中间相沥青超临界溶剂发泡及均相成核数学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沥青基泡沫炭具备密度低、耐腐蚀、热膨胀系数小、高强度、高导热导电等优点,在航空航天以及民用领域有着广泛的应用前景。超临界溶剂法制备的中间相沥青基泡沫炭,由于具有发达的三维网络结构和高度的可石墨化性,成为一种优异的轻型导热碳材料。针对如何提高泡沫炭中泡孔的尺寸均一性,改善泡孔的分布均匀性,该研究选取了合适的溶剂,并对影响发泡过程中气泡成核以及气泡生长的各个因素进行了系统的研究。本论文主要考虑发泡压力,发泡温度,释压速率(或释压时间)和溶剂配比对气泡密度和气泡平均孔径的影响,并分别在高压反应釜中进行了实验,得出了各自的变化关系。
     为了从理论上对成核过程进行分析,该研究借鉴Colton和Suh的经典成核理论,参考Kim的气体分子团簇模型,对中间相沥青超临界溶剂发泡均相成核过程进行了数学模拟,通过数据回归得出了适合超临界溶剂发泡的均相成核理论模型。该研究采用自制的易冷却微型发泡装置进行了中间相沥青的超临界溶剂发泡实验,并通过实验数据进行了公式参数的回归,最终得到了适合于中间相沥青超临界溶剂发泡工艺的数学模型。针对模型准确性的问题,在模型的指导下,该研究进行了有效的实验验证。结果显示:当分别控制饱和压力小于5.0MPa,释压速率大于1.0MPa/s时,实验得出的数据基本符合该均相成核模型,但是由于理论模型只考察了均相成核过程,忽略了实验中存在的非均相成核过程,从而使得实验得到的气泡密度值要稍高于模拟气核密度值。当饱和压力很大或者释压速率很小时,由于不可避免的融并现象,使得泡沫样品中的气泡密度要普遍小于模拟气核密度值。
     通过对影响发泡过程中气泡成核以及气泡生长的各个因素的系统研究,文章得出了各个因素的最佳发泡条件范围,并在此基础上,通过条件的综合设定进行了最佳发泡工艺的探索。研究得出:当控制发泡温度为588~593K,初始压力为2.0~3.0MPa,释压速率为1.0~1.5MPa/s,溶剂配比为30wt%时,可以制备出气泡平均孔径400~800μm,气泡密度10~16×10~3cm~(-3),泡孔形状规则、泡孔分布均匀的中间相沥青基泡沫炭。
Due to low density, corrosion resistance, low thermal expansion coefficient, high tensile strength, high thermal conductivity, pitch-based carbon foams have a broad application prospect in the field of aviation and aerospace as well as civilian. Mesophase pitch-based carbon foams prepared by supercritical solvent, become an excellent light thermal conductive carbon material as a developed three dimensional net-like and highly graphitized structure. This study focused on choosing the proper solvent to improve the size uniformity and distributing uniformity of bubbles, and had done a systemic research of various factors influencing foaming process. This paper mainly studied the effects of initial pressure, foaming temperature, depressurization rate, and solvent proportion on bubble density and average bubble size. The experiments were carried out in a high pressure reactor, and various curves were made based on the experiments.
     In order to analyze the nucleation process by supercritical solvent theoretically, we have made the mathematical simulation of homogeneous nucleation process, referring to Colton and Suh's classical nucleation theory and Kim's cluster model of gas molecule. And we got the theory model of homogeneous nucleation by supercritical solvent through regression of parameters. A self- made micro foaming equipment that could be cooled easily was applied for carrying out accurate experiments, and a mathematical model was established based on received data. This study gave the validation to the simulated model under instructions. Comparison between theory and experimental results showed that the variability of the bubble density following saturation pressure and depressurization time agreed well with the mathematical model when the saturation pressure was less than 5.0MPa and depressurization time was less than 5.0s, but real bubble densities were smaller than that simulated nucleus densities due to unavoidable coalescence. When saturation pressure was much high or depressurization time was very long, the bubble densities of foams were much smaller than the simulated nucleus densities due to strong coalescence for bubbles' excessive growth.
     Through the systematic study of all effective factors, we obtained the range of best foaming conditions. The results showed that supercritical fluid ( SCF ) was suitable for preparing mesophase pitch foams with cell size in the range of 200~800μm, either communicating or closed, and different cell density. Carbon foams with hexagon cell shape, cell diameter of 400~800μm, cell density of 10~16×10~3cm~(-3) and a ligament-mesh structure were prepared at a temperature of 588~593K, initial pressure of 2.0~3.0MPa, depressurization rate of 1.0~1.5MPa/s and solvent proportion of 30%.
引文
[1]Ford W.,Method of making cellular refractory thermal insulating material,US Patent,3121050,1964.
    [2]Klett J.W.,McMillan A.D.,Gallego N.C.,Effects of heat treatment conditions on the thermal properties of mesophase pitch-derived graphitic foams[J],Carbon,2004,42:1849-1852.
    [3]ERG Materials and Aerospace Corporation,900 Stanford Avenue,Oakland,CA94608,USA Reticulated vitreous carbon datasheet.
    [4]Hagar J.W.,Lake M.,Idealized strut geometries for open-celled Foams,Materials Research Society,1992,270:41-46.
    [5]Ultramet advanced materials solutions,12173 Montague street,Pacoima,CA 97331,USA Ultramet foams datasheet.
    [6]Bonzom A.,Pins S.,Process for Preparing Pitch Foam and Products so Producer.E.J.Moutard,US Patent,4276246,1981.
    [7]Hagar J.W.,Lake M.,Formulation of a mathematic process model for the foaming of a mesophase carbon precusor,Materials Research Society,1992,270:35-40.
    [8]Stiller A.H.,Stansberry P.G.,Zondlo J.W.,Method of making a carbon foam material and resultant product,US patent,5888469,1999.
    [9]Gallego N.C.,Klett J.W.,McMllan A.D.,Effect of processing conditions on properties of graphite foams,carbon materials technology group,Oak Ridge National Laboratory,USA.
    [10]David P.,Anderon,Kristen M.,etc,Microcellular graphitic carbon foams for next generation structures and thermal manangement[A],IEEE Aerospace Conference Proceedings,2000,4:193-199.
    [11]Klett J.W.,Process for making carbon foam[P].US patent,6033506,2000.
    [12]张宏波,罗瑞盈,刘涛,李劲松,泡沫炭的结构及其性能[J],碳素技术,2005,1(24):21-25.
    [13]王鹏,吕永根,秦显营,辛城,杨常玲,潘鼎,超临界流体制备中间相沥青泡沫炭,炭素技术,2008,03(27):1-4.
    [14]王鹏,吕永根,辛城,杨常玲,舒练兵,潘鼎,超临界条件对沥青泡沫炭结构的影响,炭素,2008,02(134):3-10.
    [15]安秉学,李同起,王成杨,发泡条件对中间相沥青基泡沫炭形成的影响[J],炭素技术,2005,6:1-4.
    [16]闫曦,史景利,宋燕等,中间相沥青基泡沫炭的制备及性能[J],宇航材料工艺,2006,2:56-67.
    [17]李同起,王成扬,中间相沥青基泡沫炭的制备与结构表征[J],无机材料学报,2005,11:1438-1444.
    [18]Ge M.,Shen Z.M.,Chi W.D.,etc,Anisotropy of mesophase pitch-derived carbon foams[J],Carbon,2007,45:141-145.
    [19]沈增民,戈敏,迟伟东,等,中间相沥青基泡沫体的制备、结构及性能[J],新型炭材料,2006,21(3):193-201.
    [20]Wang X.Y.,Zhong J.M.,Wang Y.M.,etc,A study of the properties of carbon foam reinforced by clay[J],Carbon,2006,44:1560-1564.
    [21]Li S.Z.,Guo Q.Q.,Song Y.,etc,Carbon foams with high compressive strength derived from mesophase pitch treated by toluene extraction[J],Carbon,2007,45:2843-2854.
    [22]王小宪,李铁虎,魏宏艳等,泡沫炭的制备和性能[J],材料导报,2005,19(5):11-13.
    [23]Li T.Q.,Wang C.Y.,An B.X.,Preparation of graphitic carbon foam using size-restriction method under aromospheric pressure[J],Carbon,2005,43:2030-2032
    [24]Zhu J.J.,Wang X.Y.,Guo L.F.,etc,A graphite foam reinforced by graphite particles[J],Carbon,2007,45:2547-2550.
    [25]Leroy C.M.,Carm F.,Backov R.,Trinquecoste M.,etc,Multiwalled carbon nanotube-based carbon foams[J],Carbon,2007,45:2317-2320.
    [26]Min Z.H.,Cao M.,Zhang S.,etc,Effect of precursor on the pore structure of carbon foams[J],New Carbon Materials,2007,22(1):75-79.
    [27]张伟,王成扬,王妹先等,石油系中间相沥青基泡沫炭的制备与结构研究[J],炭素技术,2006,5:22-27.
    [28]邱介山,李平,刘贵山等,由中间相沥青制备泡沫炭:FE(NO_3)_3的影响[J],新型炭材料,2005,9:193-197.
    [29]李凯,栾志强,中间相沥青基泡沫炭[J],新型炭材料,2004,19(1):77-78.
    [30]Maruyama B.J.,Spowart J.E.,Hooper D.J.,A new technique for obtaining three-dimensional structures in pitch-based carbon foams[J],Scripta Materialia,2006,54:1709-1713.
    [31]Gallego N.C.,Klett J.W.,Carbon foams for thermal management[J],Carbon,2003,41:1461-1466.
    [32]郁铭芳,王依民,王燕萍等,一种碳泡沫沥青的制备方法[P],in CN,1587033A,Editog 2005.
    [33]Liu M.X.,Gan L.H.,Zhao F.Q.,etc,Carbon foams prepared by an oil-in-water emulsion method[J],Carbon,2007,8:1-3.
    [34]Mehta R.,David P.,etc,Graphitic carbon foams:processing and characterization [A],21st Biennial Comference on Carbon,1993,13-18.
    [35]Klett J.W.,Hardy R.,Ernic,High-thermal-conductivity mesophase-pitch-derived carbon foams:effect of precursor on structure and properties[J],Carbon,2000,38(7):953-973.
    [36]邱海鹏,郭全贵,宋永忠,等,石墨材料导热性能与微晶参数关系的研究[J],新型炭材料,2002,17(1):36-40.
    [37]Chen Y.,Chen B.Z.,Shi X.C.,Preparation of pitch-based carbon foam using polyurethane foam template[J],Carbon,2007,45:2132-2139.
    [38]吴方锐,树脂基碳泡沫的制备研究[D],同济大学理化部化学系,同济大学,2007.
    [39]苏联BK-900型和BK-20-900型泡沫炭[J],炭素技术,1988,2,29.
    [40]张仁钦,罗瑞盈,李军等,新型炭纤维/泡沫炭预制体的制备及致密研究[J],炭素技术,2007,26(1):1-4.
    [41]Druma A.M.,Alam M.K.,Druma C.,Analysis of thermal conduction in carbon foams[J],International Journal of Thermal Sciences,2004,43:689-695.
    [42]Wang M.X.,Wang C.Y.,Li Y.L.,The use of optical microscopy to detect the bubble shape of carbon foams[J],Carbon,2007,45:687-689.
    [43]Li S.Z.,Song Y.Z.,Song Y.,etc,Carbon foams with high compressive strength derived from mixtures of mesocarbon microbeads and mesophase pitch[J],Carbon,2007,45:2092-2097.
    [44]Beechem T.,Lafdi K.,Novel high strength graphitic foams[J],Carbon,2006,44:1548-1559.
    [45]Yang X.J.,Zha Q.F.,Li H.N.,etC,Carbon foam produced from fluid catalytic cracking slurry at atmospheric pressure[J],New Carbon Materials,2008,23(2):155-158.
    [46]冯进华,栾志强,李凯,等,沥青基多孔炭材料的制备及应用新进展[J],炭素技术,2006,25(2):29-34.
    [47]成会明,刘敏,苏革等,泡沫炭概述[J],炭素技术,2000,3,30-32.
    [48]Calvo M.,Garcrna R.,Arenillas A.,etc,Carbon foams from coals.A preliminary study[J],Fuel,2005,84:2184-2189.
    [49]Mukhopadhyay S.M.,Pulikollu R.V.,Roy A.K.,Surface modification of a microcellular porous solid:carbon foam[J],Applied Surface Science,2004,225:223-228.
    [50]Chen Y.,Liu C.,Du J.H.,Preparation of carbon micro-coils by catalytic decomposition of acetylene using nickel foam as both catalyst and substrate[J],Carbon,2005,43:1874-1878.
    [51]Yu Q.J.,Straatman A.G.,Thompson B.E.,Carbon-foam finned tubes in air-water heat exchangers[J],Applied Thermal Engineering,2006,26:131-143.
    [52]Lafdi K.,Mesalhy O.,Shaikh S.,The effect of surface energy on the heat transfer enhancement of paraffin wax/carbon foam composites[J],Carbon,2007,45:2188-2194.
    [53]Harikrishnan G.,Patro T.U.,Khakhar D.V.,Reticulated vitreous carbon from polyurethane foam-clay composites[J],Carbon,2007,45:531-535.
    [54]Ribeiro R.,Varesche M.B.A.,Foresti E.,Zaiat M.,Influence of the carbon source on the anaerobic biomass adhesion on polyurethane foam matrices[J],Journal of Environmental Management,2005,74:187-194.
    [55]Chert J.M.,Wu C.Q.,Wang J.D.,etc,Performance evaluation of biofilters packed with carbon foam and lava for nitric oxide removal[J],Journal of Hazardous Materials,2006,B137:172-177.
    [56]Fang Z.G.,Cao X.M.,Li C.S.,Investigation of carbon foams as microwave absorber:Numerical prediction and experimental validation[J],Carbon,2006,44:3348-3378.
    [57]Vijaykant S.,Agrawal A.K.,Liquid fuel combustion within silicon-carbide coated carbon foam[J],Experimental Thermal and Fluid Science,2007,2,1-9.
    [58]Gautam P.S.,Mohanty K.K.,Mass transfer of volatile organic carbons through aqueous foams[J],Journal of Colloid and Interface Science 2004,273:611-625.
    [59]Yang J.,Shen Z.M.,Hao Z.B.,Microwave characteristics of sandwich composites with mesophase pitch carbon foams as core[J],Carbon,2004,42:1882-1885.
    [60]Jungin K.,Lee W.I1,Lafdi K.,Numerical modeling of the carbonization process in the manufacture of carbon/carbon composites[J],Carbon,2003,41:2625-2634.
    [61]Dawson E.A.,Barne P.A.,Chinn M.J.,Preparation and characterisation of carbon-coated ceramic foams for organic vapour adsorption,Carbon,2006,44:1189-1197.
    [62]Sihn S.,Roy A.K.,In:SAMPE Int'l Symp.Long Beach,Ca.Sampe;1991,230-42.
    [63]Sihn S.and Roy A.K.,J Mech Phys Solids,2004,52:167 - 91.
    [64]Beechem T.,Lafdi K.,Elgafy A.,Bubble growth mechanism in carbon foams,Carbon,2005,(43):1055-1064.
    [62]Goel S.K.and Beckman E.J.,Generation of microcellular polymeric foams using supercritical carbon dioxide.Ⅰ:Effect of pressure and temperature on nucleation,Polymer Engineering and Science,1994.34(14):1137-1147.
    [66]Tsivintzelis I.,Angelopoulou A.G.and Panayiotou C.,Foaming of polymers with supercritical CO2:An experimental and theoretical study,2007.48(20):5928-5939.
    [67]Kim,K.Y.,Kang S.L.and Kwak H.,Bubble nucleation and growth in polymer solutions,Polymer Engineering and Science,2004,44(10):1890-1899.
    [68]向帮龙,管芳,杨世芳,微孔发泡机理研究进展,高分子通报,2005,(6):7-15.
    [69]Colton,J.S.and Sub N.P.,The nucleation of microcellular thermoplastic foam with additives:Part Ⅰ:Theoretical considerations,Polymer Engineering &Science,1987,27(7):485-492.
    [70]Colton J.S.and Suh N.P.,The nucleation of microcellular thermoplastic foam with additives:Part Ⅱ:Experimental Results and Discussion[J],Polymer Engineering & Science,1987,27(7):493-499.
    [71]Colton J.S.and Suh N.P.,Nucleation of microcellular foam:Theory and Practice[J],Polymer engineering and science,1987,27(7):500-503.
    [72]Ehrburger P.,Sanseigne E.,Tabon B.,etc,Aligned graphitic carbon foams from mesophase pitch[J],Carbon,1996,(34):1493-1499.
    [73]Doroudiani S.,Park C.B.,Kortschot M.T.,Processing and characterization of microcellular foamed high-density polythylene/isotactic polypropylene blends,Polymer engineering and science,1996,36(21):2645-2662.
    [74]Wang J.,Cheng X.G.,Zheng X.J.,Yuan M.J.,He J.S..Preparation and characterization of microcellular polystyrene/polystyrene ionomer blends with supercritical carbon dioxide,Jounal of Polymer Science:Part B,2003,41(4):368-377.
    [75]Leonov A.I.,Nonequilibrium thermodynamics and theology of viscoelastic polymer media,Rheologica Acta,1976,15(2):85-98.
    [76]Amon M.,Denson C.D.,A study of the dynamics of foam growth:Simplified analysis and experimental results for bulk density in structural foam molding Polymer engineering and science,1986,26(3):255-267.
    [77]Amon M.,Denson C.D.,A study of the dynamics of foam growth:Analysis of the growth of closely spaced spherical bubbles,Polymer engineering and science,1984,24(13):1026-1034.
    [78]Han J.H.,Han C.D.,A study of bubble nucleation in a mixture of molten polymer and volatile liquid in a shear flow field,Polymer engineering and science,1988,28(24):1616-1627.
    [79]Arefmanesh A.,Adyani S.G.,A numerical study of bubble growth during low pressure structural foam molding process,Polymer engineering and science,1990,30(20):1330-1337.
    [80]Kumar V.,Suh N.P.,A process for making microcellular thermoplastic parts[J],Polymer engineering and science,1990,30(20):1323-1329.
    [81]Lu Y.G.,Wu D.,Zha Q.F.,Liu L.Skin-core structure in mesophase pitch-based carbon fiber:causes and prevention,Carbon,1998,36(12):1719-1724.
    [82]Zhu Z.Q..Technology of supercritical fluids-principle and applications.Beijing.China:Chemical Industry Press 2000:224-8.
    [83]Wang M.X.,Zha Q.F.,Li H.N.,etc,Bubble growth in the preparation of mesophase-pitch-based carbon foams[J],New Carbon Materials,2009,24(1):62-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700