油茶种子成熟调控蛋白基因的分离克隆及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油茶(Camellia oleifera),又名茶籽树、油茶树,属山茶科山茶属,多年生常绿小乔木或大灌木,是原产中国的乡土树种,与油橄榄、油棕和椰子并称为世界四大木本油料树种,在世界上也惟有中国有大面积的栽培。它是我国南方重要的木本油料树种,其种子富含油酸、亚油酸和亚麻酸等不饱和脂肪酸,营养价值较高,是一种优质、保健食用植物油。油茶为花果同期,从开花到种子成熟,大约需要一年的时间,油茶种子成熟的好坏直接影响着油茶的品质和产量。油茶树生命周期长,仅仅采用传统育种方法和技术很难满足当前油茶生产化需求的优良品种的要求,因此,结合基因工程育种方法和技术来培育油茶早果、早熟优良品种,是油茶产业化发展的一个必要途径。本研究通过交错延伸PCR扩增技术,获得了油茶种子成熟调控蛋白基因(Camellia oleifera ripening regulated protein gene, CoRrp gene)的全长cDNA序列和基因组的全长DNA序列;利用半定量RT-PCR方法研究了油茶种子成熟蛋白基因在油茶各组织和不同发育期种子中的表达模式;构建了超量表达载体和siRNA表达载体并转化到野生型拟南芥植株中,研究了CoRrp基因的功能。主要研究结果如下:
     1.油茶种子成熟调控蛋白基因(CoRrp gene) cDNA序列的克隆
     以油茶cDNA文库和EST文库为基础,分离克隆了一条油茶种子成熟调控蛋白基因的全长cDNA序列。该cDNA全长为966bp,开放阅读框含有702 bp的核苷,编码233个氨基酸的亲水多肽。生物信息学分析表明:该基因的分子量为25267.46 Da,等电点(PI)为4.43,翻译的氨基酸序列具有与番茄和马铃薯成熟调控蛋白相同的D-片段DDDDDDDVD序列和E-片段EETEAEE序列特征,该肽链中极性氨基酸比率占53.16%,其中天冬氨酸、谷氨酸、丝氨酸、苏氨酸等酸性氨基酸含量比较高,是一个半膜结合结构域,非分泌性蛋白。蛋白质高级结构中以α螺旋为主要结构元件,不规则卷曲则散布于整个蛋白质中。
     2.油茶种子成熟调控蛋白基因的基因组DNA全长扩增
     通过交错延伸PCR扩增技术获得了油茶种子成熟调控蛋白基因的基因组的全长DNA序列,该基因含有1个内含子,其长度为139 bp,分析该基因内含子序列发现:A+T碱基组成为69.78%,G+C碱基组成为30.22%,属于GT-AG型内含子,序列中存在一个类似于启动子(TATAA))框结构。该基因的内含子中具有真核mRNA内含子结构特征序列的5'剪接位点具有AG/GTAAGT保守序列和3'剪接位点具有TGCAG/G的保守序列。真核mRNA内含子已成为提高转基因生物外源基因表达的重要元件之一。因此,油茶种子成熟调控蛋白基因内含子的扩增为该基因的下一步超量表达研究奠定了基础。
     3.油茶种子成熟调控蛋白基因在油茶各组织和不同发育期种子中的表达模式
     利用半定量RT-PCR方法研究了油茶种子成熟蛋白基因在油茶根、茎、叶、花、芽和不同发育期油茶种子中的表达模式,结果显示油茶CoRrp基因的表达具有空间上的特异性,主要是在种子中表达,而在根、茎、叶中不表达。从种子的发育时期来看,CoRrp基因的表达又具有时间上的特异性,它在最早分化出来的胚中表达量较少,随着种子的发育成熟,CoRrp基因的表达水平逐渐升高,种子成熟时,CoRrp基因的表达量达到最高值。由此看出,油茶种子成熟调控蛋白基因在种子成熟过程中起着重要的作用。
     4.超量表达载体和小干扰RNA表达载体的构建及转基因植株的获得
     以拟南芥AT2G18110基因的CDS序列及油茶CoRrp基因的保守序列为基础,按照Tuschl设计原则,设计了小干扰RNA序列,并把它构建到中间载体pCAMBIA1304-35S中,获得了小干扰RNA表达载体pCAMBIA1304-siRNA;本研究还利用CoRrp基因基因组DNA全长序列,将CoRrp的含有内含子的完整DNA序列克隆到中间载体pCAMBIA1304-35S的CaMV 35S启动子下方的MCS中,构建了超量表达载体pCAMBIA1304-CoRrp。将构建好的超量表达载体pCAMBIA1304-CoRrp和小干扰RNA表达载体pCAMBIA1304-siRNA,用农杆菌介导Floral Dip法转化到野生型拟南芥中,获得了43株转pCAMBIA1304-CoRrp的T2代拟南芥和31株转pCAMBIA1304-siRNA的T2代拟南芥。
     5.超量表达转基因拟南芥和RNA干扰表达转基因拟南芥中目的基因的表达研究
     利用半定量RT-PCR检测转基因拟南芥和野生型拟南芥中(CoRrp基因的表达量,结果表明,转基因拟南芥中CoRrp的表达水平与野生型有明显差异,所挑选的12株超量表达转基因植株中CoRrp的表达水平都比野生型拟南芥中的要高;所挑选的12株干扰表达转基因植株中CoRrp的表达水平比野生型拟南芥中的表达要低,与野生型拟南芥中CoRrp的表达量和内参基因Actin的表达量相比较,10株转pCAMBIA1304-siRNA拟南芥的CoRrp的表达量只有对照的50%。
     6. CoRrp在过量表达转基因拟南芥与RNA干扰表达转基因拟南芥中种子成熟调控
     对超量表达转基因拟南芥与RNA干扰表达转基因拟南芥的表型观察研究发现,超量表达转基因拟南芥和RNA干扰表达转基因拟南芥与野生型拟南芥在营养生长阶段没有很大的区别,但进入生殖生长阶段时,多数超量表达转基因拟南芥的种子提前成熟,成熟度较高种子比较饱满;多数RNA干扰表达转基因拟南芥的种子推迟成熟,成熟度较低。依据统计分析结果,过量表达的T2代拟南芥中55.8%表现为种子提前成熟3-4d;RNA干扰表达的T2代拟南芥中64.5%表现为种子推迟成熟4-5d。这表明油茶CoRrp基因在种子成熟过程中具有成熟调控功能。
     油茶种子成熟调控蛋白基因的表达模式及其功能研究,将为油茶的分子育种和培育早果早熟油茶新品种奠定物质和技术基础,具有重要的参考意义和应用价值。种子成熟期的提前,缩短了生长周期,也为其它科研成果在油茶上能够得到迅速应用奠定了基础。
Tea-oil tree (Camellia oleifera), Tea-oil, belongs to Camellia, and is perennial small evergreen tree or large shrub, the original Chinese native tree. Tea-oil (Camellia oleifera), olive (Olea europaea), oil palm (Elaeis quineensis), and Coconut (Cocos nucifera) are known as the four woody oleiferous plants. Tea-oil tree is one of the most important ligneous edible oil trees in China. It is the only large cultivated area in the world.90% of its seed-oil is unsaturated fatty acid, such as oleic acid, linolaic acid, linolenic acid and so on. So it is a kind of excellent vegetable oil. It needs about a year from flower to mature in its life as well as the same stage of flower and fruit, so it has the long-life development period. The trade methods and techniques are hardly satisfied requirement of excellent varieties in tea-oil industrialization project. Therefore, together with gene engineering approaches and technologies, it is necessary for breeding the excellent varieties of early-fruit, and early matures. This paper make use of the Polymerase chain reaction (PCR), semi-quantitative RT-PCR, and the full-legnth DNA sequence of Camellia oleifera ripening regulated protein gene (CoRrp) and its expression patterns were studied, and the overexpression and small RNAi vectors were also constructed and transformed into the wild Arabidopsis thaliana, the major research conclusions are listed as follows.
     1. Isolation and cloning of the CoRrp gene Based on the constructed cDNA library and EST library by the Key Lab of Non-wood Forest Product of State Forestry Administration, Central South University of Forestry and Technology, and the C. oleifera ripening-regulated protein gene was firstly and successfully isolated and cloned. And its size of full-length cDNA is 1105 bp containing an open reading frame (ORF) of 966 bp with 5'and 3'untranslated regions (UTRs) and a long Poly (A) tail, designated as CoRrp (GenBank access no. FJ713027). It encodes a 25.27-kDa protein of 233 amino acid residues with the isoelectric point (PI) of 4.43. It shares the same sequence characteristics of the D-fragment DDDDDDDVD of E-fragment with that of tomato and potato, and amini acid comes to 53.16%, in which the content of Acid amino acids, i.g., Asparagine, Glutamine, Serine and Threonine, are high, and it is a half-membrane structure and non-secretory protein. Alpha helices are the main elements of the protein, and irregular coils disperse in the whole protein.
     2. The cloning of intron for the CoRrp gene The intron was obtained by PCR, and its length was 139 bp. The analysis result showed that the content of A+T is 69.78%, and of G+C is 30.22% in the intron, and belong to the intron of GT-AG, in which'there exists a similar promoter structure. The obtaining of the intron for the CoRrp gene can lay a basis for the further study of the gene overexpression.
     3. The study of the expression pattern of the CoRrp gene The expression differences among roots, stems, leaves, buds, and seeds of the different developing stages were analyzed by the semi-quantitative RT-PCR, and the results showed that there were plenty of expression in seeds, trace in buds, and none in roots, stems, leaves. The expression of the CoRrp gene varied with the stages of the seed development. The expression of the CoRrp gene has the spatial characteristics, and mainly expresses in seeds, and none expression in roots, stems, and leaves. On the other hand, the expression of the CoRrp gene also has temporal characteristics from the developing stages of seeds. There is tiny amount in the initial differentiate embryo, and when the seeds gradually bulging, the expression of CoRrp gene was gradually increasing from the sixth to seventh month of a year; in the eighth to nineth month, the ripping stage of C. oleifera, the expression of the CoRrp gene dramatic increased, and reached the top in the 10th month. And the results show that the CoRrp protein play important roles in the course of the seed mature.
     4. The constructed of overexpression vector and small RNA interference vector, and acquisition of transformed seedlings On the basis of the CDS sequence of AT2G18110 gene of Arabidopsis thaliana and the conserves sequence of the CoRrp gene, according to the principle of Tuschl, small RNA interference (sRNAi) was desgined, and constrcuted into the voctor pCAMBIA1304-35S, and the sRNAi expression vector was obtained; this study the genomic DNA sequence with intron CoRrp also was employed, and cloned into MCS of the down stream of CaMV 35S promoter of the vector pCAMBIA1304-35S. and the overexpression vector pCAMBIA1304-CoRrp was conducted by agrobacterium with the floral dip method, and transformed into Arabidopsis thaliana. And 43 of transformed pCAMBIA1304-CoRrp and 31 of transformed pCAMBIA1304-siRNA Arabidopsis thaliana seedlings were obtained.
     5. Overexpression of transformed Arabidopis thaliana and interference expression of the target gene in transformed Arabidopsis thaliana
     The expression of target gene in the transformed Arabidopsis thaliana seedlings was detected with the semi-quantitative RT-PCR, and the results showed that there were significant differences between the transformed and the wild Arabidopsis thaliana seedlings. The expression of the target gene in the 12-selected-overexpression transformed-seedlings was much higher than that in the wild Arabidopsis thaliana seedlings. On the other hand, the expression of the target gene in the 12-selected-RNAi transformed-seedlings was much lower than that in the wild Arabidopsis thaliana seedlings. Compare with the expression of CoRrp and internal control gene Actin in the wild Arabidopsis thaliana seedlings, the expression of the 10-transformed pCAMBIA1304-siRNA is only half of the control seedlings.
     6. The regulation the CoRrp gene of in the seed mature of overexpression and RNA interference of transformed Arabidopsis thaliana
     There was no significant difference in the overexpression and RNA interference of transformed Arabidopsis thaliana in the stage of nutrition growth, however, most of overexpression seeds ripe ahead of the normal, and of RNA interference of transformed Arabidopsis thaliana delay mature. According to the statistical results,43 seedlings (T2) of pCAMBIA1304-CoRrp Arabidopsis thaliana were obtained, of which 55.8% were matured three to four days ahead of the normal. And 31 seedlings of the pCAMBIA1304-siRNA transformed Arabidopsis thaliana were obtained, which of 64.5% were matured four to five days behind of the normal. Overall these results present that the ripening-regulated protein gene might play significant regulated roles in the C. oleifera seeds.
     Overall, the research of the expression pattern and function for the CoRrp gene will lay material and technique basis for the molecular breeding and cultivating new early fruit and early mature varieties, and thus possess significant meaning and application value.
引文
[1]庄瑞林等,中国油茶[M],北京:中国林业出版社,2007,1-30.
    [2]张日清,丁植磊,张勖,闻丽等.油茶育种研究进展[J].经济林研究,2006,24(4):128.
    [3]欧阳涛.油茶7122优良家系的选育[J].林业科技通讯,1991, (11):8-9.
    [4]广西壮族自治区林业研究所.油茶良种——岑溪软枝油茶研究[J].中国林业科学,1975(试):56-60.
    [5]秦柳华.桂林地区油茶农家良种——葡萄油茶的优良性状及其发展前景[J].广西林业科技,1980(2):13-15.
    [6]全国油茶科技协作组.全国油茶良种优良家系和无性系评定鉴定标准与方法[J].亚林科技,1987(11):8.
    [7]张云,黄儒珠,刘大林,等.油茶随机扩增多态DNA条件的研究[J].福建林业科技,2003,30(2):5-8,13.
    [8]张智俊,谭晓风,陈永忠.油茶总RNA及mRNA的分离与纯化[J].中南林学院学报,2003,23(2):76-78.
    [9]张云.油茶遗传多样性及遗传性状的RAPD分析[D].福州:福建师范大学硕士学位论文,2003.
    [10]雷治国.油茶种质资源RAPD分析[D].广州:华南农业大学硕士学位论文,2004.
    [11]陈永忠,等.油茶优良无性系的RAPD分子鉴别[J].中南林学院学报,2005,25(4):44-49.
    [12]谭晓风,等.油茶分子育种的重点和策略[J].湖南林业科技,2004,31(6):13-14.
    [13]温强,雷小林,叶金山,等.油茶高产无性系的ISSR分子鉴别[J].中南林业科技大学学报,2008,28(1):39-43.
    [14]张国武,钟文斌,乌云塔娜,等.油茶优良无性系ISSR分子鉴别[J].林业科学研究,2007,20(2):278-282.
    [15]胡芳名,谭晓风,石明旺,乌云塔娜等.油茶种子cDNA文库的构建[J].中南林学院学报.2004,24(5):1-4.
    [16]谭晓风,胡芳名,谢禄山等.油茶种子EST文库构建及主要表达基因的分析 [J].林业科学,2006.42(1):43-48.
    [17]仇键.油茶种子油体蛋白基因的分离克隆及其原核表达[D].长沙:中南林学院硕士学位论文,2006.
    [18]谭晓风,王威浩,刘卓明等.油茶ACP基因的全长cDNA克隆及序列分析[J].中南林业科技大学学报.2008.28(4):8-14.
    [19]张党权,谭晓风等.油茶SAD基因的全长cDNA克隆及生物信息学分析[J].林业科学,2008,44(2):155-159.
    [20]谭晓风,陈鸿鹏等.油茶FAD2基因全长cDNA的克隆和序列分析[J].林业科学,2008,44(3):70-75.
    [21]谭晓风,张党权,陈鸿鹏等.油茶查尔酮合酶和异构酶基因的cDNA克隆[J].中南林业科技大学学报(自然科学版).2007,27(1): 9-13.
    [22]王保明.油茶亲环素、钙调素基因的cDNA克隆及亲环素基因的原核表达[D].长沙:中南林学院硕士学位论文,2008.
    [23]胡孝义,谭晓风,张党权,等.1个油茶Y2SK2型脱水素的全长cDNA克隆及生理功能的预测[J].林业科学.2008,44(10):56-64.
    [24]胡孝义,谭晓风等.油茶种子水通道蛋白CoPIP121的鉴定与分析[J].林业科学.2008,44(12):48-56.
    [25]王宝山等.植物生理学[M],北京:科学出版社,2007,255-274.
    [26]王春新,营养器官的发育.植物分子遗传学[M].北京:科学出版社,1997,318-352.
    [27]崔克明.植物发育生物学[M].北京:北京大学出版社,2007,84-98.
    [28]Stone S L, Kwong L W, Yee K M, Pelletier J, Lepiniec L, Fischer R L Goldberg R B, Harada J J. LEAFYCOTYLEDON2 encodes a B3 domain transcription factor that induces embryo development[J]. Proc Natl Acad Sci USA,2001,98:11806-11811.
    [29]Kajiwara T, Furutani M,Hibara K, et al.The GURKE gene encoding an acetyl-CoA carboxylase is required for partitioning the embryo apex into three subregions in Arabidopsis[J]. Plant Cell Physiol,2004,45(9):1122-1128.
    [30]TorresRuiz RA, Lohner A, Jurgens G.The GURKE gene in required for normal organization of the apical region in the Arabidopsis embryo[J].Plant J,1996, 10(6):1005-1016.
    [31]Hardtke CS, Berleth T.Genetic and contig map of a 2200 kb region encompassing 5.5cMonchromosomelofArabidopsisthaliana[J].Genome,1996, 39, (6):1086-1092
    [32]Przemeck GKH,MattssonJ,Hardtke CS, et al. Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization[J].Planta.1996,200(2):229-237.
    [33]Hardtke C S, Berleth T, The Arabidopsis gene MONOPTEROUS encodes a transcription factor mediating embryo axis formation and vasculardevelopment[J]. EMBOJ,1998,17:1405-1411.
    [34]Schrick K, Mayer U, Horrichs A, Kuhnt C, Bellini C, Dangl J, Schmidt J, J urgens G. FACKEL is a sterol C-14reductase required for organized cell division and expansion in Arabidopsis embryogenesis[J]. Genes Dev,200014 1471-1484.
    [35]Souter M, Topping J, Pullen M,et al. hydra Mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling[J].Plant Cell,2002, 14(5):1017-1031.
    [36]Jang JC,Fujioka S, Tasaka M,et al.A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana [J].Genes Devel,2000,14(12):1485-1497.
    [37]Busch M,Mayer U, Jurgens G.Molecular analysis of the Arabidopsis pattern formation gene GNOM:gene structure and intragenic complementation[J].Mol General Genetice,1996,250(6):681-69.
    [38]Geldner N, Richter S, Vieten A, et al.Partial loss-of-function alleles reveal a role for GNOM in auxin trans port-relat-ed, post-embryonic development of Arabidopsis[J].Development,2004,131(2):389-400.
    [39]Willemsen V, Friml J, Grede M, et al.Cell polarity and PIN protein positioning in Arabidopsisrequiresterolmethyltransferaselfunction.Plant[J]Cell,2003,15(3): 612-625.
    [40]Mayer U, Torres-Ruiz RA, Berleth T, et al.Mutations affecting body organization in the Arabidopsis embryo [J].Nature,1991,353:402-407.
    [41]Lauber MH, Waizenegger I, Steinmann T, et al.The Arabidopsis KNOLLE protein in a cytokinesis-specific syntaxin[J].J Cell Biol,1997,139(6): 1485-1493.
    [42]Lukowitz W,Mayer U,Jurgens G.Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product [J].Cell,1996,84(1):61-71.
    [43]Mayer U, Herzog U, Berger F, et al.Mutations in the pilz group genes disrupt the microtubule cytoskeleton and uncouple cell cycle progression from cell division in Arabidopsis embryo and endosperm [J].EurJ Cell Biol,1999,78(2):100-108.
    [44]Volker A, Stierhof YD, Jurgens G.Cell cycle-independent expression of the Arabidopsis cytokinesis-specific syntaxin KNOLLE results in mistargeting to the plasmamembrane and is not sufficient for cytokinesis[J].JCell Sci,2001, 114(16):3001-3012.
    [45]Strompen G, El Kasmi F, Richter S, et al.The Arabidopsis HINKEL gene encodes a kinesin-related protein involved in cytokinesis and is expressed in a cell cycle-dependent manner[J].Cur Biol,2002,12(2):153-158.
    [46]Schantz ML, Jamet E, Guitton AE, et al.Functional analysis of the bell pepper KNOLLE gene(cakn) promoter region in tobacco plants and in synchronized BY2 cells[J].Plant Sci,2005,169(1):155-163.
    [47]Helliwell C A, Chin-Atkins A N, Wilson I W, Chapple R, Dennis E S, Chaudhury A. The Arabidopsis AMP1 geneencodes a putative glutamate carboxypeptidase. Plant [J] Cell,2001,13:2115-2125.
    [48]Goldberg R B, Barker S J.1989. Perez Grau L Regulationof Gene Expression During Plant Embryogenesis [J] Cel 1,56:149-160.
    [49]Thomas T L,1993. Gene Expression During Plant Embryo genesis and Germination[J].Plant Cel 1,5:1401-1410.
    [50]宋松泉,程红焱,姜孝成等.种子生物学[M].北京:科学出版社,2008,41-94.
    [51]刘良式等.植物分子遗传学[M].北京:科学出版社,2003,256-313.
    [52]杨学军,喻方圆,张欢喜等.种子贮藏蛋白质表达调控及应用研究进展[J].武汉植物学研究.2008,26(2):203-212.
    [53]Payne P I, Holt L M, Worland A J, Law C N. Structural and genetical studies on the high2molecular2weight subunits of wheat glutenin. Part 3. Telocentric mapp ing of the subunit genes on the long arms of the homoeologous group 1 chromosomes [J]. Theor Appl Genet,1982,63:129-138.
    [54]Payne P I. Genetics of wheat storage p roteins and the effects of allelic variation on bread2making quality [J]. Ann Rev Plant Physiol,1987,38:141-153.
    [55]Pogna P E, Autran J C, Mellini F, Lafiandra D, Feillet P.Chromosome 1B2encoded gliadins and glutenin subunits in durum wheat:genetics and relationship to glutenin strength[J]. J Cereal Sci,1990,11:15-34.
    [56]Pogna N E, Redaelli R, Vaccino P, Biancardi A M, Peruffo A D B, Curioni A, Metakovsky E V, Pagliaracci S. Production and genetic characterization of near isogenic lines in the bread2wheat cultivarAlpe[J]. TheorAppl Genet,1995, 90:650-658.
    [57]Sreeramulu G, Singh N K. Genetic and biochemical characterization of novel low molecular weight glutenin subunits in wheat (Triticum aestivum L.) [J]. Genom e,1997,40:41-48.
    [58]Alvarez J B, Moral A, Martin L M. Polymorphism and genetic diversity for the seed storage p roteins in Spanish cultivated einkorn wheat (Triticum m onococcum L. ssp. m onococcum) [J]. Genet Resour Crop Evol,2006,53:1061-1067.
    [59]Payne P I, Jackson E A, Holt L M, Law C N. Genetic linkage between endosperm storage p rotein genes on each of the short arms of chromosome 1A and 1B in wheat[J]. Theor Appl Genet,1984,67:235-243.
    [60]Dubcovsky J, LuoM C, Dvorak J. Differentiation between homoe ologous chromosomes 1A of wheat and lAm of Triticum m onococcum and its recognition by the wheat Ph1 locus [J]. Proc N atl Acad Sci USA,1995,92: 6645-6649.
    [61]Dubcovsky J, EchaideM, Giancola S, RoussetM,LuoM C, Joppa L R, Dvorak J.Seed storage p rotein loci in RFLP map s of dip loid, tetrap loid, and hexap loid wheat[J]. TheorAppl Genet,1997,95:1169-1180.
    [62]Xu S S, Faris J D, Cai X, Klindworth D L. Molecular cytogenetic characterization and seed storage p rotein analysis of 1A/1D trans location lines of durum wheat [J]. Chrom osom e Res,2005,13:559-568.
    [63]Harada J J, Barker S J, Goldberg R B. Soybean β2conglycinin genes are clustered in several DNA regions and are regulated by transcrip tional and post2transcrip tional p recesses [J]. Plant Cell,1989,1:415-425.
    [64]Barker S J, Harada J J, Goldberg R B. Cellular localization of soybean storage p rotein mRNA in transformed tobacco seeds [J].Proc N atl Acad Sci USA,1988, 85:458-462.
    [65]Anisimova IN, Gavrilova V A, LoskutovA V, RozhkovalV T, Tolmachev V V. Polymorphism and inheritance of seed storagep ro tein in sunflower [J]. Russ J Genet,2004,40:995-1002.
    [66]Dickinson C D, Evans R P, Nielsen N C. RY repeats are con served in the 5' flanking regions of legume seed p rotein gene [J]. N ucleic Acids Res,1988, 16:371.
    [67]Yamauchi D. Interaction of seed embryo factors with the 5'up stream region of seed storage 7S globulin gene from Canavalia gladiata [J]. Plant Sci,1997,126: 163-172.
    [68]BrayEA.1997 Plantresponsestowaterdeficit.TrendsPlantSci,2:48-54.
    [69]ShinozakiK, Yamaguchi ShinozakiK.Molecularresponsestodroughtandcoldstress [J].CurrOpinBiotechnol.1996,7:161-167.
    [70]CloseTJ,FentoRD,MoonanF.Aviewofplantdehydrinsusingantibodiesspecifictothec arboxyterminalpeptide[J].1993, PlantMolBiol,23:279-286
    [71]GARELLO G, BARTHE P, BON ELL IM, et al. A bscisic acid-regulated responses of do rmant and non-do rmant em-bryo s of H elianthus annuas:ro le of ABA-inducible p ro teins [J]. Plan t Phys iology and Biochem istry,2000,38: 473-482.
    [72]张木清,陈如凯.作物抗旱分子生理与遗传改良[M].北京:科学出版社,2005,274-277.
    [73]SvenssonJ IsmailAM, PalvaET, etal.Dehydrinssensing, Signaling and celladaptation[J]. Amsterdam:Elsevier.2002,155-171.
    [74]SarhanF, OuelletF, VazquezTelloA.Thewheatwcs120genefamily: ausefulmodeltounderstandthemoleculargeneticsoffreezingtoleranceincereals[J].P hysiolPlant,1997,101:439-445.
    [75]CloseTJ.Dehydrins:emergenceofabiochemicalroleofafamilyofplantdehydrationpro teins[J].PhysiolPlant,1996,97:795-803.
    [76]AllagulovaCR,GimalovFR,ShakirovaFM,etal.Theplantdehydrins:structureandputa tivefunctions[J].Biochemistry (Moscow),2003,68:945-951
    [77]IsmailAMHallAECloseTJ.Allelicvariationofadehydringenecosegregateswithchilli ngtoleranceduring seedlingemergence.ProcNatlAcadSciUSA, CloseTJ.1997.23: 13569-13573.
    [78].Dehydrins:acommonalityintheresponseofplantstodehydrationandlowtemperature.. [J].PhysiolPlant,1999.100:291-296.
    [79]Nambara E, et al. Pjant Cell Physiol,1994.35:509.
    [80]Parcy, et al. Interactions between the ABI1 and the ectopically expressed ABI3 genes in controlling abscisic acid responses in Arabidopsis vegetative tissues[J].Plant Cell,1997,9-1265.
    [81]Hadfi K, et al. Auxin-induced developmental patterns in Brassica juncea embryos [J]. Development,1998,125-897.
    [82]万小荣,李玲等.植物ACC合成酶的分子生物学[J].安徽农业科学,200735(3):654-655.
    [83]MA SON, M ICHA EL GL EM, JOSE RAMON BOTELLA. Identification and charictersation of two 12am inocyclop ropane212carboxyiate (ACC) synthase cDNA s exp ressed during papaya (Carica p ap ay a) fruit ripening[J]. Austral ian Journal of Plant Physiology,1997,24(2):239-244.
    [84]洪燕萍,陈春玲,赖钟雄等.基因工程在果实延熟中的应用[J].福建果树,2000,(1):9-11.
    [85]OETIKERJ H, YANGS F. The role of ethylene in fruit ripening[J].Acta Hortic,1995,398:167-178.
    [86]OETIKERJ H,OLSON D C,SHIU O Y, et al.Differential induction of sevenl aminocyclopropane212carboxylate synthase genes by elicitor in suspension cul tures of tomato(Lycopersicon esculentum) [J]. Plant Mol Biol,1997,34: 275-286.
    [87]NAKATSUKA A, MURACHI S, OKUNISHI H, et al.Differential expression and internal feedback regulation of ACC synthase, ACCoxidase, and ethylene recap-tor genes in tomato fruit during development and ripening[J]. Plant Physiol,1998,118:1295-1305.
    [88]BARRYC S,LLOP2TOUSM I, GRIERSON D. The regulationofl-aminocyclo propanel carboxylic acid synthase gene expression during the transition from system21 to system22 ethylene synthesis in tomato[J]. Plant Physiol 2000, 123:979-986.
    [89]Sato T, Theologis A. J. Amer. Soc. Horrt. Sci.,1989,103:472-475.
    [90]Yip WK, Moore T, et al. Proc. Ntal. Acad. Sci.,1992,89:2475-2479.
    [91]Bird C. R,Ray J. A., et al.Biotechnology 9:635-639.
    [92]Tucker GA, Grierson D. Planta.,1982,155:64-67.
    [93]Baldwin E. A, Pressy R. J.Amer. Soc. Hort. Sci.1988,113:92-95.
    [94]Dellapenna D, Kates DS, et al. Plant Physiol.1987,85:502-507.
    [95]Kramer M, Sanders R, et al.Biol.Technol.1992,1:241-255.
    [96]YARON S ITR IT, ALAN B Bennett.Regulation of tomato fruit polygalacturonase mRNA accumulation by ethylene:a reexam ination[J]. Plant Physiology,1998,116:1145-1150.
    [97]Tieman DM, Harriman RW, et al. The Plant Cell.1992,4:667-679.
    [98]Gray J E, Picton S, et al. Plant Cell Environ.,1994,17::557-571.
    [99]Hall LN, Tucher GA, et al. The Plant Journal,1993,3:121-129.
    [100]Ayub R, Guis M, Ben Amor M, et all Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits 1 Nature Biotechn,1996,14:862-866.
    [101]Gray J E, Picton S, et al. Plant Cell Environ.,1994,17:557-571
    [102]何方,胡芳名等.经济林栽培学[M].北京:中国林业出版社,2004,278-288
    [103]石明旺.油茶种子EST文库构建及油脂合成关键酶基因的分离研究[D].株洲:中南林学院博士论文,2003.
    [104]黄永芳,等.油茶种质资源遗传多样性分析[J].林业科学,2006,42(4):38-43.
    [105]唐绍清,等.金花茶与近缘种的RAPD分析及分类意义[J].中山大学学报(自然科学版),1998,37(4):28-32.
    [106]谭晓风,等.山茶属植物油茶组与金花茶组的分子分类[J].中南林学院学报,2005,25(4):31-34.
    [107]贺晶.山茶属红山茶组植物RAPD分类研究[D].长沙:中南林学院硕士学位论文,2001.
    [108]雷小林,等.油茶分子育种研究进展[J].经济林研究,2006,24(4):95-98.
    [109]陈永忠,等.油茶生物技术育种研究前景展望[J].湖南林业科技,2005,32(4):5-7.
    [110]张智俊.油茶优良无性系组织培养、RAPD分子鉴别和cDNA文库构建的研究[D].长沙:中南林学院学位论文,2003.
    [111]全国油茶产业化发展规划(2009-2020年)国家林业局,2009.07.
    [112]Nieto2TaladrizM T, RuizM,MartinezM C, Vazquez J F, Carrillo J M. Variation and classification of B low molecular2weight glutenin subunit alleles in durum wheat [J].Theor Appl Genet,1997,95:1155-1160.
    [113]Joppa L R, Klindworth D L, Hareland GA. Transfer of highmolecular weight glutenins from sp ring wheat to durum wheat [A]. In:Slinkard A E ed. Proceedings of the 9 th InternationalWheat Ge2 netic Symposium [M]. Saskatoon, SK, Canada:University of katchewan Ext. Press,1998,257-260.
    [114]胡芳名,谭晓风,刘惠民,等.中国主要经济树种栽培与利用[M].北京:中国林业出版社,2006,370-383.
    [115]谭晓风,胡芳名,谢禄山,等.2006.油茶种子EST文库构建及主要表达基因的分析[J].林业科学,42(1):43-48.
    [116]胡芳名,谭晓风,石明旺,等.油茶种子cDNA文库的构建[J].中南林学院学报,2004,24(5):1-5.
    [117]张莉,毛雪,李润植,等.种子发育相关基因的研究进展[J].植物学通报,2004,21(3):288-295.
    [118]胡骏.被子植物胚胎发育的分子遗传学研究[J].中山大学研究生学刊(自然科学版),2001,22(1):46-57.
    [119]谭晓风,陈鸿鹏,张党权,等.油茶FAD2基因全长cDNA的克隆和序列分析[J].林业科学,2008,44(3):70-75.
    [120]张党权,谭晓风,陈鸿鹏,等.油茶SAD基因的全长cDNA克隆及生物信息学分析[J].林业科学,2008,44(2):155-159.
    [121]魏绍冲,陈昆松, 罗云波.乙烯受体与果实成熟调控[J].园艺学报,2004,31(4):543-548.
    [123]谭晓风,胡芳名,谢禄山,等.油茶近成熟种子表达的发育相关基因及其分析[J],中南林学院学报,2005,25(4):17—23.
    [124]颜克亮,陈波,姚家玲,等.大豆种子形态建成期与成熟期正反抑制消减文库构建及差异表达基因分析[J].武汉大学学报(理学版),2008,52(2):202-208.
    [125]阎隆飞,孙之荣.蛋白质分子结构[M].北京:清华大学出版社,2000,27-42.
    [126]谭晓风,蒋瑶,王保明,等.油茶乙酰辅酶A羧化酶BC亚基全长cDNA克隆及序列分析[J].中南林业科技大学学报,2010.30(2): 1-9.
    [127]Goldberg R B, Barker S J. Perez Grau L Regulationof Gene Expression During[J]. Plant Embryogenesis Cell,1989.56:149-160.
    [128]Thomas T L. Gene Expression During Plant Embryo genesis and Germination [J].Plant Cell,1993.5:1401-1410.
    [129]刘良式.植物分子遗传学[M].北京:科学出版社,2003,266-313.
    [130]Hadfi K. Auxin-induced developmental patterns in Brassica juncea embryos[J]. Development 1998,125-897.
    [131]J. Giovannoni'H, Yen'B, Shelton'S, Miller. Genetic mapping of ripening and ethylene-related loci in tomato Theor Appl Genet 1999.98:1005-1013.
    [132]K. N. Anjanasreel, Alka Srivastava. Identification of differentiallyexpressed ripening-related cDNAclones from tomato (Lycopersiconesculentum) using tomato EST array CURRENT SCIENCE,2005. VOL.88, NO.5,10 MARCH 792-796.
    [133]Kristen A, Hadfield, Tam Dang, Monique Guis. Characterization of Ripening-Regulated cDNAs and Their Expression in Ethylene-Suppressed Charentais Melon Fruit1 Plant[J].Physiology,2000.122:977-983.
    [134]Bennett A B, Labavitch J M. Ethylene and ripening regulated exp ression and function of fruit cell wallmodifying p roteins[J]. Plant Science,2008.175:130-136.
    [135]Cara B, Giovannoni J J. Molecular biology of ethylene during tomato fruit development and maturation[J]. Plant Science,2008.175:106-113.
    [136]Pech J C, BouzayenM, Latch A. Climacteric fruit ripening:Ethylene2dependent and independent regulation of ripening pathways in melonfruit [J]. Plant Science, 2008.175:114-120.
    [137]AlexanderL, GriersonD. Ethylene biosynthesis and action in tomato:a model for climacteric fruit ripening[J].J ExpBot 2002.53(377):2039-2055.
    [138]Fire A, Xu AQ, Montgonery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J].Nature,1998,391:806.
    [139]F IRE A, XU S, MON TGOM ERYM K, et all Po tent and specific genet ic interference by double st randed RNAin Caenorhad itis eleg ans [J] 1 N ature, 1998,391:806-811.
    [140]王中凤,应铁进,张英.植物乙烯受体基因家族成员的功能特异性[J].植物生理学通讯,2006.42(2):308-310.
    [141]叶锐.水稻种子发育相关转录因子的分离和功能研究[D].2005.中国科学院博士学位论文.
    [142]罗勤,周青春,冯莹颖,等.调控蛋白PrfA的单个氨基酸突变对单核细胞增生李斯特菌毒力基因转录水平的影响[J].自然科学进展,2008.18(8):941-945.
    [143]蒋向,戴雄泽,李育强,等.薤白EPSPs基因在不同组织表达的半定量分析[J].湖南农业大学学报(自然科学版),2007.33(5):542-545.
    [144]Liljegren SJ, Roeder AH,Kempin SA, Gremski K, Ostergaard L, Guimil S,Reyes DK and ranofsky MF.Control of fruit patterning in Arabidopsis by INDEHISCENT[J].Cell.2004,116:843-853
    [145]雷东锋,李剑君,张宴,白西元,王晨,赵文明.果实成熟过程相关调控基因研究进展[J].西北植物学报,2000,20(1):149—157.
    [146]王悦冰,郎志宏,黄大防.内含子对真核基因表达调控的影响[J].生物技术通报,2008,(4):1-4.
    [147]刘中成,赵锦,刘孟军mRNA差异显示技术评述[J].分子植物育种,2004,2(6):895-900.
    [148]Gong W, Shen YP, Ma LG. Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes [J]. Plant Physiol,2004,135:773-782.
    [149]Shimkets RA, Lowe DG, Tai JT, et al. Gene expression analysis by transcript profiling coupled to a gene database query [J]. Nat Biotechnol.1999,17: 798-03
    [150]Rushton PJ, Reinstadler A, Lipka V, Lippok B, Somssich IE. Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling [J]. Plant Cell.2002,14::749-762.
    [151]Meadus W.J. A semi-quantitative RT-PCR method to measure the in vivo effect of dietary conjugated linoleic acid on porcine muscle PPAR gene expression [J].Biol.Proced.2003.Online 5(1):20-28.
    [152]Marone M, Mozzetti S, Ritis D, Pierelli L, Scambia G. Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample[J].Biol.Proced.2001.Online3(1):19-25.
    [153]华树海,姜孝成,张春来,Adrain Slater等.半定量RT-PCR法检测Weel基因在水稻胚乳发育过程中的表达模式[J].湖南师范大学自然科学学报, 2008,31(3):83-87.
    [154]张晓娟,张林生,杨颖.水分胁迫下小麦类脱水素基因表达的半定量RT-PCR分析[J].西北植物学报,2007,27(11):2158-2162.
    [155]蒋向,戴雄泽,李育强,等.薤白EPSPs基因在不同组织表达的半定量分析[J].湖南农业大学学报(自然科学版),2007,33(5):542-545.
    [156]周林福,陈离伟,姜云水,等.荧光定量PCR.与半定量PCR检测HBV DNA的对比分析[J].中国病理生理杂志,2005,21(5):837-848.
    [157]Gao Yuan, Suo Guangli, Han Jin. Expression of human BMP-2 Gene in different tissues of tobacco plants [J]. Acta Genetica Sinica,2006,33(1):56-62.
    [158]张鸿平,吴秉铨,张卫国,等.半定量PCR方法的建立及其在病理学中应用[J].中华病理学杂志,1994,23(5):312-313.
    [159]胡庆宏,刘明,栾树清,易诚予RT-PCR方法半定量在基因表达水平检测中的应用实用[J].临床医学,2004年,5(6):6.
    [160]王荣,李红菊.半定量RT-PCR法在检测基因表达水平中的应用[J].阜阳师范学院学报(自然科学版),2007,24(1):49-52.
    [161]胡孝义.油茶种子活性氧相关基因的克隆及树体RNA干扰技术研究[D].中
    南林业科技大学,博士学位论文2009.
    [162]李新枝,蔡佩玲,牟林春.基因功能研究的方法[J].四川解剖学杂志,200715(1):57-59.
    [163]Meinke D W, Cherry J M, Dean C, Rounsley S D, Koornneef M. Arabidopsis thaliana:a model plant for genome analysis[J]. Science.1998,282:679-682.
    [164]Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant [J] Arabidopsis thaliana. Nature.2000,408:796-815.
    [165]Parinov S, Sundaresan V. Functional genomics in Arabidopsis:large-scale insertional mutagenesis complements the genome sequencing projec[J].Curr Opin Bio technol.2000,11:157-161.
    [166]Springer PS. Gene traps:tools for plant development and genomics[J]. Plant Cell.2000,12:1007-1020.
    [167]陈键.拟南芥Mg2+转运基因家族中AtMGT9基因的功能研究[D].湖南师范大学,博士学位论文,2009.
    [168]Farah MH. RNAi silencing in mouse models of neurodegenerative diseases [J]. Curr Drag Deliv,2007,4(2):16-17.
    [169]Davidson BL, Boudreau RL. RNA interference:a tool for querying nervous system function and an emerging therapy [J]. Neuron,2007,53 (6) 781-788.
    [170]Aoki Y, Gioca D P, Oidaira H, et al. RNA interferencemay be more potent.than antisense RNA in human cancer cell lines [J]. Clin Exp Pharmacol Physiol, 2003,30(1-2):96-102.
    [171]Elbash ir SM, Harbo rth J, W eber K, et al. A nalysis of gene function in somatic mammalian cells using small interfering RNAs[J]. M ethods,2002,26 (2):199.
    [172]Elbash ir SM, L endeckel W, Tusch 1T. RNA interference is mediated by 21-and 22-nucleo tide RNA s. Genes Dev,2001,15 (2):188.
    [173]Callis J, Fromm M, Walbot V. Genes Dev,1987,1:1183-1200.
    [174]Duncker BP, et al. Mol Gen Genet,1997,254:291-296.
    [175]Brinster RL, et al. Proc Natl Acad Sci USA,1988,85:836-840.
    [176]Rose AB, Last RL.The Plant Journal,1997,11:455-464.
    [177]王悦冰,郎志宏,张杰,何康来,宋福平,黄大防.利用ubil内含子增强Bt cryl Ah基因在转基因玉米中的表达.科学通报[J]2008,53(17):2041-2046.
    [178]Waterhouse P, Wang MB.Gene silencing as an adaptive defence against viruses[J].Nature.2001,411:834-842.
    [179]Yuanshibin, Shibin, Weizengquan. Molecule modification and mass deposition induced by the imp lantation of low energy Fetion beamsinto aminoacids [J]. Chinaese Science Bulletin,2002,47(8).
    [180]张海洋,卫双玲,卫文星.芝麻同源四倍体的诱发与鉴定[J].华北农学报,2001,16(2)12-15.
    [181]王卓伟,余茂德,鲁成.桑树二倍体及人工诱导的同源四倍体遗传差异的AFLP分析[J].植物学通报,2002,19(2):194-200.
    [182]康向阳,朱之悌,林惠斌.杨树花粉染色体加倍有效处理时期的研究[J].林业科学,1999,35(4):21-24.
    [183]卫增泉,颉红梅,梁剑平.重离子束在诱变育种和分子改造中的应用[J].原 子核物理评论,2003,21(1):38-41.
    [184]包梅荣,李铁柱,乌云塔娜,谭晓风.秋水仙素处理油茶种子和幼苗变异的初步研究[J].内蒙古农业大学学报,2009,30(2):46-50.
    [185]李铁柱,田大伦,乌云塔娜,谭晓风,等.四倍体油茶的鉴定及变异[J].林业科学,2009,45(3):150-154.
    [186]SU I G, SOOHOO C, A FFAR E B, et al. A DNA-based RNA i techno logy to supp ress gene exp ression in mammalian cells[J]. P roceedings of the N at ionalA cademy of Sciences,2002,99:5515-5520.
    [187]YAH J H, DERU IT S L, TU RN ER D L. RNA interference by exp ression of sho rt-interfering RNAs and hairp in RNAs in mammalian cells[J]. P roceedings of the N at ionalA cademy of Sciences,2002,99(9):6047-6052.
    [188]ESCOBAR M A, C IV EROLO E L, SUMM ERFEL T K R, et al. RNA i-mediated oncogene silencing confers resistance to crow n gall tumo rigenesis [J]. P roceedings of the N at ionalA cademy of Sciences,2001,98 (23): 13437-13442.
    [189]GUO H S, FE IJ F, Q IX, et al. A chem ical-regulated inducible RNA i system inplant[J].P lant J,2003,34(3):383-392.
    [190]KLAHRE U, CRETE P, L EU ENBERGER S A, et al. H igh mo lecular w eigh t RNA s and small interfering RNA s induce system ic po st t ranscrip t ional gene silencing in p lant [J]. P roceedings of the N at ionalA cademy of Sciences,2002,99(18):11981-11986.
    [191]Kamat h RS, Fraser AG, Dong Y, et al. Systematic functional analysis of the Caenor habditis elegans genome using RNAi [J]. Nature,2003,421 (6920): 231-237.
    [192]Miyagishi M, Taira K.U6 promoter—driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells [J].Nat Biotechnol,2002,20(5):497-500.
    [193]Alisky JM, Davidson BL. Towards therapy using RNA interference[J]. Am J Pharm acogenom ics,2004,4(1):45-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700