microscopic study on the migration of primordial germ cells in teleost, Oryzias latipes. Cell Tissue Res.,1982.227:139~151
    [70]刘少军.革胡子鲶PGCs的起源、迁移及性腺分化[J].水生生物学报,1991,15(1)::1~7
    [71] Lepori N C.“Sex Differentiation, Hermaphroditism and Intersexuality in Vertebrates including Man”[M]. Pissin Medical Books,1980.
    [72]谷口顺彦1986.·染色体倍化技术出鱼类育种[J]·水产の研究,24(1):80~90.
    [73]吴清江,陈荣德,叶玉珍等,.鲤鱼人工雌核发育及其作为建立近交系新途径的研究[J].遗传学报,1981,8(1):50~55
    [74]杨景峰,陈松林,苏鹏志等,异源精子诱导条斑星鲽雌核发育的研究[J].水产学报,2009,33(3):372~378
    [75]戈文龙,张全启,齐洁等,异源精子诱导牙鲆雌核发育二倍体[J].中国海洋大学学报,2005,35(6):1011~1016
    [76]刘海金,侯吉伦,常玉梅等,2010.真鲷精子诱导牙鲆减数分裂雌核发育[J].水产学报,34(4):508~513
    [77] HARALD B T,TILLMANN J B,DEBORAH J M R et al,2006.Gynogenesis and sex determ ination in A tlantic Halibut(Hippoglossush ippoglossus)[J].Aquaculture, 252:573-583
    [78] FRANCESC P,ROSA M C,CASTORA G et al,2004.Induction of gynogenesis in the turbot( Scophthalmus maximus):Effects of UV irradiation on sperm motility, the Hertwig effect and viability during the first 6 months of age[J].Aquaculture,238:403~419
    [79] Jian-He Xu,Feng You,Wei Sun etc,2008. Induction of diploid gynogenesis in turbot (Scophthalmus maximus) with left-eyed flounder Paralichthys olivaceus sperm[J]. Aquacult Int,16:623~634
    [80]季相山,陈松林,武鹏飞等,紫外灭活的异源和同源精子诱导的半滑舌鳎单倍体胚胎发育过程比较[J].水产学报,2009,33(1):60~69
    [81] ANDREW J. MORGAN Ryan Murashige et al,2006. Effective UV dose and p ressure shock for induction of meiotic gynogenesis in southern flounder(Paralichthys lethostigma)using black sea bass(Centropristis striata)sperm[J].Aquaculture,259:290~299
    [82] Adam L J’Godwin J’Daniels H V’et al,2004. Induction of diploid gynogenesis in southern flounde with homologous and heterologous sperm[J].Aquaculture,237:499~516
    [83]杨景峰,陈松林,徐亘博等,花鲈冷冻精子诱导漠斑牙鲆雌核发育[J].水产学报,2010,34(8):1175~1181
    [84]?柳学周,2007.星鲽养殖技术手册[M].山东?中国水产科学学院黄海水产研究所?
    [85]?郑惠东.圆斑星鲽的人工繁殖及育苗技术[J].福建水产,2003,9(3):15~17?
    [86]?柳学周,庄志猛等.?半滑舌鳎苗种生产技术的开发研究[J].海洋水产研究,2006,27(2):17~24?
    [87]?孙中之,柳学周,徐永江等.半滑舌鳎工厂化人工育苗工艺技术研究[J].中国水产科学,2007,14(2):244~248?
    [88]?洪云汉.鱼类单个胚胎染色体标本的快速制备法[J].淡水渔业,1987,1:35~36?
    [89]王妍妍,柳学周,徐永江,吴莹莹.条斑星鲽染色体核型分析[J].渔业科学进展,2009,30(2):8~13.
    [90]李鹏飞,刘萍,柳学周.漠斑牙鲆染色体组型研究[J].海洋水产研究,2007,28(4):26~30
    [91]马学坤,柳学周.漠斑牙鲆胚胎及仔稚鱼发育的形态学观察[J].南方水产,2008,4(1):41~45
    [92] Lou Y D. Fish breeding[M].Beijing:China Agriculture Press.1992,153~190[楼允东.鱼类育种学.北京:中国农业出版社.1992,153~190
    [93]赵正山,吴清江.人工诱导大鳞副泥鳅雄核发育二倍体克隆鱼的产生[J].遗产学报,1998,25(5):416~421
    [94] BROWN D B. Chromatin decondensation and DNA synthesis in human sperm activated in vitro by using Xenopus laevis egg exacts[J].J Exp Zool,1987,242:215~231.
    [95] Yamakawa T,Matsuda H,,Tsujigado A et al,.Optimum dose of UV irradiation for induction of gynogenesis in flounder Paralichthys olivaceus using red sea bream sperm [J].Fish Res Inst Mie,1987,2:51~53.
    [96]孟振,雷雾霖,刘新富,张和森.不同倍性大菱鲆胚胎发育的比较研究[J].中国海洋大学学报,2010,40(7):036~042
    [97]刘静,田明诚.真鲷和黑鲷染色体组型研究[J].海洋科学,,1991 (3):64~67
    [98]戴世行,尹立刚.鱼类人工雌核发育中两个技术处理的最佳选择[J].重庆师范学院学报(自然科学版),1991,8(2):51~55
    [99] JohnsonM,HeathJ W.Family induction methodology and interaction effects on the performance of diploid and triploid chinook salmon Oncorhynchus shawytscha[J].Aquaculture,2004,234:123~142
    [100]潘光碧.人工诱导鱼类雌核发育技术的研究[J].淡水渔业,1988,6:17~20.
    [101]许建和,尤锋,吴雄飞等.冷休克法和静水压法人工诱导大黄鱼三倍体[J].中国水产科学,2006,13(2):206~210
    [102]刘海金,王常安,朱晓琛.牙鲆单倍体、三倍体、雌核发育二倍体和普通二倍体胚胎发育的比较[J].大连水产学院学报,2008,23(3):161~167
    [103]王卫军,杨爱国,刘志鸿,周丽青.异源精子诱导栉孔扇贝雌核发育早期胚胎发育及其倍性分析[J].上海水产大学学报,2007,16(5):415~420
    [104]曹学彬,丁君,常亚青.人工诱导马粪海胆雌核发育的早期胚胎发育及细胞学观察[J].大连水产学院学报,2008,23(1):1~7
    [105] Pandian T J,Koteeswaran R.Ploidy induction and sex control in fish[J]. Hydrobiologia,,1998,384:167~243
    [106] Hurley M A,Matthiessen P,Pickering A D.A model for environmental sex reversal in fish[J].J theor Biol,2004.227(2):159~165
    [107]李广丽,刘晓春,林浩然. 17a-甲基睾酮对赤点石斑鱼性逆转的影响[J].水产学报,2006,30(2):146~150.
    [108] Pandian T J .Sheela S G .Hormona l induction of sex reversal in fish[ J ].Aquaculture,1995,138 :l ~22.
    [109] Yamamoto,E.,Application of gynogenesis and triploidy in hirame(Paralichthys olivaceus)breeding.Fish Genet.Breeding Sci.1992.18:3~23.213.
    [110] Howell,B.R.,Baynes,S.M.,Thompson,D.,Progress towards the identification of the sex-determining mechanism of the sole, Solea solea(L.),by the induction of diploid gynogenesis.Aquac.Res.1995,26:135~140.
    [111] Kuo G M,Ting Y Y,Yeh S L.Induced sex revesal and spawing of blue spotted grouper,Epinephelus fario[J].Aquaculture,1988,74:113~126
    [112]孙鹏,尤锋,刘梦侠等.Steroid sex hormone dynamics during estradiol-17induced gonadal differentiation in Paralichthys olivaceus (Teleostei)*[J]. Chinese Journal of Oceanology and Limnology,2010,28(2):254~259.
    [113]邓思平.半滑舌鳎性别相关基因P450芳香化酶、FTZ-F1和DMRT1基因克隆及表达分析.中国海洋大学,研究生学位论文. 2007,1~60.
    [114]姚道霞黄颡鱼性分化及激素诱导性转化研究.东北林业大学,研究生学位论文..2007,1~80.
    [115] V.Jayaprakas,B.S.Sindhu.effect of Hormones on Growth and Food Utilizationg of the Indian Major Cap,Cirrhinus mrigala.Fish.Technoa.1996,33:21~27
    [116] Tsai C L,wang L H,chang C F,et al.Effects of gonadal sterorids on brain serotonergic and aromentiation activity during the critical period of sexual differentiation intilapia,Oreochromis mossambicus[J].J Neuroendocrinol,2000,12(9):894~898
    [117] Hassin S ,Monbrison D,Hanin Y,et al.Domestication of the white grouper, Epinephelus aneus. Growth and reproduction[J]. Aquaculture,1997,138 305~316.
    [118] DesprezD.MelardC.Effeet ofambient water remperature on sex determination intheblue tilapiaoreo-hromisaure[J].Aquaculture,1998b,162~181
    [119] Kitano T, Takamune K, Kobayashi T, Nagahama Y, Abe S-I. 1999.Suppression of p450 aromatase gene expression in sex reserved males produced by rearing genetically female larvae at a highwater tempera-ture during a period of sex differentiation in the Japanese flounder(Paralichthys olivaceus) [J].JMol Endocrinol,23: 167~176.
    [120]程晓春,林丹军等.温度对江黄颡鱼性分化的影响[J].动物学研究,2007,28(1):73~80
    [121] Patino R, Davis KB, Schoore JE, Uguz C, Strussmann CA, Parker NC,Simco B, Goudie CA. 1996. Sex differentiation of channel catfish go-nads: Normal development and effects of temperature [J].JExpZo-ol,276: 209~218.
    [122]王清印等.海水养殖生物的细胞工程育种.北京:海洋出版社. 2007,275~278.
    [123] J. Adam Luckenbach, John Godwin,et.al.. Gonadal differentiation and effects of temperature on sex determination in southern flounder(Paralichthys lethostigma).Aquaculture.2003,216:315~327.
    [124] Yamamoto E.Studies on Sex-manipulation and Productiong of Cloned Population in Hirame Paralichthys Olivaceus.Aquaculture.1999,173:235~246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700