用户名: 密码: 验证码:
新型壳聚糖螯合树脂对金、银等金属的吸附回收及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业、城市污染的加剧,重金属污染已经成为全球化问题,处理废水中的重金属污染已经成为各国环境保护工作的重点。通过对重金属的回收处理既能解决环境问题,又能节约资源,获得较好的经济效益,是当今世界环保领域优先研究的方向。
     壳聚糖以其良好的环境相容性、可再生性、资源丰富以及价廉易得等优点已经在许多领域得到广泛应用。经研究证明,对壳聚糖进行化学改性制备得到的壳聚糖螯合树脂可以在水体环境中选择吸附多种重金属离子,已经得到越来越多的关注和应用。
     本论文设计并合成了环氧氯丙烷交联壳聚糖树脂、环氧氯丙烷交联羧甲基壳聚糖树脂、戊二醛交联羧甲基壳聚糖树脂、羧甲基壳聚糖硫脲树脂和磁性壳聚糖树脂,采用FTIR、SEM等方法对树脂进行了结构和性能表征,对所合成的螯合树脂进行了对Au~(3+)、Ag~+、Hg~(2+)、Pb~(2+)等重金属离子的吸附性能筛选。研究结果表明,羧甲基壳聚糖硫脲树脂比所合成的其他壳聚糖螯合树脂有着更加优越的吸附性和选择性,对Au~(3+)、Ag~+、Hg~(2+)、Pb~(2+)的最大吸附容量是分别为:8.32mmol/g、3.77mmol/g、6.29mmol/g和1.20mmol/g。
     采用静态吸附法从单组分吸附、多组分吸附和模板吸附等多层次研究了羧甲基壳聚糖硫脲树脂对Au~(3+)、Ag~+、Hg~(2+)、Pb~(2+)的吸附特性,研究了不同影响因素,如接触时间、温度、pH值和金属离子初始浓度对吸附能力的影响。
     通过本文的研究表明,羧甲基壳聚糖硫脲树脂对Au~(3+)、Ag~+、Hg~(2+)和Pb~(2+)离子的吸附动力学符合拟二级反应动力学模型。热力学数据表明,Langmuir吸附等温式更能准确描述树脂对这些金属离子的吸附过程,吸附容量随温度的增加而减小,吸附过程为放热过程。在多元金属离子混合溶液中,羧甲基壳聚糖硫脲树脂对贵金属离子Au~(3+)、Ag~+和Hg~(2+)具有优良的选择吸附性,并且洗脱率较高(>90%),重复利用性好,重复利用5次后吸附量无明显降低。说明该新型树脂能够从混合金属废水中分离回收贵金属。通过对定影废液的处理试验表明,用0.1g树脂处理100ml的定影废液,对银离子的吸附量达到1.08mmol/g。本文制备的新型壳聚糖螯合树脂在重金属废水处理和贵金属回收方面具有良好的应用前景。
With the pollution caused by industrialization and urbanization becoming more and more severe, heavy metal pollution has been a global problem. Therefore, dealing with heavy metal pollution in water has become an important facet of protecting environment to each country. Furthermore, recovery of precious metals will not only solve the environmental problems but also have profitable potential,which has been a critical aspect of protecting environment.
     Chitosan has been widely used in many fields for its good environmental compatibility, renewability, abundant resources and low cost. Hence, an efficient way to get chelating resin is to modify chitosan’s structure, and the resins produced have been testified that they can selectively adsorb many kinds of heavy metals in aqueous medium, which has drawn more and more attention.
     In this study, epichlorohydrin cross-linked chitosan resin, epichlorohydrin cross-linked carboxymethylated-chitosan resin, glutaraldehyde cross-linked carboxymethylated-chitosan resin, thiourea modified carboxymethylated-chitosan resin and magnetic chitosan resin were designed and synthesized. FTIR、SEM were used to identify the structures and characteristics of the resins and adsorption experiments were used to testify the adsorption capacity of the synthesized resins for various heavy metals such as Au~(3+), Ag~+, Hg~(2+) and Pb~(2+). Exprimental data showed that thiourea modified carboxymethylated-chitosan resin has better adsorption capacity and selectivity for most of the studied heavy metals and the maximum adsorption capacity for Au~(3+),Ag~+,Hg~(2+)and Pb~(2+) was found to be 8.32, 3.77, 6.29 and 1.20 mmol/g.
     The adsorption behavior for Au~(3+),Ag~+,Hg~(2+) and Pb~(2+) onto the thiourea modified carboxymethylated-chitosan resin was systematically studied respectively using batch method. We also performed metal ions co-adsorption experiment to study the resin’s selectivity. In addition, we synthesized the template resin of thiourea modified carboxymethylated-chitosan to study its adsorption capacity and mechanisms. The effects on adsorption capacities of the resin such as contact time, temperature, pH value of the initial solution, and initial concentration of solution were all investigated through batch method.
     The kinetic parameters of the adsorption process were obtained, and the results indicated that adsorption process for Au~(3+), Ag~+, Hg~(2+) and Pb~(2+) kinetically followed pseudo second order model. The thermodynamic data showed that Langmuir equation could describe the adsorption process for Au~(3+), Ag~+, Hg~(2+) and Pb~(2+) precisely. The adsorption capacity decreased when the temperature elevated, and the adsorption process was spontaneous exothermic reaction. In the selective experiments, the thiourea modified carboxymethylated-chitosan resin showed especially high selectivity towards Au~(3+), Ag~+ and Hg~(2+). The results also showed that the desorption efficiency was above 90% and the adsorption capacity of this modified chitosan resin was not significantly changed up to 5 cycles. Therefore, the resin could be easily regenerated and efficiently reused, which indicated the availbility for separating precious metals from other heavy metals in solution. We also used the 0.1g thiourea modified carboxymethylated-chitosan resin to recover silver (I) from waste fixing bath, and the adsorption capacity was 1.08mmol/g. The novel chitosan chelating resin we synthesized in this thesis showed potential in the field of heavy metal treatment and recovery of precious metals.
引文
1.向磊.我国贵金属回收产业发展综述,世界有色金属. 2007, 6: 29-31.
    2.余建民.贵金属萃取化学. 2005: 1-10.
    3. Handley H.W.,Jones P.,Ebdon L.,et al. Research and development topics in analytical chemistry. Analytical Proceedings. 1991, 28(2): 37-46.
    4. Camel V. Solid phase extraction of trace elements. Spectrochimica Acta Part B: Atomic Spectroscopy. 2003, 58(7): 1177-1233.
    5. Villaeseusa I.,SalvadóV.,Pablo J. Solid-liquid extraction of Au(III) from Aqueous chloride solutions by tri-n-dodecylamrnonium chloride impregnated in amberlite XAD-2 resin. Reactive and Functional Polymers. 1997,32(2):125-130.
    6.卢宜源,宾万达.贵金属冶金学.长沙:中南大学出版社. 2004: 116-183, 316-318.
    7. Sussman S.,Naehod F.C.,Wood W. Metal recovery by anion exchange. Industrial & Engineering Chemistry. 1945, 37(7): 618-624.
    8. Burstall F.H.,Forrest P.J.,Kember N.F.,et al. Ion-exchange process for the recovery of gold from cyanide solution. Industrial and Engineering Chemistry Research. 1953, 45(8):1648-1658.
    9. Pearson R.G. Hard and soft acids and bases. Journal of the American Chemical Society. 1963, 85(22): 3533-3539.
    10.徐羽梧,高峰,董世华.螯合树脂研究XXVI:氮杂冠醚型树脂的合成及其吸附性能.离子交换与吸附. 1994,10(6): 517-522.
    11. Trivedi U.V.,Menon S.K.,Agrawal Y.K. Polymer supported calyx[6]arene Hydroxamic acid, a novel chelating resin. Reactive and Functional Polymers. 2002,50(3): 205-216.
    12. Hainey P.,Sherrington D.C. Oligoamine-functionalised Poly ( glycidyl Methacrylate-ethyleneglycol dimethacrylate) resins as moderate base extraetants for gold from cyanide solutions. Reactive and Functional Polymers. 2000,43(l-2): 195-210.
    13.张凯,孙其志.金橙G螯合形成树脂分离富集地质样品中的微量贵金属.分析化学研究简报. 1997, 25(6):659—662.
    14.冯长根,白林山,任启生.胺基化合物修饰戊二醛交联壳聚糖树脂的合成及其红外光谱研究.光谱学与光谱分析. 2004, 24(11): 1315-1318.
    15.袁彦超,陈炳稔,王瑞香.甲醛、环氧氯丙烷交联壳聚糖树脂的制备及性能.高分子材料科学与工程. 2004, 20(1): 53-57.
    16.党明岩,张廷安,王娉,李薇.环硫氯丙烷交联壳聚糖树脂对铂的吸附性能.有色金属:冶炼部分. 2008, 1: 30-33.
    17.贺小进,张冰凌,谭天伟,杜卫侠.球形Ni2+模板壳聚糖树脂吸附性能及物性研究. 2001, 15(1): 23-28.
    18.冯志云,倪才华,李良超,易长海.壳聚糖螯合树脂的改性及吸附性能.华中师范大学学报(自然科学版). 2003, 35(3):316-318.
    19. Muzzarelli R.A.A. Proceedings of the 1st International Conference on Chitin/Chitosan. Muzzarelli R.A.A. and Pariser E.R.Ed. 1977, 335.
    20.王志华,李青燕,王书俊.新型多孔多胺化交联壳聚糖对镉(Ⅱ)吸附性能的研究.北京化工大学学报(自然科学版). 2003, 30(2): 93-96.
    21.邵健,杨宇民.杨字民香草醛改性壳聚糖的错备及其吸附性能研究.中国环境科学. 2000, 20(1): 61-64.
    22. Guibal E., Larkin A., Vincent T.et al. Chitosan sorbents for platinum sorption from dilute solutions. Ind Eng Chem Res. 1999, 38(10): 4011-4022.
    23. Rorrer G.L., Hsien T.Y., Way J.D. Adsorption of Metal Ions on Polyaminated Highly Porous Chitosan. Ind Eng Chem Res. 1993, 32(9): 2170-2172.
    24.刘芳,董世化,徐羽梧.带希夫碱和酰肼基团的壳聚糖螯合树脂的合成及其吸附性能.环境化学. 1996, 15(3): 207~213.
    25. Zhikun Y., Yuting W., Yurong T. Preparation and Adsorption Properties of Metal Ions of Crosslinked Chitosan Azacrown Ethers. J. Appl. Polym. Sci. 1999, 74: 3053-3058.
    26. Tianjia B., Michael S., Henry S., Adsorption of nickel(II), zinc(II) and cadmium(II) by new chitosan derivatives, Reactive & Functional Polymers. 2000, 44: 289-298.
    27.杨智宽,单崇新,苏帕拉.羧甲基壳聚糖对水中Cd2+的絮凝处理研究.环境科学与技术. 2000, 88(1): 10~12.
    28. Hon N.S., Tang L.G. Chelation of chitosan derivatives with zinc ions. I. O, N-carboxymethyl chitosan. J Appl Polym Sci. 2000, 77(10): 2246~2253.
    29.庄莉,杨智宽.含硫壳聚糖研究―氨基硫脲接枝壳聚糖的合成.化学试剂. 2002, 24(5): 282~283.
    30. Guibal E., Von O.S.N., Vincent T., et al. Sulfur derivatives of chitosan for palladium sorption. Reactive & Functional Polymers. 2002, 50: 149~63.
    31. Jha I.N., Iyengar L., Rao A. J Environ Eng, ASCE. 1988, 114: 964-972.
    32. McKay G., Blair H.S., Findon A. Indian J Chem. 1989, 28 A: 356-363.
    33. Jeon C., H?ll W.H. Water Res. 2003, 37: 4770-4776.
    34. Kyzas G.Z., Kostoglou M., Lazaridis N.K. Chem Eng J. 2009, 152: 440.
    35. Schmuhl R., Krieg H.M., Keizer K. Water SA. 2001, 27: 1-12.
    36. Boddu V.M., Abburi K., Talbott J.L., Smith E.D. Environ Sci Technol 2003, 37: 4449-4456.
    37. Yan Z., Haijia S., Tianwei T. Korean J Chem Eng. 2007, 24: 1047-1053.
    38. Niu H., Volesky B. Hydrometallurgy. 2003, 71: 209-214.
    39. Ngah W.S.W., Liang K.H. Ind Eng Chem Res. 1999, 38: 1411-1418.
    40. Lasko C.L., Hurst M.P. Environ Sci Technol. 1999, 33: 3622-3628.
    41. Metwally E., Elkholy S.S., Salem H.A.M., Elsabee M.Z. Carbohydr Polym. 2009, 76: 622-629.
    42. Wang G., Liu J., Wang X., Xie Z., Deng N. J Hazard Mater. 2009, 168: 1053-1061.
    1.常晋娜,瞿建国.水体重金属污染的生态效应及生物监测.四川环境, 2005,24(4): 29-33.
    2. Basso M.C., Cerrella E.G., Cukierman A.L. Activated carbons developed from a rapidly renewable biosource for removal of cadmium(II)and.nickel(II)from dilute aqueous solutions. Ind Eng Chem Res. 2002, 41:180~189.
    3. Gomez-Salazar S., Lee J.S., Heydweiller J.C., et al. Analysis of cadmium adsorption on novel organo-ceramic adsorbents with a thiol functionality. Ind Eng Chem Res. 2003,42: 3403~3412.
    4. Huang C.P., Chung Y.C., Liou M.R. Adsorption of Cu(II) and Ni(II) by pelletized biopolymer. J Hazard Mater. 1996, 45: 265~277.
    5. Dzul E.M.S., Saucedo M.T.I., Navarro M.R., Rodriguez M.A, Guibal E., Cadmium sorption on chitosan sorbents: kinetic and equilibrium studies. Hydrometallurgy. 2001, 61: 157-167.
    6. Jeon C., Holl W.H. Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Res. 2003, 37: 4770-4780.
    7. Vasconcelos H.L., Favere V.T., Goncalves N.S., Laranjeira M.C.M. Chitosan modified with Reactive Blue 2 dye on adsorption equilibrium of Cu(II) and Ni(II) ions. React Funct Polym. 2007, 67: 1052-1060.
    8. Ngah W.S.W., Ghani S. A., Kamari A., Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource Technology. 2005, 96: 443-450.
    9. Qin C.Q., Du Y.M., Zhang Z.Q., Liu Y., Xiao L., Shi X.W. Adsorption of chromium (VI) on a novel quaternized chitosan resin. J Appl Polym Sci. 2003, 90: 505-510.
    10. Lee S.T., Mi F.L., Shen Y.J., Shyu S.S. Equilibrium and kinetic studies of copper(II) ion uptake by chitosan-tripolyphosphate chelating resin. Polymer. 2001, 42: 1879-1892.
    11.袁彦超,陈炳稔,王瑞香.甲醛、环氧氯丙烷交联壳聚糖树脂的制备及性能.高分子材料科学与工程. 2004, 20(1): 53-57.
    12. Zhu A., Chan-Park M.B., Dai S., Li L. The aggregation behavior of O-carboxymethylchitosan in dilute aqueous solution. Colloids.Surf., B. 2005, 43; 143-149.
    13. Chen X.-G., Park H.-J. Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydr. Polym. 2003, 53: 355-359.
    14. Sun Y.K., Ma M., Zhang Y., Gu N. Synthesis of nanometer-size maghemite particles from magnetite. Colloids Surf. A: Physicochem. Eng. Asp. 2004, 245 (1-3): 15–19.
    15. Donia A.M., Atia A.A., Elwakeel K.Z. Recovery of gold(III) and silver(I) on a chemically modified chitosan with magnetic properties. Hydrometallurgy. 2007, 87: 197-206.
    1. Bhatnagar A., Sillanp?? M. Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater -- A short review. Advances in Colloid and Interface Science. 2009, 152: 26-38.
    2.程国华,赵鑫,黄荣林.汉防已甲素壳聚糖微球的制备和质量研究.中国现代应用药学. 2008, 25(1): 47-50.
    3. Dehonor-Gomez M., Hernandez-Esparza M., Ruiz-Trevino F.A. R. Contreras-Reyes. Properties and adsorptive capacity of amino acids modified chitosans for copper ion removal. Macromol. Symp. 2003, 197: 277-288.
    4. Ramesh A., Hasegawa H., Sugimoto W., Maki T., Ueda K. Adsorption of gold(III), platinum(W) and palladium(II) onto glycine modified crosslinked chitosan resin. Bioresour. Technol. 2008, 99: 3801-3809.
    5. Guibal E., N. V. Sweeney, T. Vincent, J. M. Tobin. Sulfur derivatives of chitosan for palladium sorption. React. Funct. Polym. 2002, 50: 149-163.
    6. Lee S. T., Mi F. L., Shen Y. J., Shyu S. S. Equilibrium and kinetic studies of copper(II) ion uptake by chitosan-tripolyphosphate chelating resin. Polymer. 2001, 42: 1879-1892.
    7. Guibal E., Vincent T., Mendoza R. N. Synthesis and characterization of a thiourea derivative of chitosan for platinum recovery. J. Appl. Polym. Sci. 2000, 75: 119-134.
    8. Donia A. M., Atia A. A., Elwakeel K. Z. Selective separation of mercury(II) using magnetic chitosan resin modified with Schiff's base derived from thiourea and glutaraldehyde. J.Hazard. Mater. 2008, 151: 372-379.
    9. Zhou L., Wang Y., Liu Z., Huang Q. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. J. Hazard.Mater. 2009, 161: 995-1002.
    10. Chassary P., Vincent T., Guibal E. Metal anion sorption on chitosan and derivative materials: a strategy for polymer modification and optimum use. React. Funct. Polym. 2004, 60: 137-149.
    11. Lagergren S. Zur theorie der sogenannten adsorption geloster Stoffe. K. Sven. Vetenskapsakad. Handl. 1898, 24: 1-39.
    12. Ho Y.S., McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 2000, 34: 735-742.
    13. Weber W.J., Morris J.C. Kinetics of adsorption of carbon from solutions, J.Sanit. Eng. Div. Am. Soc. Civ. Eng. 1963, 89: 31-63.
    14. Langmuir I. The constitution and fundamental properties of solids and liquids. Journal of the Franklin Institute. 1917, 183(1): 102-105.
    15. Freundlich H. M.über die adsorption in l?sungen. Zeitschrift für Physikalische Chemie (leipzig). 1906, 57: 385-470.
    16. Tellinghuisen J. Van't Hoff analysis of K°(T): How good…or bad? Biophys. Chem. 2006, 120: 114-120.
    17. Arrascue M. L., Garcia H. M., Horna O., Guibal E. Gold sorption on chitosan derivatives. Hydrometallurgy. 2003, 71:191-200.
    18. Ramesh A., Hasegawa H., Sugimoto W., Maki T., Ueda K. Adsorption of gold(III), platinum(W) and palladium(II) onto glycine modified crosslinked chitosan resin. Bioresour. Technol. 2008, 99: 3801-3809.
    19. Donia A.M., Atia A.A., Elwakeel K.Z. Recovery of gold(III) and silver(I) on a chemically modified chitosan with magnetic properties. Hydrometallurgy. 2007, 87: 197-206.
    20. Fujiwara K., Ramesh A., Maki T., Hasegawa H., Ueda K. Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions onto l-lysine modified crosslinked chitosan resin. J.Hazard. Mater. 2007, 146: 39-50.
    21. Huo H., Su H., Tan T. Adsorption of Ag+ by a surface molecular-imprinted biosorbent. Chem. Eng. J. 2009, 150: 139-144.
    22. Abd El-Ghaffar M.A., Abdel-Wahab Z.H., Elwakeel K.Z. Extraction and separation studies of silver(I) and copper(II) from their aqueous solution using chemically modified melamine resins. Hydrometallurgy. 2009, 96: 27-34.
    23. Abd El-Ghaffar M.A., Mohamed M.H., Elwakeel K.Z. Adsorption of silver(I) on synthetic chelating polymer derived from 3-amino-1,2,4-triazole-5-thiol and glutaraldehyde. Chem. Eng. J. 2009, 151: 30-38.
    24.吴丹,张世秋.国外汞污染防治措施与管理手段评述.环境保护. 2007, 05B:72-76.
    25. Chassary P., Vincent T., Guibal E. Metal anion sorption on chitosan and derivative materials: a strategy for polymer modification and optimum use React. Funct.Polym. 2004, 60: 137-149.
    1. Ohga K., Kurauchi Y., Yanase H. Adsorption of Cuor Hgion on resins prepared by crosslinking metal-complexed chitosans. Bull Chem Soc Jpn. 1987, 60:444~446.
    2. Inoue K., Baba Y., Yoshizuka K. Adsorption of metal ions on.chitosan and crosslinked copper-complexed chitosan. Bull Chem Soc Jpn. 1993, 66: 2915~2921.
    3. Sun S.-L., Wang A.-Q. Adsorption properties and mechanism of cross-linked carboxymethyl-chitosan resin with Zn(II) as template ion. Reacitve & Functional Polymers. 2006, 66: 819-826.
    4.苏海佳,贺小进,谭天伟.球形壳聚糖树脂对含重金属离子废水的吸附性能研究.北京化工大学学报(自然科学版). 2003, 30(2): 19~22.
    5. Chen, X.-G., Park, H.-J. Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydrate Polymers. 2003, 53(4): 355-359.
    6. Ramesh A., Hasegawa H., Sugimoto W., Maki T., Ueda K. Adsorption of gold(III), platinum(W) and palladium(II) onto glycine modified crosslinked chitosan resin. Bioresour. Technol. 2008, 99: 3801-3809.
    7. Lagergren S. Zur theorie der sogenannten adsorption geloster Stoffe. K. Sven. Vetenskapsakad. Handl. 1898, 24: 1-39.
    8. Ho Y.S., McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 2000, 34: 735-742.
    9. Weber W.J., Morris J.C. Kinetics of adsorption of carbon from solutions, J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 1963, 89: 31-63.
    10. Langmuir I. The constitution and fundamental properties of solids and liquids. Journal of the Franklin Institute. 1917, 183(1): 102-105.
    11. Freundlich H. M.über die adsorption in l?sungen. Zeitschrift für Physikalische Chemie (leipzig). 1906, 57: 385-470.
    12. Tellinghuisen J. Van't Hoff analysis of K°(T): How good…or bad? Biophys. Chem. 2006, 120: 114-120.
    1.熊道陵,林俊.废定影液中银的回收与提纯.黄金. 2007, 5: 46-49.
    2. Atia A.A. Adsorption of silver(I) and gold(III) on resins derived from bisthiourea and application to retrieval of silver ions from processed photo films. 2005, 80: 98-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700