轻型汽车电子稳定性程序和半主动悬架综合控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车辆底盘综合控制已成为目前汽车领域研究的热点问题,随着先进的电子设备在汽车上安装的越来越多,它们之间对车辆控制所产生的相互影响及耦合性越来越受到关注。其中电子稳定性程序(ESP)主要是通过调节四个轮的制动力或驱动力来产生一个校正的横摆力矩从而确保车辆在行驶过程中的转向稳定性;半主动(SAS)悬架用于控制车辆行驶过程中的姿态比较多,但在高附着路面上通过改变前后悬架的阻尼也可以一定程度上抑制车辆的横摆,因此可以考虑把二者对车辆的横摆控制相结合,使它们的作用都得到很好的发挥。
     本文分别提出了基于阻尼的可调半主动悬架以及电子稳定性程序对车辆稳定的控制策略和控制算法,并着重分析了二者在对车辆横摆控制存在的耦合性,提出了基于线性分配权重的ESP-SAS综合控制策略,通过合理的分配二者对车辆的横摆控制所占的比例和以及分别进入控制的时刻,在保证车辆转向过程中具有一定舒适性和足够稳定性同时,又减少了ESP过多制动造成的车速降低过快,减少了动力性的损失,同时保持足够高的车速也会使紧急移线过程中跟逆向行驶的车辆发生碰撞的概率得以降低。
With the rapid development of automotive electronics technology and the chassis control technology improved,a large number of electronic products have been installed in the vehicles. Examples of active braking systems are Electronic Stability Program(ESP)and the Electro-Hydraulic Brake system (EHB); examples for suspentions are the Active Suspention(AS) and Semi-active Suspention, Continuous Damper Control(CDC), Active Roll Control(ARC). Steering systems are Electronic Power Steering(EPS), Active Front Steering(AFS) and Rear wheel Steering(RWS).
     However, in the development of these new systems, this is usually a concern which is achieved by the system itself corresponding control objectives and it will not be considered too much when they joined the vehicle control system , other subsystems maybe have the bad impact , for instance, the changes of the vertical load brought about by Active Roll Control (ARC) may not conducive for ESP control
     which need sufficient ground adhesion .When large lateral acceleration movement has taken place, change of body roll through "the axis effect " to the accuracy of vehicles , so affect vehicle handling and stability. Therefore, people gradually began to pay attention to the integrated control concept of the chassis, and have been in-depth study of the subsystems in the kinematic control which there will be interference and mutual coupling.On the basis of the implementing agencies Sensor demand and reasonable sharing of information they creat a coordination mechanism between the various subsystems ,so their function does not interfere with the action and conflict, and can achieve optimal performance.
     As everyone knows, the suspension can direct impact on the smoothness of vehicles and body posture , by grounding tire load indirectly it also can affect manipulation and stability. Advanced semi-active suspension as a sort of suspension, by adjusting the damping or stiffness, on the one hand it can be a good inhibition to roll in the process of braking and pitch and improve comfort, on the other hand, it also can controll the vertical load transfer of the front and rear axis on the brake, as well as affect the re-distribution of the vertical load beween the left and the right wheels when steering, which will directly or indirectly affect the cornering characteristics of the tire and vehicle steering characteristics; ESP can maximize the use of the tire and road surface adhesion potential .the side angle and yaw rate can be controlled within the permit limits, through yaw torque compensation it guarantee that the vehicles have enough stability and manipulation of active safety. Therefore if we combine ESP and semi-active suspension in the design process ,it will not only better in vehicle handling stability and comfort, but it will also reduce the excessive participation of the ESP and the dynamic performance decline . But the two systems have a mutual constraints and a complex relationship between the coupling, and we can not simply stack function ,we should study in depth the mutual constraints and the interaction mechanism between them.The paper tells the theoretical analysis on how to control them better ,so they can make greater contributions to improve the overall performance of the vehicles.
     In all, the following researches have been finished.
     Firstly,The vehicle dynamic model are established, which contains road model, comfort model and handling model. The comfort model contains unspring model, suspension model, spring model and assistant model. The handling model contains intention model, road cling model, press model of detent, tyre model, and so on.
     Secondly, subsystem controller modeling and control strategy has been completed. Suspension is given principles of vehicle yaw stability control .Front and rear different damping allocation strategy made an impact on the stability of vehicle , and the incremental yaw control PID control algorithm is given.The stability control principle of the ESP is described. The article tells the three classic PID control algorithm of the target yaw moment, and in Matlab / Simulink environment ESP and semi-active suspension control model is built.
     Then a detailed analysis has been done in the yaw stability and attitude control on the coupling between the semi-active suspension and ESP.The ESP-SAS integrated control strategy with a linear distribution of weight has been established. In Matlab / Simulink environment a comprehensive control unit structures based on the signs is achieved.
     Finally, the simulation analysis has been done. In this paper, the vehicle dynamics simulation software for light Iveco light vehicles is made to simulate on the status of the band and single-lane traffic.In low adhesion circumstances, the stability of vehicle subsystems mainly lies on the manipulation capacity of ESP.In the high-adhesion circumstances, three different ways have been used in simulation.They are semi-active suspension control ,ESP control and ESP-SAS comprehensive control. The article has also discussed the effect to the performance of vehicles in three different ways.
     Conclusion: On the high adhesion road, by integration control of the semi-active suspension and electronic stability program and reasonable allocation of the proportion of the two vehicles yaw control access and time respectively, it can make that the vehicles have a certain comfort and sufficient stability,at the same time, it can reduce the speed descending and the loss of power.To keep a sufficiently high speed also avoid the accident of the collision with the Vehicles travelling in the reverse direction.
引文
[1] 陈祯福.汽车底盘控制技术的现状和发展趋势[J].汽车工程.2006年(第28卷)第二期:105-113
    [2] Kraft, H.-J. "The Integrated Brake and Stability Control System of the New BMW 850i". SAE Paper No.900209 ,1990
    [3] 韩建保. ESP 确保汽车线内行驶和横向稳定性[J]. 世界汽车,2003(02):24-25
    [4] M.K.Claes Tingvall, Anders Kullgren and Anders Lie. "The Effectiveness of ESP (Electronic Stability Programme) in Reducing Real Life Accidents."
    [5] Stephan.Kraus.ESP radically reduces accident figures .www.bosch-presse.de.
    [6] 郑兰霞,江斌.车辆悬架系统的发展及现状研究.农业装备与车辆工程.2006 年第三期:11-14
    [7] FEDERSPIEL-LABROSSE J M.Beitrag zum stadium und vervolk ommung der aufhangung der fahrzeuge [J].ATZ, Marz, 1955,3(2):57-72.
    [8] 余淼,廖昌荣,杨建春等.磁流变阻尼器 PWM 快速控制[J].中国机械工程.2002,13 (14):1238-1240;
    [9] www.163.com. 网易试驾 凯迪拉克 SRX 专题汽车网易汽车频道.htm [10 ] 符永法,称灼明.集成控制系统[J].化工自动化及仪表,1998,25(5):44-47
    [11] Furukawa,Y.and Abe,M.Advanced Chassis Control Systems for Vehicle Handling and Active Safety.Vehicle System Dynamics,Vol.28:59-86,1997
    [12] 赵方庚,姜丁等. 汽车底盘电子控制系统的发展. 汽车电器, 2003, 2, 1-4
    [13] M.Harada and H.Harada. Analysis of lateral stability with integrared control of suspension and steering systems. JSAE Review ,1999,20:465-570
    [14] E.One,K.Takanami, et al.Vehicle integrated control for steering and traction system by μ -synthesis.Aurtomatica,1994, 30(11):639-647
    [15] Y.Ghoneim , W.Lin,et al. Integtrated chassis control system to enhance vehicle stability.International Journal of Vehicle Design,2000,23(1/2):124-144
    [16] A. Tr?chtler. Integrated vehicle dynamics control using active brake, steering and suspension systems. Intenational of Vehicle Design, 2004,13(6):789-893
    [17] Dr. Z. CHEN. Global Chassis Control. [学术论文] 2007,4
    [18] 李君,喻凡等.车辆转向制动防抱死系统仿真研究.系统仿真学报. 2001, 13(6):789-793
    [19] 程军,崔继波,徐光辉等.车辆控制系统集成开发系统.汽车工程. 2000,22(2):109-114
    [20] 姜武华.汽车电动助力转向系统结构/控制参数的集成优化. [D]合肥工业大学,2002.4
    [21] 王妍旻.汽车电动助力转向系统结构与主动悬架集成系统自适应控制研究. [D]合肥工业大学,2004.4
    [22] M.米奇克著,陈萌兰译.汽车动力学 A 卷(第二版)[M].人民交通出版社,1997
    [23] M.米奇克著,陈萌兰译.汽车动力学 B 卷(第二版)[M].人民交通出版社, 1997
    [24] M.米奇克著,陈萌兰译.汽车动力学 C 卷(第二版)[M].人民交通出版社,1997
    [25] 李静.4x4 越野汽车牵引力控制策略与控制算法研究[D].吉林大学博士论文, 2003
    [26] 刘巍.驱动工况汽车稳定性控制算法研究[D].吉林大学硕士学位论文,2003
    [28] 余志生.汽车理论[M].机械工业出版社,1999
    [29] 赵珩,卢士富.路面对四轮汽车输入的时域模型[J].汽车工程,1999.21.(2):112-117
    [30] 喻凡,郭孔辉.结合卡尔曼滤波器的车辆主动悬架轴距预瞄控制研究[J].汽车工程,1999,21 (2):72-80
    [31] 檀润华,陈鹰,路甬祥.路面对汽车激励的时域模型建立及计算机仿真[J].中国公路学报,1998.7.11(3):96-102
    [32] 李礽,门永新,庄继德.汽车姿态的离散性半主动控制[J].吉林工业大学学报,1996,04:1-5
    [33] 吴业森.随机振动[M].机械工业出版社,1989
    [34] 李栓成,王天颖编.《现代轿车电控悬架的结构原理和检修》.北京:北京理工大学出版社,1998,8;
    [35] 刘飞,陈龙和薛念文等.半主动悬架控制及评价方法的探讨.江苏大学学报.2002,11(23)第 6 期
    [36] Scott Wilson Badenoch&David Andrew Shal.VEHICLE SUSPENSION CONTROL WITH STABILITY IN TURN ENHANCEMENT .United States Patent.Patent Number:6219602B1.Data:Apr.17,2001。
    [37] Mark O.Bodie and Aleksander Hac.DAMPER BASED VEHICLE YAW CONTROL.United States Patent.Patent Number:6505108B2.Data:Jan.7,2003
    [38] Mark O.Bodie and Aleksander Hac.Closed Loop Yaw Control of Vehicles Using Magneto-Rheological Dampers.SAE TECHNICAL PAPER SERIES.2000-01-0107。
    [39] SangHo Yoon,JiHyun Jung,Bonkung Koo.Development of Rollover Prevention System Using Unified Chassis Control of ESP and CDC Systems.SAE 2006-01-1276
    [40] Masaya Segawaa, Shiro Nakanoa, Osamu Nishiharab, Hiromitsu Kumamoto. Vehicle stability control strategy for steer by wire system [J]. JSAE Review 22 (2001) 383–388.
    [41] Junjie He, David A. Crolla, Martin C. Levesley and Warren J. Manning. Integrated Active Steering and Variable Torque Distribution Control for Improving Vehicle Handling and Stability[C]//SAE2004-01-1071.
    [42] M. Selby, W. J. Manning, M. D. Brown and D. A. Crolla. A coordination approach for DYC and active front steering[C].SAE 2001-01-1275.
    [43] Tokihiko Akita, Katsuhiko Satoh and Michael C. Gaunt.Development of 4WS Control Algorithm for a SUV[C].SAE2002-01-1216.
    [44] Edward J. Bedner, Jr. and Hsien H. Chen. A Supervisory Control to Manage Brakes and Four-Wheel-Steer Systems[C].SAE 2004-01-1059.
    [45] 李健,王国忠.滑模控制在车辆电控稳定系统中的应用[J].汽车工程,2004,26 (3):295-340.
    [46] Hongtei Eric Tseng, Behrouz Ashrafi, Todd Allen Brown, and Darrel Recker. "The Development of Vehicle Stability Control at Ford". IEEE/ASME TRANSACTIONS ON MECHATRONICS VOL.4 NO.3. 1999.
    [47] 郭孔辉 . 汽车操纵动力学. 吉林科学技术出版社,1991 年
    [48] 丁海涛.轮胎附着极限下汽车稳定性控制仿真研究.吉林大学博士学位论文[D],2003
    [49] 刘巍.驱动工况汽车稳定性控制算法研究[D].吉林大学硕士学位论文.2003.5
    [50] 潘定海.汽车稳定性控制(VSC-Vehicle Stability Control).学术交流资料,1997.7
    [51] Y.Shibahata, K.Shimada, and T.Tomari. "Improvement of Vehicle Maneuverability by Direct Yaw Moment Control". Vehicle System Dynamics,22 (1993) , 465-481. 1993
    [52] Ken Koibuchi, Masaki Yamamoto, Yoshiki Fukada, and Shoji Inagaki. Vehicle Stability Control in Limit Cornering by Active Brake. SAE Paper No.960487
    [53] Dr.Zhenfu Chen.ESC 的工作原理和发展前景.学术交流报告,2007,4
    [54] 高晓杰,余卓平,张立军.基于车辆状态识别的 AFS 与 ESP 协调控制研究.汽车工程.2007,29(4):
    [55] 崔海峰.汽车 ABS/ASR 集成系统及轮缸压力精细调节研究[D]. 北京: 北京理工大学,2006
    [56] Paljoo Yoon, Hyung-Jin Kang, Inyong Hwang, Kunsoo Huh and Daegun Hong. Braking status monitoring for brake-by-wire systems[C].SAE 2004-01-0259
    [57] Paljoo Yoon, Hyung-Jin Kang, Inyong Hwang, Kunsoo Huh and Daegun Hong. Braking status monitoring for brake-by-wire systems[C].SAE 2004-01-0259
    [58] Kiyoshi Wakamatsu, Yoshimistu Akuta, Manabu Ikegaya, Nobuyoshi Asanuma. Adaptive Yaw Rate Feedback 4WS with Friction Coefficient Estimator Between Tire and Road Surface[C].International Symposium on Advanced Vehicle Control, 1996
    [59] 朱飞,邓兆祥,董红亮.基于统一模型的转向-悬架系统最优综合控制方法.汽车工程.2007,29(3):238-239
    [60] 李跃为.依维柯越野车悬架阻尼调节的姿态控制研究.吉林大学硕士学位论文.2006,5
    [61] 王和毅,谷正气.汽车轮胎模型研究现状及其发展分析.橡胶工业.2005 年第 52 卷

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700