镍的二亚胺催化剂催化乙烯和α-烯烃的聚合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统的Ziegler-Natta或茂金属催化剂相比,后过渡金属催化剂能够催化烯烃聚合形成微观结构不同的聚合物,目前,关于后过渡金属络合物(如钴,铑,镍,钯,铂和铁)作为烯烃聚合催化剂的应用研究越来越广泛。特别是镍或钯的二亚胺类络合物能够催化乙烯和α-烯烃的均聚与共聚合得到高分子量聚合物,其催化剂活性可与前过渡金属活性相比。聚合物的微观结构及物理特性不同于传统Ziegler-Natta或茂金属催化剂所得的聚烯烃,例如:通过改变反应条件(温度、压力等)、配体结构及金属种类可以调控所得聚合物的微观结构得到不同特性(从高支化到直链、从弹性体到塑料)的聚合物。镍(Ⅱ)的二亚胺催化剂聚合体系均用毒性较大的甲苯做溶剂,而现行工业化烯烃的聚合体系多用毒性较小的正已烷或饱和链式烃做溶剂,据我们所知,关于镍的二亚胺催化剂用正已烷做溶剂的烯烃聚合尚未见研究报道。如果此类催化剂在正已烷做溶剂的情况下能够催化烯烃聚合生成具有特殊结构与性能的聚合物,且通过负载化等方法使其适合现有聚烯烃生成工艺条件,将对它的工业化应用非常重要。
     本论文进行了以下几部分研究工作:首先,根据文献合成Ni(Ⅱ)的二亚胺络合物[(2,6-i-Pr)2C6H3-DAB(An)]NiBr2,并在其做主催化剂,甲基铝氧烷(MAO)做助催化剂,正已烷做溶剂的条件下进行了乙烯、1-已烯、1-辛烯的均聚合及乙烯与1-已烯、1-辛烯的共聚合反应研究,进一步研究了在一定条件下,聚合温度、压力对乙烯均聚合的影响,并通过DSC、1H NMR、IR等对不同聚合物的玻璃化转变温度、熔点、支化度、密度等进行了对比研究。结果表明:此种Ni(Ⅱ)的二亚胺催化剂在正已烷做溶剂的条件下成功地催化了乙烯、1-已烯、1-辛烯的均聚合及乙烯与1-已烯、1-辛烯的共聚合。且乙烯在一定条件下聚合时,温度、压力对聚合物的分子量、熔点、支化度、密度均有影响。与乙烯的均聚物相比,乙烯与1-已烯、1-辛烯共聚合产生的共聚物的支化度均提高,分子量、密度、熔点、催化剂催化效率均下降。但与1-已烯、1-辛烯均聚物相比,共聚物的熔点、密度、催化剂催化效率均升高,分子量、支化度均下降。其次,同样采用Ni(Ⅱ)的二亚胺催化剂[(2,6-i-PrPh)2DABAn]NiBr2做主催化剂,甲基铝氧烷(MAO)做助催化剂,分别在甲苯和正已烷做溶剂下催化了1-辛烯的配位聚合研究,通过GPC对聚合物的分子量及1-辛烯的聚合行为进行了分析。并通过1H NMR,13C NMR, HSQC, DEPT135等分析手段对所得聚辛烯的结构进行了鉴定。结果表明:用甲苯和正已烷做溶剂时,随着反应的进行,均可以得到分子量不同,分子量分布较窄(Mw/Mn=1.2-1.5)的聚合物,具有一定的活性聚合行为。当用甲苯做溶剂时,催化剂的催化效率为200kg mol-1 Ni h-1。用正已烷做溶剂时,催化剂的催化效率更高,可达至(?)420kg mol-1 Ni h-1以上。得到的聚合物均为无定形聚合物,其玻璃化转变温度Tg分别为-54℃和-60.10℃。用甲苯和正已烷做溶剂时所得的聚辛烯侧链均带有孤立甲基,头对头消旋结构的相邻甲基,已基及长支链(>C6),通过1HNMR和定量碳谱计算出用甲苯做溶剂时各种侧链所占的比例分别为:37%,12%,51%;用正已烷做溶剂时分别为:45%,13%,42%。内消旋与外消旋结构的比例分别为1:1和2:3。然后,我们发现由Ni(Ⅱ)的二亚胺催化剂[(2,6-i-PrPh)2DABAn]NiBr2合成的聚(1-辛烯)在常温下能够很好地溶于四氢呋喃中,因此,经沉淀分级法对合成的聚辛烯进行沉淀分级得到了不同分子量且分子量分布较窄(Mw/Mn≤1.12)的聚合物,通过多角激光光射散-GPC联机测试仪测得其重均分子量,并用粘度法测得不同分子量聚合物样品的特性粘度,通过计算得到在四氢呋喃做溶剂于40℃条件下Mark-Houwink方程[η]=kM“中的k=0.089mL/g,α=0.61。最后,将Ni(Ⅱ)的二亚胺催化齐(?)[(2,6-i-PrPh)2DABAn]NiBr2通过物理吸附法负载在硅胶上,并将其负载化催化剂在正已烷做溶剂的条件下用于催化乙烯、1-辛烯的配位聚合,并通过GPC、DSC、IR等对聚合物性能进行了测试表征,研究此种负载化催化剂对烯烃的聚合行为,并与均相催化剂催化烯烃聚合进行对比。结果表明:通过物理吸附法所得负载化催化剂A1/Ni摩尔比约为100。在正已烷做溶剂时,负载化Ni(Ⅱ)的二亚胺催化剂能够催化乙烯、1-辛烯的聚合。与均相催化剂聚合体系相比,负载化催化剂的催化效率降低,所得聚合物分子量降低,密度、熔点均增大。非均相催化剂在催化乙烯聚合过程中p-H消除减少,导致聚乙烯支化度减小,且在一定温度下随A1/Ni摩尔比、乙烯压力的增大,负载化催化剂催化效率逐渐提高,支化度减小,聚合物分子量、密度、熔点均增大。在1-辛烯聚合时主要以1,2插入为主,且由于(1,ω-1)迁移增多,导致聚合物支化度增大,甲基头对头消旋结构增加。且在一定温度下随A1/Ni摩尔比增大,负载化催化剂催化效率逐渐提高,聚合物分子量、支化度进一步增大、熔点降低。
Compared with the Ziegler-Natta and metallocene catalysts, the late transition metal catalysts could catalyze the polymerization of olefins to yield polymers with different microstructures. Currently, well defined catalysts based on complexes of cobalt, rhodium, nickel, palladium, platinum, and iron which catalyzed the polymerization of olefins have been reported. Especially the catalysts based upon a-diimine complexes of nickel and palladium could catalyze the polymerization of ethylene and a-olefins to high molecular mass polymer with the activity comparable to early-transition-metal systems. Dramatic differences in the microstructure and properties of the obtained polymers using these nickel- and palladium-based catalysts are observed as compared with those prepared using early metal Ziegler-Natta and metallocene technology. For example, branching in polyethylene prepared with nickel(Ⅱ)- or palladium(Ⅱ)-based catalysts can vary from highly branched to linear, and the properties thus vary from soft elastomers to rigid plastics. The polymer properties are greatly dependent on reaction conditions (temperature, pressure), ligand structure, and the metal.
     Toluene has been used as solvent in the polymerization of olefins catalyzed by the nickel(II)-based-a-diimine catalyst system. However, it is well known that its toxicity is much higher than that of n-hexane, which is a common solvent in the present industrial polymerization of olefins. To the best of our knowledge, n-hexane has never been used as the solvent in the nickel(II)-based-a-diimine catalyst system for the polymerization of olefins. If nickel(II)-based-a-diimine catalyst can catalyze the polymerization of olefins to yield polymers with different microstructures and properties in n-hexane, and satisfy with the existing production processes and conditions for the polymerization of olefins, it will be very important for its industrial application.
     Several Parts of research works had been carried out in the dissertation. First, the nickel(II)-a-diimine complex [(2,6-i-Pr)2C6H3-DAB(An)]NiBr2 was prepared based on literature procedures. And the Ni(II)-a-diimine catalyst [(2,6-i-Pr)2C6H3-DAB(An)]NiBr2 plus methylaluminoxane (MAO) was successfully used in the homopolymerization of ethylene,1-hexene and 1-octene and the copolymerization of ethylene with 1-hexene and 1-octene in n-hexane. The molecular weights, Tg, Tm, branching degree and density of the obtained (co)polymers were greatly controlled by ethylene pressure and polymerization temperature. Compared with ethylene homopolymer, the branching degree of the copolymers prepared by the copolymerization of ethylene with 1-hexene or 1-octene increased, while the molecular weight, density, Tm and catalyst efficiency all decreased. However, compared with the homopolymer of 1-hexene or 1-octene, the copolymers density, Tm and catalyst efficiency all increased, while the molecular weight and branching degree all decreased. Second, the polymerization of 1-octene was catalyzed by Ni(II)-a-diimine catalyst [(2,6-i-Pr)2C6H3-DAB(An)]NiBr2 plus methylaluminoxane (MAO) in toluene or n-hexane similarly. The polymerization behavior characterized by gel permeation chromatography (GPC) all showed a controlled polymerization process with weight-average molecular weights increasing linearly with time and the molecular weight distributions between 1.2 and 1.5. The catalyst efficiency was higher and up to 200kg mol-1 Ni h-1 when toluene is used as solvent and up to 420kg mol"1 Ni h-1 when n-hexane is used as solvent. The poly(1-octene)s obtained were all amorphous and their glass transition temperature Tg were -54℃and -60.10℃respectively. The structures of poly(1-octene)s characterized by'H NMR,13C NMR, HSQC, DEPT135 showed that when toluene and n-hexane were used as solvent respectively for the polymerization of 1-octene, the polymers had same types of branches containing isolated methyl, meso and racemic head-to-head methyl, hexyl and longer branches(>C6), The percentage of each type of branching were 37%,12%,51% respectively with toluene as solvent and 45%,13%,42% respectively with hexane as solvent, and the proportion of meso and racemic head-to-head were 1:1 and 2:3 respectively. And then, we found the poly(1-octene)s synthesized by MAO-activated Ni(II)-a-diimine complex [(2,6-i-Pr)2C6H3-DAB(An)] NiBr2 could be well soluble in tetrahydrofuran (THF). After fractional precipitation, poly(1-octene)s with narrow molecular weight distributions (Mw/Mn≤1.12) were obtained. Their weight-average molecular weights were measured by gel permeation chromatography(GPC) in conjunction with online model BI-MwA multiangle laser light scattering(MALLS), and their intrinsic viscosities were measured by maron's single-point method. The k, a value in Mark-Houwink equation [η]=kMαin THF at 40℃were 0.089 mL/g and 0.61 respectively. Finally, the Ni(Ⅱ)-α-diimine catalyst [(2,6-i-Pr)2C6H3-DAB(An)]NiBr2 plus methylaluminoxane (MAO) was immobilized to the surface of silica gels by physical adsorption, and the immobilized catalytst was used to catalyze the polymerization of ethylene and 1-octene furtherly. The molecular weight, Tg, Tm, branching degree and density of the polymers were determined by GPC、DSC、1H NMR、IR, etc. The heterogeneous catalyst efficiency and polymers properties were campared with homogeneous polymerization system. The results showed that the Al/Ni molar ratio of immobilized Ni(Ⅱ)-α-diimine catalyst prepared by physical adsorption was about 100. The immobilized Ni(Ⅱ)-α-diimine catalyst could catalyze the homopolymerization of ethylene and 1-octene in n-hexane. Compared with the homogeneous catalyst polymerization system, the immobilized catalyst efficiency and the molecular weight of polymers all decreased, while the density, Tm all increased. Because of the reduction ofβ-H elimination in the process of ethylene polymerization catalyzed by heterogeneous catalyst, the branching degree of polyethylenes decreased, and at a certain temperature, with the increase of the Al/Ni molar ratio and ethylene pressure, the branching degree of the polymers decreased, while the molecular weight, density, Tm and the immobilized catalyst efficiency all increased. The 1,2-insertion of 1-octene followed by migration of nickel center up to (ω-1) carbon were more frequent, which lead to the increase of branching degree and the formation of meso and racemic head-to-head methyl. And at a certain temperature, with the increase of the Al/Ni molar ratio, the molecular weight and branching degree of the poly(1-octene)s and the immobilized catalyst efficiency all increased, while the Tm decreased.
引文
[1]Vasile C, Seymour R B. Handbook of Polyolefins [M]. New York, Marcel Dekker,1993.
    [2]周达飞,吴张永,王婷兰,等.塑料的选用[M].北京,化学工业出版社,2004.
    [3]Guimaraes M J O C, Coutinho F M B, Rocha, M C G, et al. Preparation and characterization of blends of high density polyethylene and poly(ethylene-co-octene-1) elastomer [J]. J Appl Polym Sci.2001,81 (8):1991-1995
    [4]Da Silva A L N, Tavares M I B, Politano D P, et al. Polymer blends based on polyolefin elastomer and polypropylene [J]. J Appl Polym Sci.1997,66 (10): 2005-2014
    [5]Da Silva A L N, Rocha M C G, Lopes, L, et al. The effect of addition of different elastomers upon the crystalline nature of PP [J]. J Appl Polym Sci. 2001,81 (14):3530-3537
    [6]Feng Y, Liu L, Zhang L, et al. Study on PP/POE Co-blend alloy [J]. Engineering Plastics Application,1999,27(12):6-9
    [7]Qiu G, Wu R. Toughening modification of polypropylene with Metallocene polyethylene elastomers [J]. China Plastics Industry,2001,29 (1):23-25
    [8]Qiu G, Wu R. Mechanical properties of polypropylene toughened with Metallocene polyethylene elastomers [J]. China Plastics,2001,15 (5):46-48
    [9]Kukaleva N, Jollands, M, Cser F, et al. Influence of phase structure on impact toughening of isotactic polypropylene by metallocene-catalyzed linear low-density polyethylene [J]. J Appl Polym Sci,2000,76 (7):1011-1018
    [10]Paul S, Kale D D. Impact modification of polypropylene copolymer with a polyolefinic elastomer [J]. J Appl polym Sci,2000,76 (9):1480-1484
    [11]Zhang L, Wang Z, Huang R, et al. Study on morphology and properties of PP/EOC blends [J]. China Plastics,2002,16 (1):41-44
    [12]Premphet K, Horanont P. Phase structure and property relationships in ternary polypropylene/elastomer/filler composites:effect of elastomer polarity [J]. J Appl polym sci,2000,76 (13):1929-1939
    [13]Qiu G, Zhang P, Cheng G, et al. Morphology and mechanical properties of PP/mPE/Filler ternary composites [J]. China Plastics,2002,16 (8):35-39
    [14]Wang K, Xu B, Zeng H. Morphology control and mechanical properties of PP/POE/BaSO4 Ternary composites [J]. Polymeric Materials Science & Cngineering,2002,18 (2):165-167
    [15]Chen H, Yang B, Zhang, H. Toughening PA1010 with a functionalized saturated polyolefin elastomer [J]. J Appl polym Sci,2000,77 (4):928-933
    [16]Yu Z Z, Ou Y C, Qi Z N, et al. Toughening of nylon 6 with a maleated core-shell impact modifier [J]. Polym Sci Part B:Polym Phy,1998,36 (11): 1987-1994
    [17]Yu Z Z, Ou Y C, Hu G H, et al. Influence of interfacial adhesion on toughening of polyethylene-octene elastomer/nylon 6 blends [J]. J Appl polym Sci,1998, 69(9):1711-1718
    [18]Yu Z, Ou Y. Rheological and crystallization behavior of nylon6/ ethylene/octene copolymer elastomer blends [J]. Acta Polymerica Sinica,1999, (3):377-380
    [19]Li X, Wang L, Wu D, et al. The effects of compatibilizer EAA on morphology and properties of PA6/POE blends [J]. China Plastics,2001,15 (12):21-25
    [20]Zhang J. Characteristic of new thermoplastic elastomer of POE and its application in modifying of PP toughening [J]. Plastics Science and technology, 1999, (2):5-7
    [21]Zhang J, Wang X, Li D, et al. Morphological structure and mechanical properties of PA66/PP/POE-MAH alloy [J]. China Plastics,2001,15 (6):39-41
    [22]Feng W, Li Z, Hu Y, et al. In-situ compatibilization of PPO-g-MA to PPO/PA66 blends [J]. China Synthetic Resin and Plastics,1999,16 (5):31-35
    [23]Feng W, Cui X, Zhang Q, et al. Rheological Behavior of PPO/PA6/Elastomers Multiphase Blends [J]. China Plastics,1999,13 (8):35-38
    [24]Feng W, Li Q, Zhang Q, et al. Study on morphological structure and impact behavior of PPO/PA6/Elastomers multiphase blends [J]. China Plastics,1999, 13 (9):30-34
    [25]Sun D, Wang Z, He H, et al. Morphology and Mechanical Properties of PET/mPE-g-GMA Blended System [J]. China Plastics,2001,15 (5):39-41
    [26]Ziegler K, Holzkamp E, Breil H. et al. Polymerisation von Athylen and anderen Olefinen [J]. Angew. Chem,1955,67(16):541-547
    [27]Natta G, Mazzanti G, Longi P, et al. Process for polymerizing unsaturated hydrocarbons with catalysts based on beryllium alkyls [P]. U.S.Pat.3259613, 1957
    [28]肖士镜.烯烃聚合研究室研究论文集[C].2002.297
    [29]Kaminsky W, History of Polyolefines, edited by T Chen and R.B.Seymour [M]. New York,1986,257
    [30]Kaminsky W, Kulper K, Brintzinger H H, et al, Polymerization of Propene and Butene with a Chiral Zirconocene and Methylalumoxaneas Cocatalyats [J]. Angew Chem Int Ed Engl,1985,24(6):507-508
    [31]Okuda J, Functionalized cyclopentadienyl ligands, IV. Synthesis and Complexation of linked cycloPentadienyl-amido ligands [J]. Chem.Ber,1990, 123(8):1649-1651.
    [32]Sinn H, Kaminsky W, Vollmer H J, et al. Living Polymerson polymerization with Extremely Produetive Ziegler Catalysts [J]. Angew Chem Int Ed Engl, 1980,19 (5):390-392.
    [33]Coates G W, Naymonth R M. Oscillating Sterocon-trol:A Strategy for the Synthesis of Thermoplastic E-lastromeric Polypropylene [J]. Science,1995, 267:217-219
    [34]Karl J, Erker J K G, Frohlich R. Internal Fluorocarbon Characterization of the Zr-F-C Intera -ction in the Group 4 Metallocene(butadiene)/B(C6F5)3 Betaine Ziegler Catalyst Systems [J]. J Am Chem Soc,1997,119 (46):11165-11173
    [35]Zhang P Y, Wang L, Feng L X, et al. Progress in the Metallocene/Borane Catalytic System for Olefine Polymerization [J]. Prog. In Chem,2001,13 (2):108-112
    [36]Wild F R W P, Zsolnai L, Huttner G, et al. ansa-Metallocene Derivatives:IV, Synthesis and molecular structures of chiral ansa-titanocene derivatives with bridged tetrahydroindenyl ligands [J]. J Organomet Chem,1982,232 (3): 233-247
    [37]Ewen J A. Additions and Corrections-Mechanisms of Stereochemical Control in propylene Polymerizations with Soluble Group 4B Metallocene/Methylalumoxane Catalysts [J]. J Am Chem Soc,1984.106 (26): 8330-8330
    [38]Sinn H, Kaminsky W. Ziegler-Natta catalysis [J]. Adv orgnomet Chem,1980, 18,99-149
    [39]Mise T, Miya S, Yamazaki H. Excellent stereoregular isotactic polymerizations of propylene with C2-symmetric silylene-bridged metallocene catalysts [J]. Chem. Lett,1989,18 (10):1853-1856
    [40]Ewen J A, Jones R L, Razari A, et al. Syndiospecific propylene polymerizations with group IVB metallocenes [J]. J Am Chem Soc,1988,110 (18):6255-6256
    [41]Ishihara N, Kuromoto M, Uol M. Stereospecific polymerization of styrene giving the syndiotactic polymer [J]. Macromolecules,1988,21 (12):3356-3360
    [42]Geoffrey W, Goates G W, Waymouth R M. Enantioselective cyclopolymerization:optically active poly(methylene-1,3-cyclopentane) [J]. J Am Chem Soc,1991,113 (16):6270-6271
    [43]Yasuda H, Yamanota H. Synthesis of high molecular weight poly(methyl methacrylate) with extremely low polydispersity by the unique function of organolanthanide(III) complexes [J]. Macromolecules,1993,26 (26): 7134-7143
    [44]Chien J C W. Olefin copolymerization with metallocene catalysts. Ⅰ. Comparison of catalysts [J]. Polym sci A Polym Chem,1991,29 (11): 1585-1593
    [45]Kaminsky W, Ahlers A. Moller-Linderhof N. Asymmetric Oligomerization of propene and 1-butene with a zirconocene/alumoxane catalyst [J]. Angew Chem Int Ed Eng.1989,28 (9):1216-1218
    [46]Quan R W, Bazan G C, Kiely A F, et al. Pentamethylcyclopentadienyl Aminoborollide Derivatives of Zirconium and Hafnium:A new class of amphoteric molecule having B Lewis acidic and lewis basic sites [J]. J Am Chem Soc,1994,116 (10):4489-4490
    [47]Rogers J S, Bazan G C, Sperry C K. Ethoxyboratabenzene Zirconium complexes:Catalysts for a-Olefin production [J]. J Am Chem Soc,1997,119 (39):9305-9306
    [48]Clark A, Hogan J P, Banks R L, et al. Marlex catalyst systems [J]. Ind. Eng.Chem,1956,48 (7):1152-1155
    [49]Peters E F, Zletz A, Evering B L. Solid catalysts in ethylene polymerization [J]. Ind Eng Chem,1957,49(11):1879-1882
    [50]Sinn H, Kaminsky W, Vollmer H J, et al. Lebende polymere bei Ziegler-Katalysatoren extremer produktivitat [J]. Angew Chem,1980,92 (5): 396-402
    [51]Johnson L K, KillianI C M, Brookhart M. New Pb(Ⅱ)-and Ni(Ⅱ) based catalysts for polymerization of ethylene and Alpha-Olefins [J]. J Am Chem Soc, 1995,117 (23):6414-6425
    [52]Younkin T R, Connor E F, Grubbs R H, et al. Neutral, Single-component Nickel(II) polyolefin catalysts that tolerate heteroatoms [J]. Science,2000,287: 460-462
    [53]Jacobsen E N, Breinbauer R. Nickel comes full cycle [J]. Science,2000,287: 437-438
    [54]Johnson L K, Killian C M, Arthur S D, et al. Alpha-olefins and olefin polymers and progress therefor [P]. WO 9623010,1996-08-01
    [55]Brookhart G J P, Johnson J K, Killian C M, et al. Olefin polymers [P]. US 5880241,1999-03
    [56]Britovsek G J P, Dorer B A, Gibson V C, et al. Polymerization catalysts [P]. WO 9912981,1999-03-18
    [57]Arthur S D, Brookhart M, Cotts P M, et al. Polyolefins with new structures [P]. WO 9947572,1999-09-23
    [58]Jin G, Zhou G, Liu C, et al. Post metallocene, New late transition metal and non metallocene catalysts for olefin polymerization [J]. Chinese journal of applied chemistry,1999,16(1):1-5
    [59]Jing G, Zhang D. Supported mesoporous SBA-15 dual-imine nickel catalyst for ethylene polymerization [J]. Chinese Science Bulletin,2002,48(24):2519-2522
    [60]Yang H, Su Y. Novel catalysts of polyolefin [J]. Journal of the Graduates Sun Yat-Sen University(Natural Sciences),1999,16 (3):79-86
    [61]Hu J, Wang H, Wu J, et al. Gas phase polymerization of ethylene with catalysts containing Nickel and Titanium compounds(Ⅰ) effect of NiCl2 on the characteristics of catalysts [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2000,18 (2):37-45
    [62]Nomura,Wart S, Imanishi Y. Supported single-site catalyst and olefin polymerization process [J]. Macromolecules,1999,32:4732-4743.
    [63]Timonen S, Pakkanen T T, Pakkanen T A. Catalyst forolefin polymerization and a method for the manufacture thereof [J]. Mol Cat.1996,111:267-278
    [64]Britovsek G J P, Gibson V C, Kimberley B S, et al. Method for olefin polymerization with recycling of co-catalyst [J]. Chem Comomun,1988: 849-856
    [65]Johnson L K, Killian C M, Brookhart M. Polymerization process using a new supported polymerization catalyst [J]. Amer Chem Soc,1995,117:6414-6428
    [66]Linden A, Schaverien C J, Meijboom N, et al. Supported polymerization catalyst [J]. Amer Chem Soc,1995,117:3008-3021
    [67]Scollard J D, Mcconville D H. Bimetallic catalysts for ethylene polymerization reactions activated with paraffin-soluble alkylalumoxanes [J]. Amer Chem Soc, 1996,118:10008-10013
    [68]Hu Y. Olefin polymerization catalysts and polymerization reaction [J]. Polymer bulletin,1999, (3):121-125
    [69]Scollard J D, Mcconville D H. Bimetallic catalysts for ethylene polymerization reactions activated with paraffin-soluble alkylalumoxanes [J]. Amer Chem Soc, 1996,118:10008-10013
    [70]Bennettj L, Brookharhart M, Johnsonl K, et al. Polymerization of ethylene [P]. PCT Int Appl, WO 9830610
    [71]Averbuj C, Tish E, Eisen M. Olefin polymerization catalysts with specific supports [J]. Amer Chem Soc,1998,120:8640-8647
    [72]Small B L, Brookharhart M. Methods for forming amorphous ultra-high molecular weight polyalphaolefin drag reducing agents using non-metallocene catalysts and alkylaluminoxane [J]. Amer Chem Soc,1998,120:7143-7149
    [73]黄葆同,陈伟.茂金属催化剂及其烯烃聚合物[M].北京:化学工业出版社,2000:93-94
    [74]Desjardins S Y, Cavell K J, H oare J L, et al. Single component N-O chelated aryl nickel(Ⅱ) complexes as ethyene polymerisation and CO/Ethyene copolymerisation catalysts:Examples of ligand induced changes to the reaction pathway [J]. J Orgnomet Chem,1997,544:163-174
    [75]Small B L, Brookhart M, Bennett A M. Highly activeiron and cobalt catalysts for the polymerization of ethylene [J]. J Am Chem Soc,1998,120:4049-4050
    [76]Britovsek G J P, Gibson V C, Kimberley B S, e t al. Novel olefin polymerization catalysts based on iron and cobalt [J]. Chem Commun,1998, 849-850
    [77]Moroz B L, Semko lenova N V, Nosov A V. Silica-supported zirconocene catalysts:preparation, characteriza tion and activity in ethylene polymerization [J]. J Mol Catal A:Chemical,1998,130:121-129
    [78]Santos J H Z, Krug C, Rosa M B. Effects of ethylene polymerization conditions on the activity of SiO2-supported zirconocene and on polymer properties [J]. J Mol Catal A:Chemical,1999,139:199-207
    [79]Cho H S, Lee W Y. Synthesis of inorganic MgCl2-alcohol adduct via recrystallization method and its application in supported organometallic catalysts for the polymerization of ethylene with 1-hexene [J]. J Mol Catal A: Chemical,2003,191:155-165
    [80]Wioletta O S, Maria N. Magnesium chloride modified with organoaluminium compounds as a support of the zirconocene catalyst for ethylene polymerization [J]. Eur Polym J,2004,40:839-846
    [81]Sun M, Xu X, Zhao W, et al. In situ synthesis of CpTi(dbm)Cl2/MgCl2 catalyst and its catalysis for ethylene polymerization [J]. Acta Polymerica Sinica,2004, (1):137-139
    [82]Benaglia M, Puglisi A, Cozzi F. Polymer-supported organic catalysts [J]. Chem Rev,2003,103(9):3401-3429
    [83]Mc Namara C A, Dixon M J, Bradley M. Recoverable catalysts and reagents using recyclable polystyrene-based supports [J]. Chem Rev,2002,102(10): 3275-3300
    [84]赵文元,王亦军.功能高分子材料化学[M].北京:化学工业出版社,2003:61-63
    [85]Roscoe S B, Frchet J M J, Waker J F. Polyolefin spheres from metallocenes supported on noninte racting polystyrene [J]. Science,1998,280 (10):270-273
    [86]Zhang D, liu C, Jin G. Progress in complexed late transition metal catalysts for olefin polymerization [J]. Journal of Molecular Catalysis (China),2002,16 (8): 390-399
    [87]Liu C, Jin G X. Polymer-incorporated iron catalysts for ethylene polymerization-a new approach to imm ob ilize iron olefin catalysts on polystyrene chains [J]. New J Chem,2002,26(10):1485-1489
    [88]Kaul F A R, Puchta G T, Schneider H. Immobilization of bis(imino) pyridy liron(Ⅱ) complexes on silica [J]. Organometallics,2002,21(1):74-86
    [89]Alt H G, The Heterogenization of homogeneous metallocene catalysts for olefin polymerization [J]. J Chem Soc, Dalton Trans,1999,11:1703-1709
    [90]Zhang D, Jin G X, Hu N H. Self-immobilized catalysts for ethylene polymerization:neutral, single-component salicylaldiminato phenyl nickel (Ⅱ) complexes bearing allyl substituents [J]. Eur J Inorg Chem,2003 (8): 1570-1576
    [91]Alobaidi F, Y e Z B, Zhu S P. MgCl2-based supports for the immobilization and activation of nickel diimine catalysts for polymerization of ethylene [J]. Macromol Chem Phys,2003,204(13):1653-1659
    [92]Simon L C, Patel H, Soares J B P. Polyethylene made with in situ supported Ni-diimine/SMAO:replication phenomenon and effect of polymerization conditions on polymer microstructure and morphology [J]. Macromol Chem Phys,2001,202(17):3237-3245
    [93]Han W, Niemantsverdriet H J W, Thune P C. Aflatmodel approach to tethered bis(imino) pyridyliron ethylene polymerization catalysts [J]. Macromol Rapid Commun,2006,27(4):279-288
    [94]Schmidt R,Welch M B, Palackal S J, et al. Heterogenized Iron(Ⅱ) complexes as highly active ethene polym er ization catalysts [J]. J Mol Catal A:Chem, 2002,179(1/2):155-173
    [95]Severn J R, hadwick J C. Activation of titanium-based single-site catalysts for ethylene polymerization using supports of type MgCl2/AlRn(OEt)3-n [J]. 7Macromol Chem. Phys,2004,205(15):1987-1994
    [96]Shih K Y. Polyethylene [C]. Global Technology Update Forum,2001
    [97]Preishuber-Pflugl P, Brookhart M. Highly active supported nickel diimine catalysts for polymerization of ethylene [J]. Macromolecules,2002,35(16): 6074-6076
    [98]Kim I, Han B H, Ha C S, et al. Preparation of silicasupported bis(imino) pyridyl iron(II) and cobalt(Ⅱ) catalysts for ethylene polymerization [J]. Macromolecules,2003,36(18):6689-6691
    [99]Zheng Z J, Liu J Y, Li Y S. Ethylene polymerization with Silica-supported bis (imino) pyridyl iron (Ⅱ) catalysts [J]. J Catal,2005,234(1):101-110
    [100]Benaglia M, Puglisi A, Cozzi F. Polymer-supported organic catalysts [J]. Chem Rev,2003,103(9):3401-3430
    [101]Ye Z B, Alsyouri H, Zhu S P, et al. Catalyst impregnation and ethylene polymerization with mesoporous particle supported nickel diimine catalyst [J]. Polymer,2003,44 (4):969-980
    [102]Guo C, Jin G X, Wang F S. Preparation and Characterization of SB A-15 supported iron(Ⅱ)-bisimine pyridine catalyst for ethyl ene polymerization [J]. J Polym Sci Part A:Polym Chem,2004,42(19):4830-4837
    [103]Kaminsky M, Arrowsmith D, Strbel C. Polymerization of styrene with supported half-sandwich complexes [J]. Journal of Polymer Science Part A: Polymer Chemistry,2000,37(15):2959-2968
    [104]Chi en J C W, He D. Olefin copolymerization with metallocene catalysts III. supported metallocene/methylaluminoxane catalyst for olefin copolymerization [J]. J Polym Sci, Part A:Polym Chem,1991,29:1603-1607
    [105]Severn J R, Chadwick J C. MgCl2-Based Supports for the Immobilization and Activation o f Nickel Diimine Catalysts for Polymerization of Ethylene [J]. Macromolecules,2004,37 (17):6258-6259
    [106]Chadwick J C. Huang R, Kukalyekar N. Ethylene polymerization with combinations of early- and late-transition metal catalysts immobilized on MgCl2 supports [J]. Macromolecular Symposia,2008,260(1):154-160
    [107]Huang R B, Liu D B, Wang S B. Spherical MgCl2 Supported iron ca talyst for ethylene polymerization:effect of the preparation procedure on catalyst activity and themorphology of polyethylene particles [J]. Macromol Chem Phys,2004, 205(7):966-972
    [108]Huang R B, Liu D B, Wang S B. Preparation of spherical MgCl2 supported bis(Imino) pyridyl iron (Ⅱ) precatalyst for ethylene polymerization [J]. J Mol Cata 1 A:Chem,2005,233(1-2):91-97
    [109]Guan Z, Zheng Y, Jiao S. Study on kinetics of spherical MgCl2 supported MAO-Et[Ind]2ZrCl2 catalyst for ethylene polymerization [J]. Acta Polymerica Sinica,2001,6:779-782
    [110]Cui K,Yao X, Li C, et al. Recent progress in the immobilization of non-metallocene olefin polymerization catalyst [J]. Chemical Industry and Engineering Progress,2007,26(3):295-306
    [111]Xue X H, Yang X, Xiao Y Z, et al. Ethylene polymerization using nickel a-diimine complex supported on SiO2/MgCl2 bisupport [J]. Polymer,2004, 45(9):2877-2882
    [112]Zhao H, Wang Z, Li W, et al. The research of a sort of propene polymerization catalyst made by composite carrier [J]. Polymer Bulletin,2005,1(5):77-81
    [113]Zhu N, Sun W, Li Z, et al. Preparation and characterization of polympropylene grafting maleic Anhydride/SiO2 composite-supported titanium catalysts [J]. Acta Polymerica Sinica,2001,6:814-817
    [114]Zhu N, Tang T, Cui D, et al. Preparation of poly(styrene-co-4-vinylpyridine)/ silica nanoscale hybrids supported cyclopentadienyltitanium trichloride (CpTiCl3) catalyst and styrene polymerization [J]. Chemical Research In Chinese Universities,2001,22(12):2117-2119
    [115]Zhu N, Tang T, Wang L, et al. Preparation of poly(4-vinylpyridine)/silica hybrids supported cyclopentadienyltitanium trichloride(CpTiCl3) catalyst and styrene polymerization [J]. Acta Chimica Sinica,2001,59(3):426-432
    [116]Chu F, ZongC, Wang S, et al. Supported Coordinate Catalysts Used in the Polymerization of Olefins and Diolefins [J]. Polymer Bulletin,2003,2:59-65
    [117]Severn J R, Chadwick J C, "Duchateau R. Bound but not gagged" immobilizing single-site a-olefin polymerization catalysts [J]. Chem Rev,2005,105(11): 4073-4147
    [118]Liu Z, Jia M, Guo C, et al. Preparation of long-branching jpolyethylene using a dual-functional catalytic system [J]. Acta Polymerica Sinica,2001,6:751-754
    [119]Hu J, Lin S, Wang H. Studies on structure and characteristics of ethylene/1-butene copolymers prepared by co dimine complex-TiCl4ca catalysts [J]. Acta Polymerica Sinica,2001, (4):437-443
    [1]Schmidt G F, Brookhart M. Implications of three-center, two-electron M-H-C bonding for related alkyl migration reactions:design and study of an ethylene polymerization catalyst[J]. J Am Chem Soc,1985,107:1443-1444
    [2]Brookhart M, Volpe A F, Lincoln D M, Horvath I T, Millar J M. Detection of an alkyl ethylene complex during ethylene polymerization by a cobalt(Ⅲ) catalyst. Energetics of the β-migratory insertion reaction[J]. J Am Chem Soc,1990,112: 5634-5636
    [3]Brookhart M, DeSimone J M, Grant B E, Tanner M J. Cobalt(Ⅲ)-catalyzed living polymerization of ethylene:routes to end-capped polyethylene with a narrow molar mass distribution[J]. Macromolecules,1995,28:5378-5380
    [4]Wang L, Flood T C. Ethylene insertion into the rhodium-methyl bond in chelated tris(tertiary amine) complexes. A new class of Group 9 organometallic complexes[J]. J Am Chem Soc,1992,114:3169-3170
    [5]Timonen S, Pakkanen T T, Pakkanen T A. Novel single-site catalysts containing a platinum group metal and a macrocyclic sulfur ligand for ethylene polymerization[J]. J Mol Catal:A,1996,111:267-272
    [6](a) Keim W, Appel R, Storeck A, Kruger C, Goddard R. New nickel and palladium complexes with aminobis(imino)phosphorane ligands in the polymerization of ethylene[J]. Angewandte Chemie,1981,93:91-92 (b) Klabunde U, Ittel S D. Nickel catalysis for ethylene homo- and copolymerization [J]. J Mol Catal,1987,41:123-134 (c) Klabunde U, Mulhaupt R, Herskovitz T, Janowicz A H, Calabrese J, Ittel S D. Ethylene homopolymerization with P,O-chelated nickel catalysts[J]. J Polym Sci Part A:Polym Chem,1987,25: 1989-2003 (d) Ostoja Starzewski K A, Witte J. Control of the molecular weight of polyethylene by synthesis with diylide nickel catalysts[J].Angewandte Chemie, 1987,99:96-97
    [7]Johnson L K, Killian C M, Brookhart M New Pd(Ⅱ)- and Ni(Ⅱ)-based catalysts for polymerization of ethylene and a-olefins[J]. J Am Chem Soc,1995,117: 6414-6415
    [8](a) Johnson L K, Killian C M, Arthur S D, Feldman J, McCord E F, McLain S J, Kreutzer K A, Bennett A M A, Coughlin E B, Ittel S D, Parthasarathy A, Tempel D J, Brookhart M.a-Diimine-transition metal complexes, their preparation and use as catalysts for (co)polymerization of (fluoro)olefins and olefinic esters[P]. 1996,WO Patent 9623010. (b) Brookhart M, Johnson L K, Arthur S D, Feldman J, Kreutzer K A, Bennett A M A, Coughlin E B, Ittel S D, Parthasarathy A, Tempel D J. Highly branched olefin polymers and their uses[P].1999,US Patent 5886224
    [9]Killian C M, Tempel D J, Johnson L K, Brookhart M. Living polymerization of a-olefins using Ni(II)-a-diimine catalysts. Synthesis of new block polymers based on a-olefins[J]. J Am Chem Soc,1996,18:11664-11665
    [10]Killian C M, Johnson L K, Brookhart M. Preparation of linear a-olefins using cationic nickel(II) a-diimine catalysts[J]. Organometallics,1997,16:2005-2007
    [11]Svejda S A, Brookhart M. Ethylene oligomerization and propylene dimerization using cationic (a-diimine) nickel(II) catalysts[J]. Organometallics,1999,18: 65-74
    [12]McLain S J, Feldman J, McCord E F, Gardner K H, Teasley M F, Coughlin E B, Sweetman K J, Johnson L K, Brookhart M. Addition polymerization of cyclopentene with nickel and palladium catalysts[J]. Macromolecules,1998,31: 6705-6707
    [13]Moehring V M, Fink G. New type of a-olefin polymerization with a nickel-aminobis(imino) phosphorane catalyst system[J]. Angewandte Chemie, 1985,97:982-984.
    [14]Schubbe R, Angermund K, Fink G, Goddard R. Structure of active species and explanation of the migration mechanism in 2,ω-polymerization of a-olefins[J]. Macromol Chem Phys,1995,196:467-478
    [15]Feldman J, McLain S J, Parthasarathy A, Marshall J, Calabrese J C, Arthur S D. Electrophilic metal precursors and a a-diimine ligand for Ni(Ⅱ)- and Pd(Ⅱ)-catalyzed ethylene polymerization[J]. Organometallics,1997,16:1514-1516
    [16]Schleis T, Spaniol T P, Okuda J, Heinemann J, Mulhaupt R. Ethylene polymerization catalysts based on nickel(II) 1,4-diazadiene complexes:the influence of the 1,4-diazadiene backbone substituents on structure and reactivity[J]. J Organomet Chem,1998,569:159-167
    [17]Wang C, Friedrich S, Younkin T R, Li R T, Grubbs R H, Bansleben D A, Day M W. Neutral nickel(II)-based catalysts for ethylene polymerization[J]. Organometallics,1998,17:3149-3151
    [18]Pellecchia C, Zambelli A. Syndiotactic-specific polymerization of propene with a Ni-based catalyst[J]. Macromol Rapid Commun,1996,17:333-338
    [19]Pappalardo D, Mazzeo M, Pelleccia C. Polymerization of ethylene with nickel a-diimine catalysts[J]. Macromol Rapid Commun,1997,18:1017-1023
    [20]Pellecchia C, Zambelli A, Mazzeo M, Pappalardo D. Syndiotactic-specific polymerization of propene with nickel-based catalysts.3. Polymer end-groups and regiochemistry of propagation[J]. J Mol Catal:A,1998,128:229-237
    [21]Galland G B, de Souza R F, Mauler R S, Nunes F F.13C NMR Determination of the composition of linear low-density polyethylene obtained with [3-methallyl-nickel-diimine]PF6 complex[J]. Macromolecules,1999,32:1620-1625
    [22]Zeng X, Zetterberg K. Ni(acac)2-DAD/MAO. A new catalytic system for ethylene polymerization[J]. Macromol Chem Phys,1998,199:2677-2681
    [23]Kim J, Pawlow J H, Wojcinski L M, Murtuza S, Kacker S, Sen A. Novel nickel(Ⅱ)-and palladium(II)-based catalytic systems for the synthesis of hyperbranched polymers from ethene[J]. J Am Chem Soc,1998,120:1932-1933
    [24]Johnson L K, Mecking S, Brookhart M. Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(Ⅱ) catalysts[J]. J Am Chem Soc,1996,118:267-268
    [25]Mecking S, Johnson L K, Wang L, Brookhart M. Mechanistic studies of the palladium-catalyzed copolymerization of ethylene and a-olefins with methyl acrylate[J]. J Am Chem Soc,1998,120:888-899
    [26]Small B L, Brookhart M, Bennett A M A. Highly active iron and cobalt catalysts for the polymerization of ethylene[J]. J Am Chem Soc,1998,120:4049-4050
    [27]Britovsek G J P, Gibson V C, Kimberly B S, Maddox P J, McTavish S J, Solan G A, White A J P, Williams D J. Novel olefin polymerization catalysts based on iron and cobalt[J]. Chem Commun,1998, (7):849-850
    [28](a) Small B L, Brookhart M. Polymerization of propylene by a new generation of iron catalysts:mechanisms of chain initiation, propagation, and termination[J]. Macromolecules,1999,32:2120-2130 (b) Pellecchia C, Mazzeo M, Pappalardo D. Isotactic-specific polymerization of propene with an iron-based catalyst. Polymer end groups and regiochemistry of propagation[J]. Macromol Rapid Commun,1998,19:651-655
    [29]Gates D P, Svejda S A, Oate E, Killian C M, Johnson L K, White P S, Brookhart M. Synthesis of branched polyethylene using (a-diimine) nickel(II) catalysts: influence of temperature, ethylene pressure, and ligand structure on polymer properties[J]. Macromolecules,2000,33:2320-2334
    [30]Subramanyam U, Rajamohanan P R, Sivaram S. A study of the structure of poly(hexene-1) prepared by nickel(a-diimine)/MAO catalyst using high resolution NMR spectroscopy[J]. Polymer,2004,45:4063-4076
    [31]Santos Jose P L, Castier M, Melo P A. Polymerization of 1-hexene using a-diimine nickel catalysts:stochastic simulation of branch distribution[J]. Polymer,2007,48:5152-5160
    [1]Reppe W, Magin A. Ketonic bodies[P].1951, US 2577208
    [2]Drent E, Budzelaar P H M. Palladium-Catalyzed Alternating Copolymerization of Alkenes and Carbon Monoxide[J]. Chem Rev,1996,96(2):663-681
    [3]Keim W, Kowaldt F H, Goddard R, Krueger C. New coordination mode of (benzoylmethylene)triphenylphosphorane in a nickel oligomerization catalyst[J]. Angewandte Chemie,1978,90(6):493
    [4]Keim W, Appel R, Storeck A, Krueger C, Goddard R. New nickel and palladium complexes with aminobis(imino)phosphorane ligands in the polymerization of ethylene[J]. Angewandte Chemie,1981,93(1):91-92
    [5]James B R, Marknam L D. Kinetics of ethylene polymerization and butadiene polymerization catalyzed by solutions of hydridochlorotris (triphenylphosphine) ruthenium(Ⅱ) [J]. J Catal,1972,27(3):442-451
    [6]Brookhart M, Lincoln D M. Comparison of migratory aptitudes of hydride and alkyl groups in β-migratory insertion reactions of Cp*(P(OMe)3)Rh(C2H4)R+(R =H, CH2CH3) [J]. J Am Chem Soc,1988,110(26):8719-8720
    [7]Skupinska J. Oligomerization of a-olefins to higher oligomers[J]. Chem Rev. 1991,91(4):613-648
    [8]Johnson L K, Killian C M, Brookhart M. New Pd(II)-and Ni(Ⅱ)-Based Catalysts for Polymerization of Ethylene and a-Olefins[J]. J Am Chem Soc,1995,117(23): 6414-6415
    [9]Christopher M Killian, Daniel J Tempel, Lynda K Johnson, and Maurice Brookhart. Living Polymerization of α-Olefins Using NiⅡ-α-Diimine Catalysts. Synthesis of New Block Polymers Based on a-Olefins[J]. J. Am. Chem. Soc, 1996,118(46):11664-11665
    [10]Gates D P, Svejda S A, Onate E, Killian C M, Johnson L K, White P S and Brookhart M. Synthesis of Branched Polyethylene Using (R-Diimine)nickel(II) Catalysts:Influence of Temperature, Ethylene Pressure and Ligand Structure on Polymer Properties[J]. Macromolecules,2000,33:2320-2334
    [11]Subramanyam U, Rajamohanan P R, Sivaram S. A study of the structure of poly(hexene-1) prepared by nickel(α-diimine)/MAO catalyst using high resolution NMR spectroscopy[J]. Polymer,2004,45:4063-4076
    [12]Santos J P L, Castier M, Melo P A. Polymerization of 1-hexene using a-diimine nickel catalysts:Stochastic simulation of branch distribution[J]. Polymer,2007, 48:5152-5160
    [1]Katafuchi T, Nakamura A. Synthetic Refrigerating Lubricating Oil, Consisting of an Alkylbenzene, Poly(a-olefin), and Fluidity Improver, Compatible with Tetrafluoroethane Refrigerant[P].1993, EP 557796,12
    [2]Mack M P. Polymerization Process for Drag Reducing Substances[P].1984, US 4433123,8
    [3]Chen W, Li H, Su Z and Bo W. Synthesis and Characterization of Drag Reducing Copolymer[J]. Shiyou Lianzhi Yu Huagong,2009,40:55-59
    [4]Zheng W, Feng L. Process for Synthesizing an Oil-soluble Friction Reducing Agent[P].1991, CN 1050388,9
    [5]Mi H,Wang J, Li H, Xi H, Maisur M and Ismayil N. Preparation and Properties of Highly Efficient Drag Reducing Agent for Crude Oil[J]. Jingxi Shiyou Huagong, 2005,2:12-15
    [6]Asakura T, Demura M and Nishiyama Y. Carbon-13NMR Spectral Assignment of Five Polyolefins Determined From the Chemical Shift Calculation and the Polymerization Mechanism[J]. Macromolecules.1991,24:2334-2340
    [7]Kothandaraman H, Devi M S. Kinetics of Polymerization of 1-Octene with the Catalyst Systems VO(acac)2-AlEt3 (or AlEt2Br). Eur. Polym. J.1996,32:651-659
    [8]Mamedov T I, Mirzakhanov I S and Sadykh-Zade S I. Catalytic Polymerization of 1-Octene. Sin. Prevrashch. Monomernykh. Soedin,1967,115-118
    [9]Fan Z, Feng L, Yang S. Plurality of Active Centers in the Ziegler-Natta Polymerization of 1-Octene-study of Molecular Weight Distribution and Kinetics. Gaofenzi Xuebao.1992,5:577-584
    [10]Kothandaraman H, Devi M S. Kinetics of Polymerization of 1-Octene with MgCl2-supported TiCl4 Catalysts. J. Polym. Sci. Part A:Polym. Chem,1994,32: 1295-1304
    [11]Kothandaraman H, Devi M S. Kinetics of Polymerization of 1-Octene with the Catalyst Systems Titanium Tetrachloridetriethylaluminum or Bromodiethyl-aluminum. J. Macromol. Sci., Pure. Appl. Chem,1994,31:395-412
    [12]Kaur S, Naik D G, Singh G, Patil H R, Kothari A V and Gupta V K. Poly (1-octene) Synthesis Using High Performance Supported Titanium Catalysts. J. Appl. Polym. Sci,2010,11:5229-236
    [13]Nomura K, Komatsu T and manishi Y. Polymerization of 1-Hexene,1-Octene Catalyzed by Cp'TiCl2(O-2,6-i-Pr2C6H3)-MAO System. Unexpected Increase of the Catalytic Activity for Ethylene/1-Hexene Copolymerization by (1,3-t-Bu2C5H3)TiCl2(O-2,6-i-Pr2C6H3)-MAO Catalyst System. J. Mol. Catal. A: Chem.2000,152:249-252
    [14]Hoff M, Kaminsky W. Syndiospecific Homopolymerisation of Higher 1-Alkenes with two Different Bridged [(RPh)2C(Cp)(2,7-tert-BuFlu)]ZrCl2 Catalysts. Macromol. Chem. Physics,2004,205:1167-1173
    [15]Lukesova L, Ward B D, Bellemin-Laponnaz S. Wadepohl H, Gade L H. High Tacticity Control in Organolanthanide Polymerization Catalysis:Formation of Isotactic Poly (a-alkenes) with a Chiral C3-Symmetric Thulium Complex. Dalton. T.2007,9:920-922
    [16]Kotzabasakis V, Kostakis K, Pitsikalis M, Hadjichristidis N, Lohse D J, Mavromoustakos T and Potamitis C. Polymerization of Higher a-Olefins Using a Cs-Symmetry Hafnium Metallocene Catalyst. Kinetics of the Polymerization and Microstructural Analysis. J. Polym. Sci. Part A:Polym. Chem,2009,47: 4314-4325
    [17]Subramanyam U, Rajamohanan P R and Sivaram S. A Study of the Structure of Poly(hexene-1) Prepared by Nickel(a-diimine)/MAO Catalyst Using High Resolution NMR Spectroscopy. Polymer,2004,45:4063-4076
    [18]Kinsinger J B, Ballard L E. Dilute Solution Properties of Poly(octene-1). Analysis by the Kurata-Stocbayer Method. J. Polym. Sci. Part A:Polym. Chem,1965,3: 3963-3975
    [19]Johnson L K, Killian C M and Brookhart M. New Pd(Ⅱ)-and Ni(Ⅱ)-Based Catalysts for Polymerization of Ethylene and a-Olefins. J. Am. Chem. Soc,1995, 117(23):6414-6415
    [20]Killian C M, Tempel D J, Johnson L K and Brookhart M. Living Polymerization of a-Olefins Using Ni(II)-a-Diimine Catalysts. Synthesis of New Block Polymers Based on a-Olefins. J. Am. Chem. Soc,1996,118:11664-11665
    [21]Gates D P, Svejda S A, Oate E, Killian C M, Johnson L K, White P S and Brookhart M. Synthesis of Branched Polyethylene Using (a-Diimine) nickel (Ⅱ) Catalysts:Influence of Temperature, Ethylene Pressure and Ligand Structure on Polymer Properties. Macromolecules,2000,33:2320-2334
    [22]Solomon O, Ciuta I Z. Determination of the Intrinsic Viscosity of Polymer Solutions by a Simple Determination of Viscosity. J. Appl. Polym. Sci,1962,6: 683-686
    [23]Maron S H. Determination of Intrinsic Viscosity from One-point Measurements. J. Appl. Polym. Sci,1961,5:282-284
    [1]Chien J C W, Tsai W Min. Zirconocenium cation catalysis of propene polymerization[J]. Makromolekulare Chemie, Macromolecular Symposia,1993,66:141-155
    [2]Anderson A W, Merckling N G. Polymeric bicyclo[2.2.1] hept-2-ene[P].1955, US 2721189
    [3]Guyot A, Revillon A, Carlier E, Leroux D, Le D C. Polymer grafted on porous silica as supports for catalysts and reagents[J]. Makromolekulare Chemie, Macromolecular Symposia, 1993,70:265-274
    [4]黄葆同,陈伟.茂金属催化剂及其烯烃聚合物[M].北京:化学工业出版社,2000:93-94
    [5]Moroz B L, Semko lenova N V, Nosov A V. Silica-supported zirconocene catalysts: preparation, characteriza tion and activity in ethylene polymerization [J]. J Mol Catal A: Chemical,1998,130:121-129
    [6]Santos J H Z, Krug C, Rosa M B. Effects of ethylene polymerization conditions on the activity of SiO2-supported zirconocene and on polymer properties [J]. J Mol Catal A: Chemical,1999,139:199-207
    [7]Cho H S, Lee W Y. Synthesis of inorganic MgCl2-alcohol adduct via recrystallization method and its application in supported organometallic catalysts for the polymerization of ethylene with 1-hexene [J]. J Mol Catal A:Chemical,2003,191:155-165
    [8]Wioletta O S, Maria N. Magnesium chloride modified with organoaluminium compounds as a support of the zirconocene catalyst for ethylene polymerization [J]. Eur Polym J,2004,40: 839-846
    [9]孙敏,许学翔,赵伟,等.原位反应法制备CpTi (dbm)C12/MgC12载体型催化剂及其催化乙烯聚合的研究[J].高分子学报,2004,(1):137-139
    [10]Desjardins S Y, Cavell K J, H oare J L, et al. Single component N-O chelated aryl nickel(Ⅱ) complexes as ethyene polymerisation and CO/Ethyene copolymerisation catalysts:Examples of ligand induced changes to the reaction pathway [J]. J Orgnomet Chem,1997,544:163-174
    [11]Small B L, Brookhart M, Bennett A M. Highly activeiron and cobalt catalysts for the polymerization of ethylene [J]. J Am Chem Soc,1998,120:4049-4050
    [12]Britovsek G J P, Gibson V C, Kimberley B S, e t al. Novel olefin polymerization catalysts based on iron and cobalt[J]. Chem Commun,1998, (7):849-850
    [13]Xue X H, Yang X, Xiao Y Z, et al. Ethylene polymerization using nickel a-diimine complex supported on SiO2/MgCl2 bisupport [J]. Polymer,2004,45(9):2877-2882
    [14]Severn J R, Chadwick J C, "Duchateau R. Bound but not gagged" immobilizing single-site a-olefin polymerization catalysts [J]. Chem Rev,2005,105(11):4073-4147
    [15]Maria R R, Alain D, Manuel F P. Supported Metallocene Complexes for Ethylene and Propylene Polymerizations:Preparation and Activity [J]. Ind Eng Chem Res,1997,36(4): 1224-1237
    [16]Johnson L K, Killian C M, Brookhart. MNew Pd(Ⅱ)-and Ni(Ⅱ)-based catalysts for polymerization of ethylene and a-olefins[J]. J Am Chem Soc.1995,117: 6414-6415

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700