北方几种杨树人工林固碳增汇技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以北方杨树人工林为研究对象,在杨树的几个主要栽植区——山东黄泛平原、北京顺义、大兴和通州四个地区,根据不同地区的立地条件、杨树品种和经济状况等分别采取不同技术,研究杨树人工林生态系统各部分碳储量及总碳储量的分布规律,总结得出适合四种不同栽植区的优化固碳增汇技术。主要结论如下:
     1、山东黄泛平原4年生的三倍体毛白杨(triploid Populus tomentosa)人工纸浆林,D1(宽窄行+地下滴灌随水施肥+间作棉花小麦)、D2(宽窄行+漫灌+间作苜蓿)小区的各部分碳储量优于CK(均匀株行距+漫灌+间作棉花)。D1、D2乔木碳储量分别比CK提高53.7%和7.9%;间作物碳储量分别是CK的1.86和2.50倍;较造林初期,土壤碳储量增幅在18.4%-31.8%;林地年固碳能力为14.00和16.07t1(hm2·a)远高于CK的9.39t1(hm2·a)。综合D1、D2的优势,得出该地区的优化固碳增汇技术为宽窄行栽植模式下的地下滴灌随水施肥和间作苜蓿技术。
     2、北京潮白河沿河沙地6年生的I-214杨树(Populus×canadensis cv.'1-214')速生丰产林,地下滴灌(SDI)较常规灌溉(NI)能大大增加林地碳储量。SDI区乔木层、枯落物层和土壤碳储量分别是NI区的1.27、2.02和1.32倍;SDI区年净碳增量9.49t1(hm2.a)是NI区5.01t1(hm2·a)的近2倍。因此,在季节性干旱地区,地下滴灌是提高杨树人工林固碳增汇能力的优化技术。
     3、北京大兴9年生的杨树防护林,伐根嫁接林分较植苗造林林分能大幅度增加林地碳储量。伐根嫁接林乔木层、草本层、枯落物层和土壤碳储量分别是植苗造林林分的2.61、4.05、3.07和1.07倍;林地年均碳增量为10.04t1(hm2·a),分别是相同地下和地上部分植苗造林的2.66和1.18倍。因此对于大兴区衰老低效杨树防护林来说,伐根嫁接是其更新改造中优化的固碳增汇技术。
     4、北京通州4年生的欧美107杨树(Populus×euramericana cv."74/76")人工用材林,4个小区分别采用不同的常规技术(施用尿素、缓释肥、复合肥和间作固氮植物紫花苜蓿)。4个小区的生态系统碳储量达64.31-73.75t1hm2,年固碳能力达10.12-14.84t1hm2,比对照6.33t1hm2提高了0.60-1.34倍。因此,以上4种常规技术均为本栽培区的优化固碳增汇技术,可根据实际情况选择使用。
The poplar plantation in the north of China was studied in this research. This study was investigated in four regions of the mainly poplar planting area which was Shandong Yellow River flood plain, Shunyi, Daxing and Tongzhou of Beijing. According to the different areas of the site conditions, varieties of poplar and economic status, the poplar were taken different models. The carbon storage distribution of several parts of poplar planations forest ecosystem were investigated under different technologyes. The study concluded the optimization solid increasing carbon sink technologyes of the four different planting areas. The main conclusions are as follows.
     1、In the four-year triploid Populus tomentosa pulpwood in the Yellow River Flood Plain of Shandong, each part of the carbon storage of D1(wide and narrow row+subsurface drip irrigation with water, fertilizer+intercropping cotton and wheat), D2(wide and narrow row+irrigation+alfalfa intercrop) was better than CK (uniform spacing+irrigation+intercropping cotton). The tree carbon of D1, D2was53.7%and7.9%more than that under CK. The crop carbon storage were were1.86and2.50times of that under CK. Compared with the early plantation, the soil net carbon incremental increase18.4%-31.8%. The annual carbon sequestration capacity were14.00and16.07t/(hm2·a), which were much higher than that under CK of9.39t/(hm2·a). Synthesis the advantage of D1and D2.We received the solid carbon sink enhancement technology of this erea, which was the wide and narrow row spacing of underground drip irrigation fertilization and alfalfa intercropping technology.
     2、Carbon storage of six-year poplar1-214(Populus×canadensis cv.'1-214') plantations under subsurface drip irrigation (SDI), and normal irrigation(NI) at sandy soil in Chaobai River in Beijing was investigated. Carbon storage of the plantations under SDI highly increased compared with that under NI. The tree storey, litter floor and soil carbon storage under SDI were were1.27,2.02and1.32times of that under NI. The annual net carbon incremental under SDI was9.49t/(hm2·a), approximately2times of that under NI of5.01t/(hm2-a). Therefore, in seasonally dry areas, subsurface drip irrigation is the optimization technology to improve the poplar plantation carbon sequestration.
     3、In the nine-year protection poplar plantation in Daxing of Beijing,the carbon storage of stump grafting plantation was greatly more than reforestation plantation. The tree storey, under-storey plants, litter floor and soil carbon storage of stump grafting plantation were were2.61,4.05,3.07and1.07times of that of reforestation plantation. The annual net carbon incremental was10.04t/(hm2-a), respectively, were2.66and1.18times more than the same underground and aboveground reforestation forest. Therefore, stump grafting technique is the optimization carbon sink enhancement technology in the renewal of aging inefficient protection poplar plantation in Daxing District.
     4、In the four-year Populus×euramericana cv."74/76" timber plantation in Tongzhou of Beijing, different conventional techniques (urea, slow-release fertilizer, compound fertilizer and intercropping nitrogen fixing plant Medicago sativa) were used in4quarters respectively. After treatment, the ecosystem carbon storage of four districts were no significant difference, but each had its own advantages compared with the contrast. The ecosystem carbon storage of4quarters were64.31-73.75t/hm2, The annual net carbon incremental was10.12-14.84t/(hm2-a), respectively, were0.60-1.34times more than CK of6.33t/hm2. Therefore, the four conventional techniques all were optimization carbon sink enhancement technologyes in this planting erea.we can choose them according to the actual situation..
引文
[1]蔡洁.洞庭湖区杨树人工林生物生产力与碳储量研究[D].中南林业科技大学,2010.
    [2]查同刚.北京大兴杨树人工林生态系统碳平衡的研究[D].北京林业大学,2007.
    [3]陈军.杨树人工林地上生物量和碳储量研究[D].北京林业大学,2007.
    [4]陈乐蓓,李海玲,佘诚棋,等.两种不同经营模式下杨树生物量及土壤碳储量的空间变异[J].安徽农业大学学报,2010,37(1):122-125.
    [5]陈乐蓓.不同经营模式树人工林生物量和碳储量的研究[D].南京林业大学,2008.
    [6]陈庆强,沈承德,易惟熙.土壤碳循环研究进展[J].地球科学进展,1998,13(6):555-563.
    [7]陈遐林.华北主要森林类型的碳汇功能研究[D].北京林业大学,2003.
    [8]丁扬.苏北杨树人工林生物量与碳储量的研究[D].南京林业大学,2008.
    [9]董鸣.陆地生物群落调查观测与分析[M].北京:标准出版社,1997.
    [10]杜红梅,王超,高红真.华北落叶松人工林碳汇功能的研究[J].中国生态农业学报,2009,17(4):756-759.
    [11]方精云,陈安平,赵淑清,等.中国森林生物量的估算:对Fang等Science一文(Science,2001,291:2320-2322)的若干说明[J].植物生态学报,2002,26(2):243-249.
    [12]方精云,刘国华,徐篙龄.我国森林植被的生物量和净生产量[J].生态学报,1996,15(5):497-508.
    [13]方精云,郭兆迪,朴世龙等1981~2000年中国陆地植被碳汇的估算[J].中国科学,2007,37(6):804-812.
    [14]方精云.北半球中高纬度的的森林碳库可能远小于目前的估算[J].植物生态学报,2000,24(5):635-638.
    [15]方精云.探索CO2失汇之谜[J].植物生态学报,2002,26(2):255-256.
    [16]方晰,田大伦,项文化,等.不同密度湿地松人工林中碳的积累与分配[J].浙江林学院学报,2003,20(4):374-379.
    [17]方晰,田大伦,项文化,等.杉木人工林凋落物量及其分解过程碳的释放率[J].中南林学院学报,2005,25(6):12-16.
    [18]方显瑞.杨树人工林生态系统碳交换及其环境响应[D].北京林业大学,2011.
    [19]冯慧想.杨树人工林生长特性及生物量研究[D].中国林业科学研究院,2007.
    [20]冯瑞芳,杨万勤,张健.人工林经营与全球变化减缓[J].生态学报,2006,26(11):3870-3877.
    [21]冯险峰,刘高焕,陈述彭,等.陆地生态系统净第一性生产力过程模型研究综述[J].自然资源学报,2004,19(3):369.
    [22]高红真,王超,毕君.汕松人工林碳汇功能的研究[J].林业科技开发,2009,23(5):32-35.
    [23]郭乐东,周毅等.西江流域桉树生态系统碳贮量与碳汇功能经济价值评价[J].广东林业科技,2009,25(6):8-12.
    [24]郝严松.苏北火山岩丘陵地杨树人工林生态适应性分析及碳汇能力评价[D].南京林业大学,2009
    [25]何英.森林固碳估算方法综述[J].世界林业研究,2005,18(1):22-27.
    [26]何志斌,赵文智,刘鹄,等.祁连山青海云杉林斑表层上壤有机碳特征及其影响因素[J].生态学报,2006,26(8):2572-2577.
    [27]胡晓丽.三倍体毛白杨纸浆材新品种产业化应用关键技术研究[D].北京:北京林业大学,2006.
    [28]黄从德,张健,杨万勤,等.四川森林植被碳储量的时空变化[J].应用生态学报,2007,18(12):2687-2692.
    [29]黄从德,张国庆.人工林碳储量影响因素[J].世界林业研究,2009,22(2):34-38.
    [30]黄从德.四川森林生态系统碳储量及其空间分异特征[D].四川农业大学,2008.
    [31]黄宇,冯宗炜,汪思龙,等.杉木、火力楠纯林及其混交林生态系统C、N贮量[J].生态学报,2005,25(12):3146-3154.
    [32]贾黎明,邢长山,李景锐,等.地下滴灌条件下杨树速生丰产林生产力及效益分析[J].北京林业大学学报,2005,27(6):43-49.
    [33]贾黎明,邢长山,韦艳葵,等.地下滴灌条件下杨树速生丰产林生长与光合特性[J].林业科学,2004,40(2):61-67.
    [34]焦秀梅,项文化,田大伦.湖南省森林植被的碳贮量及其地理分布规律[J].中南林学院学报.2005,25(1):4-8.
    [35]焦燕.黑龙江省森林植被碳储量及其动态变化[J].应用生态学报,2005,16(12):2248-2252.
    [36]李广德.三倍体毛白杨速生纸浆林蒸腾耗水特性及灌溉制度研究[D].北京林业大学,2010.
    [37]李海玲,陈乐蓓,方升佐,等.不同杨-农间作模式碳储量及分布的比较[J].林业科学,2009,45(11):9-14.
    [38]李海玲.平原农区杨农复合生态系统碳储量与碳平衡研究[D].南京林业大学,2010.
    [39]李海涛,王姗娜,高鲁鹏,等.赣中亚热带森林植被碳储量[J].生态学报,2007,27(2):693-704.
    [40]李红梅,马友鑫,郭宗峰,等.西双版纳森林植被的碳储量及影响因素分析[J].福建林学院学报,2005,25(4):368-372.
    [41]李克让.土地利用变化和温室气体净排放与陆地生态系统碳循环[M].北京:气象出版社,2002.
    [42]李铭红,于明坚,陈启瑞,等.青冈常绿阔叶绿的碳素动态[J].生态学报,1996,16(6):645-651.
    [43]李强,马明东,刘跃建,等.几种人工林土壤有机碳和养分研究[J].土壤通报,2008,39(5):1034-1037.
    [44]李庆云,樊巍,余新晓,等.豫东平原农区杨树-农作物复合生态系统的碳贮量[J].应用生态学报,2010,21(3):613-618.
    [45]李志恒,张一平.陆地生态系统物质交换模型[J].生态学杂志,2008,27(7):1207-1215.
    [46]林德荣,李智勇.中国CDM造林再造林碳汇项目的政策选择[J].世界林业研究,2006,19(4):52-56.
    [47]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740.
    [48]刘留辉,邢世和,高承芳.土壤碳储量研究方法及其影响因素[J].武夷科学,2007,23:219-226.
    [49]刘文国,张旭东,黄玲玲,等.我国杨树生理生态研究进展[J].世界林业研究.2010,23(1)50-55.
    [50]刘允芬.中国农业系统碳汇功能[M].农业环境保护,1998,17(5):197-200.
    [51]鲁如坤,土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:106-107.
    [52]马钦彦,陈遐林,工娟,等.华北主要森林类型建群种的含碳率分析[J].北京林业大学学报,2002,24(5):96-100.
    [53]马钦彦,谢征鸣.中国油松林储碳量基本估计.北京林业大学学报,1996,18(3):31-34.
    [54]沈文清,马钦彦,刘允芬.森林生态系统碳收支状况研究进展[J].江西农业大学学报,2006,28(2):312-317.
    [55]史大林.碳汇林经营数表编制的探索[D].北京林业大学,2008.
    [56]史军,刘纪远,高志强,等.造林对土壤碳储量影响的研究[J].生态学杂志,2005,24(4):410-416.
    [57]司婧,贾黎明,韦艳葵等.地下滴灌对杨树速生丰产林碳储量的影响.北京林业大学学报2012,34(1):14-18.
    [58]宋曰钦,翟明普,贾黎明,等.不同年龄三倍体毛白杨纸浆林生长期间细根变化规律[J].生态学杂志,2010,29(9):1696-1702.
    [59]苏永中,赵哈林.土壤有机碳储量、影响因素及其环境效应的研究进展[J].中国沙漠,2002,22(3):220-22.
    [60]孙丽英,李惠民,董文娟,等.在我国开展林业碳汇项目的利弊分析[J].生态科学,2005,24(1):42-45.
    [61]孙启祥,张建锋,吴立勋.滩地杨树人工林抑螺效果与碳汇效应[J].中国生态农业学报,2008,16(3):701-706.
    [62]孙玉军,张俊等.兴安落叶松(Larix gmelini)幼中龄林的生物量与碳汇功能[J]生态学报,2007,27(5):8-12.
    [63]唐罗忠,生原喜久雄,黄宝龙,等.江苏省里下河地区杨树人工林的碳储量及其动态[J].南京林业大学学报(自然科学版),2004,28(2):1-6.
    [64]唐宵.四川森林植被碳储量估算及其空间分布特征[D].四川农业大学,2007.
    [65]万猛,田大伦,樊巍,等.豫东平原杨农复合系统物质生产与碳截存[J].林业科学,2009,45(8):27-33.
    [66]汪传佳,马飞杰等CDM-ARP火炬松林碳汇监测方法学研究[J].浙江林业科技,2007,27(6):41-44.
    [67]王恭袆,马志波,武惠肖,等.廊坊地区杨树人工林的的碳贮量分析[J].林业实用技术,2006(5):10-11.
    [68]王世忠,郭浩,李树民,等.辽西地区几种农林复合型水土保持林模式的研究[J].林业科学,2003,39(3):163-167.
    [69]王晓芳.黄土高原不同类型人工林的碳汇研究[D].西北农林科技大学,2010.
    [70]王效科,冯宗炜,欧阳志云.中国森林生态系统植物碳储量和碳密度研究.应用生态学报,2001,12(1):13-16.
    [71]王秀云,孙玉军,等.森林生态系统碳储量估测方法及其研究进展[J].世界林业研究,2008,21(5):24-29.
    [72]王玉辉.基于森林资源清查资料的落叶松林生物量和净生长量估算模式[J].植物生态学报,2001,25(4:)420-425.
    [73]韦艳葵.地下滴灌下沙地杨树速生丰产机制与灌溉制度研究[D].北京:北京林业大学,2003.
    [74]尉海东,马祥庆.中亚热带不同发育阶段杉木人工林生态系统碳贮量研究[J].江西农业大学学报,2006,28(2):239-243,267.
    [75]魏文俊,王兵,郭浩.基于森林资源清查的江西省森林贮碳功能研究[J].气象与减灾研究,2008,31(4):18-23.
    [76]吴小山.杨树人工林生物量碳计量参数研究[D].四川农业大学,2008.
    [77]席本野,贾黎明,刘寅,等.宽窄行栽植模式下三倍体毛白杨吸水根系的空间分布与模拟[J].浙江林学院学报,2010,27(2):259-265.
    [78]肖副明,张群,范少辉.中国森林生态系统碳平衡研究[J].世界林业研究,2006,19(1):53-57.
    [79]邢乐杰.三峡库区森林生态系统有机碳储量研究[D].华中农业大学,2008.
    [80]薛立,杨鹏.森林生物量研究综述[J].福建林学院学报,2004,24(3):283-288.
    [81]杨洪晓,吴波,张金屯,等.森林生态系统的固碳功能和碳储量研究进展[J].北京师范大学学报:自然科学版,2005,41(2):172-177.
    [82]杨昆,管东生,周春华.潭江流域森林碳储量及其动态变化[J].应用生态学报,2006,17(9):1579-1582.
    [83]杨丽韫,罗天祥,吴松涛.长白山原始阔叶红松林不同演替阶段地下生物量与碳、氮贮量的比较[J].应用生态学报,2005,16(7):1195-1199.
    [84]杨晓菲,鲁绍伟,饶良懿,等.河南省西平县杨树人工林碳贮量及其分配特征研究[J].林业资源管理,2010(2):38-42.
    [85]杨玉盛,郭剑芬,林鹏,等.格氏栲天然林与人工林枯枝落叶层碳库及养分库[J].生态学报,2004,24(2):359-367.
    [86]于贵瑞,孙晓敏,等.陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社,2006.
    [87]于贵瑞,孙晓敏.中国陆地生态系统碳通量观测技术及时空变化特征[M].北京:科学出版社,2008:4-5.
    [88]余文刚,金志强,罗毅波,等.海南岛兰科植物区系的组成及其特征[J].热带作物学报,2007,28(2):108-114.
    [89]张津林.沙地杨树人工林生态系统生理生态特性及碳通量研究[D].北京林业大学,2006.
    [90]张景群,苏印泉,徐喜明,等.黄土高原人工刺槐林上壤有机碳动态监测研究[J].西北林学院学报,2009,24(5):21~25.
    [91]张景群,苏印泉等.黄土高原刺槐人工中龄林土壤碳汇[J].东北林业大学学报,2010,38(1):50-53.
    [92]张维成,田佳,王冬梅,等.基于全球气候变化谈判的森林碳汇研究[J].林业调查规划,2007,32(5):18-22.
    [93]张稳,黄耀,郑循华,等.稻田甲烷排放模型研究—模型及其修正[J].生态学报,2004,24(11):2347-2352.
    [94]张小全,吴可红.森林细根生产和周转研究[J].林业科学,2001,37(3):126-138.
    [95]张修玉.广州三种主要森林生物量与碳储量分配特征[D].中山大学,2009.
    [96]赵林,殷鸣放,陈晓非,等.森林碳汇研究的计量方法及研究现状综述[J].西北林学院学报,2008,23(1):59-63.
    [97]赵敏,周广胜.基于森林资源清查资料的生物量估算模式[J].应用生态学报,2004,15(8):1468-1472.
    [98]郑帷婕,包维楷,辜彬,等.陆生高等植物碳含量及其特点.生态学杂志,2007,26(3):307-313.
    [99]周涛,史培军,王绍强.气候变化及人类活动对中国土壤有机碳的影响[J].地理学报,2003,58(5):727-734.
    [100]周绪,刘志辉,菊春燕,等.基于RS和GIS分析干旱区土地利用/覆盖变化对陆地植被碳储量的影响--以新疆鄯善县绿洲为例[J].干旱地区农业研究,2007,25(6):231-236.
    [101]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡.植物生态学报,2000,24(5):518-522.
    [102]朱向辉,汪传佳等CDM-ARP杉木林碳汇监测力法学研究[J].浙江林学院学报,2008,25(3):336-341.
    [103]Batjes N H.Total carbon and nitrogen in the soil of the world[J].European Journal of Soils, Science,1996,47:151-163.
    [104]Birdsey R A.Carbon storage and accumulation in United States forest ecosystems.United States Department of Agriculture Forest Service[J].General Technical Report WO-59,1992.
    [105]Brown S L,Schroeder P E.Spatial patterns of aboveground production and mortality of woody biomass for eastern U.S. forests[J].Ecological Applications,1999,9:968-980.
    [106]Brown S,Gillespie R,Lugo A E.Biomass estimation methods for tropical forests with applications to forest inventory data[J].ForestScience,1989,35:881-902.
    [107]Brown S,LugoA E.Biomass of tropical forests:a new estimate based on forest volumes[J]. Science, 1984,223:1290-1293.
    [108]Brown S,Pearson T.Methods Manual for Measuring Terrestrial Carbon[M].Winrock International, 2005.
    [109]Burcshel P,Kursten E.Present role of German forest and forestry in the national carbon budget and options to its increase[J].Water,Air and Soil Pollution,1993,70:325-340.
    [110]Carlo C,Ingmar T,Eve E,et al.Canopy profiles of photosynthetic parameters CO2 and N fertilization in a poplar plantation[J].Environment Pollution,2005,137:525-535.
    [111]Chapin F S,Maston PA, Mooney H A. Principles of Terrestrial Ecosystem Ecology[M].NewYork: Springer-verlag Berlin Heidel berg,2002.
    [112]Crutzen,P J and Andreae MO.Biomass burning in the tropics:impact on the atmospheric chemistry and biogeochemical cycles.Science,1990,250:1669-1678.
    [113]Daniel W M,Denys Y,Glenn F,et al.Yield in short rotation coppice:model simulations using the process model SECRETS[J].Forest Policy and Economics,2004,6:345-358.
    [114]Delcourt,Hazel R,Harris W F.Carbon budget of the southeastern U.S.Biota:analysis of historical change in trend from source to sink[J].Science,1980,210:321-322.
    [115]Dixon R K, Brown S,Houghton R A,et al. Carbon pools and flux of global forest ecosystems[J]. Science,1994,263(5144):185-190.
    [116]Eden M J, Furley P A.Effectof forest clearance and burning on soilproperties in northern Roraima, Brazil[J].ForestEcolManagement,1991,38,283-290.
    [117]Enquist B J,Niklas K J. Invariant scaling relations across tree dominated communities[J].Nature, 2001,410:655-660.
    [118]Eriksson H.Sources and sinks of carbon dioxide in Sweden[J].Ambio,1991,20:146-150.
    [119]Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J].Science,2001,292:2320-2322.
    [120]Fang J Y,GuoZ D, Piao S L,et al.Terrestrial vegetation carbon sinks in China,1981-2000[J]. Science in China Series D:Earth Science,2007,50(7):1341-1250.
    [121]Fang J Y, Liu G H, Zhu B, et al. Carbon budgets of three temperate forest ecosystems in Dongling Mt, Beijing, China[J]. Science in China series D:Earth Science,2007,50(1):92-101.
    [122]Fang J Y,Wang G G,Liu G H,et al.Forest biomass of China:an estimation based on the biomass-volume relationship[J].Ecological Application,1998,8:1084-1091.
    [123]Fang S, Xue J, Tang L. Biomass production and carbon sequestration potential in poplar plantations with different management patterns[J]. Journal of Environmental Management, 2007,85:672-679.
    [124]Farquhar G D, Roderick M L.Pinatubo,Diffuse Light, and the carbon cycle[J].Science,2003,299: 1997-1998.
    [125]Gielen B,Calfapietra C,Lukae M,et al.Net carbon storage in a Poplar Plantation (POPFACE) after three years of free-CO2 enriehment[J]..Tree Physiology,2005,25:1399-1408.
    [126]Gielen B,Ceulemans R.The likely impact of rising atmospheric CO2 on natural and managed PoPulus:a literature review[J].. Environmental Pollution,2001,115:335-358.
    [127]Guo L B,Gifford R M. Soil carbon stocks and land use change:ameta analysis[J].Global Change Biol,2002,8:345-360.
    [128]Hoosbeek MR,Scarascia-Mugnozza GE.Increased Litter Build Up and Soil Organic Matter Stabilization in a Poplar Plantation After 6 Years of Atmospheric CO2 Enrichment (FACE):Final Results of POP-EuroFACE Compared to Other Forest FACE Experiments. [J].Ecosystems,2009, 12(2):220-239.
    [129]Houghton R A,Skole D L,Nobre C A,et al. Annual fluxes of carbon from deforestation and regrowth inthe Brazilian Amazon.Nature,2000,403:301-304.
    [130]Hurtt G C, Pacala S W,Moorcroft P R, et a.l Projecting the future of theU. S. carbon sink[J]. PNAS,2002,99(3):1389-1394.
    [131]Isaev A,Korovin G, Zamolod D, et a.l Carbon stock and deposition in phytomass of the Russian forests[J].Water Air Soil Pol,1995,82:247-256.
    [132]Joanne C H,Kevin R T,Ross E M, et al. Mechanisms for changes in soil carbon storage with pasture to Pinus radiata landuse change [J].Global Change Biology,2003,9(9):1294-1308.
    [133]Johnson J C,BirdseryR A,PanY D.Boimass and NPP estimation for theMid-Atlantic region (USA) using plot-level inventory data[J].Ecol App,2001,11:1174-1193.
    [134]Karjalainen T,Seppo K,et al.Carbon balance in the forest sector in Finland during 1990-2039[J].Climate Change,1995,31:451-478.
    [135]Kim H S,Oren R,Hinekley T M.Actual and Potential transpiration and carbon assimilation in an irrigated poplar plantation.Tree Physiology,2008,28:559-577.
    [136]Krankine O N,Dixon R K.Forest management option to conserve and sequester terrestrial carbon in the Russian Federation[J].World Resources Review,1994,6(1):88-101.
    [137]Kurz W A.Apps M J.Contribution of northern forest to the global carbon cycle:Canada as a case study[J].Water,Air and Soil Pollution,1993,70:163-176.
    [138]Lal R.Forest soils and carbon sequestration[J].Forest Ecology and Management,005,220(1-3): 242-258.
    [139]Larcher W. Physiological plant ecology.Berlin:Springer-Verlag,252 Nabuurs C J.1996. Significance of wood products in forest sector carbon.In:Apps M J,Price D T.eds.Forest Ecosystems,Forest Management and the Global Carbon Cycle.Berlin:Springer-Verlag, 1980,245-256.
    [140]Liang W J,Hu H Q,Liu F J,et al. Research advance of biomass and carbon storage of poplar in China[J]. Journal of Forestry Research,2006,17(1):75-79.
    [141]Lieth H,Whittaker R H.Primary production of the biosphere [M].Heidelberg, New York:Springer Verlag Berlin,1975.
    [142]Oelbermann M, Voroney R P, Gordon A M. Carbon sequestration in tropical and temperate agroforestry systems:A review with examples from Costa Rica andsouthern Canada. Agriculture [J].Ecosystems & Enviroment,2004,104:359-377.
    [143]Oelbermann M, Voroney R P, Thevathasan N V,et al.Soil carbon dynamics and residue stabilization in a CostaRican and southern Canadian alley cropping system [J]. Agroforestry Systems,2006,66:27-36.
    [144]Olson,J.S.,J.A.,Watts&L.J.Allison. Carbon in live vegetation of major world ecosystems.US Department of Energy DOE/NBGB-0037.(Rep.Ornl-58620,Oak Ridge National Labortary,Oak Ridge,TN).1983.
    [145]Pasquale A M,Scotti R.Top-down growth model:a prototype for poplar Italy[J].Forest Ecology and Management,2002,161:65-73.
    [146]Paul K I,Polglase P J,Richards G P. Sensitivity analysis of predicted change in soil carbon Following afforestation.Ecol.Model,2003,164:137-152.
    [147]Schlesinger W H.Evidence from chronosequence studies for a low carbon storage potential of soil[J].Nature,1990.348:232-234.
    [148]Schroeder P,Brown S,Mo J,et al.Biomass estimation for temperate broadleaf forests of the United States using inventory data[J].Forest Science,1997,43:424-434.
    [149]Schroeder P,Ladd L.Slowing the increase of atmospheric carbon dioxide:a biological approach[J].Climate Change,1991,19:283-290.
    [150]Sedjo R A.The carbon cycle and global forest ecosystem [J]. Water, Air and SoilPopulation,1993, 70:295.
    [151]Shvidenko A Z,Nilsson S,Rojikov V A,et al.Carbon budget of the Russian boreal forests:a systemsanalysis approach to uncertainty.In:Apps M J,Price D T.eds.Forest Ecosystems,Forest Managementand the Global Carbon Cycle.Berlin:Springer-Verlag,1996,145-162.
    [152]Sykes M,Prentice C.Carbon storage and climate change in Swedish for-est:a comparison of static and dynamic modeling approaches.In:Apps M J,Price D T.eds.Forest Ecosystems,Forest Management and the Global Carbon Cycle.Berlin Heidelberg:Springer-verlag,1996,69-77.
    [153]Turner D P, Koepper G J, Harmon M E, et al. A carbon budget for forests of the conterminous United States[J].Ecological Applications,1995,5:421-436.
    [154]Wittig V E,Bernacchi C J,Zhu X G,et al.Gross primary produetion is stimulated for three PoPulus Speeies grown under free-air CO2 enriehment from planting through canopy closure.Global Change Biology,2005,11:644-656.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700