可调侧推器设计与水动力性能仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
侧推器作为船舶辅助推进装置,协助船舶进出狭窄航道,配合舵面稳定航向,提高船舶零航速或低航速下的操纵性和安全性。因此,这种推进装置日益受到船舶设计与制造行业的青睐,现已在大型船舶上得到广泛应用。
     本文结合课题任务,提出了“可调侧推器设计与水动力性能仿真研究”,对船舶侧推器设计及相关技术与方法进行研究,分析侧推器流场特性,并对其水动力性能进行预报。
     第一章:阐述侧推器设计与水动力性能研究的背景及意义,介绍了国内外船舶侧推器的发展进程和关键技术,探讨了船舶螺旋桨水动力性能的研究现状,提出了论文的研究背景和论文框架。
     第二章:分析了船舶侧推器和可调螺距螺旋桨的工作原理,介绍了现有侧推器的结构特点和工作特性,提出了可调侧推器的总体设计方案。
     第三章:根据可调侧推器总体设计方案和相关功能和性能需求,结合机械产品的可维修性设计方法,对可调侧推器关键零部件进行结构设计。
     第四章:探讨桨叶的几何表达和数学描述,分别采用图谱法和涡格升力线法进行侧推器的桨叶设计,对比分析表明两种方法所设计的桨叶吻合较好。
     第五章:建立了基于雷诺平均模拟(RANS)的侧推螺旋桨CFD仿真数学模型和几何模型,应用混合网格划分技术进行侧推器流场计算域的网格划分,鉴于侧推器流场的紊流特性,构建侧推器的k-ε流模型。
     第六章:开展了侧推螺旋桨水动力性能的数值仿真研究,对比分析表明仿真结果与试验图谱吻合较好;研究了侧推器设计工况和过渡工况下的流场特性,实现了侧推器水动力性能的预报。
     第七章:概括全文内容,展望船舶侧推器发展前景。
As an auxiliary propulsion unit, tunnel thrusters substantially improve the controllability and safety of a ship at low speed, enable it to keep a certain course with the help of rudders. More and more attention is paid to these devices by shipbuilders, tunnel thrusters have been applied on majorships widely right now.
     Based on the research program, a tunnel thruster is designed and the hydrodynamic performance of it is simulated. The Master's thesis research " Controllable pitch tunnel thruster design and performances simulation" is conducted.
     Chapter one:Background and significance of design and study of tunnel thrusters are described; development and key technology of tunnel thrusters are introduced. Finally research significance and framework of the thesis are proposed.
     Chapter two:After analyzing the working principle of tunnel thrusters and controllable-pitch propellers, the structural design of controllable-pitch tunnel thruster is proposed based on summarizing the tunnel thrusters'structure.
     Chapter three:Based on the structural design and function demand of controllable-pitch tunnel thruster, structural design of tunnel thruster's key parts is carried out with repairable design process.
     Chapter four:The propeller design chart and propeller vortex lattice lifting line theory are applied respectively in the propeller design of tunnel thruster and the results agreed well with each other; propeller efficiency at different number of blades, different diameter of blades and different power of engine is analyzed based on propeller vortex lattice lifting line theory.
     Chapter five:Simulation model of tunnel thruster is built based on RANS of CFD and the mesh of compute field is generated with hybrid grid method by GAMBIT, finally k-s turbulence model is used to simulate the hydrodynamics characteristic in tunnel thruster.
     Chapter six:Hydrodynamics characteristic in tunnel thruster is described through simulation, compared with experimental data, the numerical results show good agreement; by analyzing hydrodynamics characteristic in tunnel thruster under design condition and transitional running condition, performance of tunnel thruster is predicted.
     Chapter seven:The main content of the dissertation research is summarized, and the prospect of tunnel thrusters is presented.
引文
[1]朱伟革.世界航运和造船市场现状与发展趋势[J].水路运输文摘,2003(9):39-40.
    [2]船舶行业调整与振兴规划(2009年-2011年)
    [3]全国航运发展报告(2000年-2010年)
    [4]Baniela S. The Performance of a Tunnel Bow Thruster with Slow Speed Ahead:A Revisiting Issue[J]. Journal of Navigation,2009,62:631-642.
    [5]K Taniguchi, et al. Investigation into the Fundamental Characteristics and Operating Performances of Side Thruster[R]. Mitsubishi Technical Bulletin,1966,3(35).
    [6]R T Taylor. Experimental Investigation of the Effects of Some Design Variables on the Static Characteristics of a Small-scale Shrouded Propeller Submerged in a Wing [M]. Langley Aeronautical Laboratory,1958,1.
    [7]D E Ridley. Effect of Tunnel Entrance Configuration on Thruster Performance[J]. SNAME Paper, San Diego Section, Sept.1967,9.
    [8]G R Stuntz Jr, R J Taylor. Some Aspects of Bow Thruster Design[J]. Transactions SNAME, 1964,72:336-373.
    [9]J W, English. Further Considerations in the design of Lateral Thrust Units[J]. International Shipbuilding Progress,1965,13(137).
    [10]汪诚仪.船艏侧推孔阻力增值估算和导流槽降阻[J].船舶工程,1986,4.
    [11]沈国鉴,沈行龙.轴向圆筒内对称叶剖面螺旋桨系列的模型试验研究[J].中国造船,1982,2:55-64.
    [12]M S Chislett, O Bjorheden. Influence of Ship Speed on the Effectiveness of a lateral Thruster Unit. Hydro-og Aerodynamics laboratorium,1966,8.
    [13]Donald E Ridley. Observations on the Effect of vessel Speed on bow Thruster Performance[J]. Marine Technology,1971,8(1):93-96.
    [14]U Niemann. On the Effectiveness of a Bow-thruster jet Flow[J]. Journal of ship Research, 1971,15(3).
    [15]E P Nikolaey, R Y Pershits, A A Russeaky. Estimation of the Effectiveness of lateral thruster units[J]. Journal Mechanical Engineering Science,1972,14(7).
    [16]John L, Beveridge. Design and Performance of Bow Thrusters[J]. Marine Technology,1972, 9(4):439-453.
    [17]Kijima Katsuro, Hirakawa Takamitsu, Furukawa Yoshitaka, et al. Theoretical estimation of influence of forward speed on the performance of bow thruster[J]. The Japan Society of Naval Architects and Ocean Engineers,1998,96 (9):69-79.
    [18]Kijima Katsuro, Furukawa Yoshitaka. Study on a prediction of performance of lateral thruster in a ship[J]. The Japan Society of Naval Architects and Ocean Engineers,1994,87(3): 145-153.
    [19]Furukawa Yoshitaka, Kijima Katsuro. Influence of forward speed on the thruster performance used on dynamic positioning system of offshore platform[J]. The Japan Society of Naval Architects and Ocean Engineers,1993,85(3):89-99.
    [20]哈弼孝.侧向推力器的性能和模型试验研究[R].中国船舶科学研究中心报告,1989.
    [21]张潞怡.来流对槽道推进器侧向推力的影响[D].哈尔滨:哈尔滨船舶工程大学,1991.
    [22]徐周华.船舶首侧推器适用的船速域[J].武汉理工大学学报(交通科学与工程版),2002,1:116-119.
    [23]沈定安,马向能,毛海斌.大型滚装船侧推器操纵效能计算[J].船舶力学,2004,2:34-41.
    [24]董世汤.船舶螺旋桨理论[M].上海:上海交通大学出版社,1985.
    [25]Goldstein, S. On the Vortex Theory of Screw Propellers[J]. Proceedings Royal Society,1929, 123:440-465.
    [26]Hill, J G. The design of propellers. Tran. SNAME,1949.
    [27]Van Manen, J D, Van Lammeren, W D A. The design of wake adapted screws and their behaviour behind the ship[J]. ISP,1955,2(7).
    [28]Eckhardt, M K, Morgan, W B. A propeller design method. Tran, SNAME,1955,9:325-361.
    [29]Lerbs, H W. Moderately loaded propellers with finite number of blades and an arbitrary distribution of circulation. Tran, SNAME,1952,60:73-117.
    [30]Ginzel, G I. Theory of broad-bladed propeller. ARC, current paper,1955,208.
    [31]Yamazaki, R. On the theory of screw propellers[C]. proc. of 4th ONR symp. on hydronamics,1962,23(2):97-112.
    [32]Sparenberg, J A. Application of lifting surface theory to ship screw. ISP,1960,3.
    [33]Hanaoka, Hydrodynamics of an oscillating screw propeller[C].4th ONR symposium on naval hydrodynamic,1962,8.
    [34]卞保琦.螺旋桨升力面问题的一个解法(杨昌培译).国外舰船技术,1981,1.
    [35]Gox G. Supercavitating propeller theory-the derivation of induced velocity[C].7th ONR symposium on naval hydrodynamic,1968.
    [36]Hess J L, Smith A M O. Calculation of nonlifting potential flow about arbitrary three dimensional bodies[J]. Journal of ship research,1964,9.
    [37]I Senocak, G Iaccarion. Progress towards RANS Simulation of Free surface Flow around Modem Ships[J]. Center for Turbulence Research Annual Research Briefs,2005.
    [38]张志荣,李白齐,赵峰.船舶粘性流动计算中湍流模式应用的比较[J].水动力学研究与进展,2004,19(5):637-642.
    [39]常煜,张志荣,赵峰.多块结构化网格在含附体水面船模粘性流场数值计算中的应用[J].船舶力学,2004,8(1):19-25.
    [40]GAO Qiu xin, SHU Lei. Numerical Simulate of Free Surface Flow around Frigate 5415[J]. Journal of Ship Mechanics,2002,6(6):1-9.
    [41]董世汤,王国强,唐登海,等.船舶推进器水动力学[M].北京:国防工业出版社,2009.
    [42]崔桂香,许春晓,张兆顺.湍流大涡模拟进展[J].空气动力学学报,2004,22(2):121-129.
    [43]袁传大.船用侧向推力器及其动力装置[J].江苏船舶,1991,8(3):38-41.
    [44]施内克鲁特.船舶水动力学[M].上海:上海交通大学出版社,1997.
    [45]王国强,盛振邦.船舶推进[M].上海:上海交通大学出版社,1994.
    [46]John L, Beveridge. Bow-Thruster jet flow[R]. Washington D. C.:Naval ship research and development center,1970.
    [47]汪海瀚,汪诚仪.侧推器的初步设计[J].船舶,1996,3:15-28.
    [48]V P Karlikov, G I Sholomovich. Some features of body-flow interaction in the presence of transverse jet[J]. Fluid dynamics,1998,33(3):313-317.
    [49]Norrbin, N H. The effectiveness of a bow thruster at low and medium ship speeds[J]. Shipbuilding Prog.,1967,14(157):315.
    [50]朱树文.船舶动力装置原理与设计[M].北京:国防工业出版社,1980.
    [51]张劲枫,易小冬.某型船调距桨装置液压系统的设计与制造[J].机电设备,2007,24(7):14-17.
    [52]中国船级社.钢质海船入级规范(S).人民交通出版社,2009.
    [53]Dietmer Deter, Nautex. Principal aspects of thruster selection(C). Dynamic positioning conference,1997,6:21-22.
    [54]中国船级社.国内航行海船建造规范(S).人民交通出版社,2006.
    [55]Wartsila corporation. Wartsila transverse thruster solutions. www.wartsila.com.
    [56]Berg propulsion. BERG Transverse Thruster. www.bergpropulsion.com.
    [57]ZF Marine Arco S. P. A. Bow thrusters. www.zf.com.
    [58]Van der veldenTM marine systems. EPS brochure.www.vdvyachting.nl.
    [59]胡晓棠,张文瑶,郦智斌.船舶可维修性设计分析[J].中国修船,2007,20(6):46-48.
    [60]章国栋,等.系统可靠性与维修性的分析与设计[M].北京:北京航空航天大学出版社,1990.
    [61]陈璐,蔡建国.可维修性设计及其技术方法研究[J].机械设计与研究,2002,18(2):13-16.
    [62]甘茂治,吴真真.维修性设计与验证[M].北京:国防工业出版社,1994.
    [63]章国栋,等.系统可靠性与维修性的分析与设计[M].北京:北京航空航天大学出版社, 1990.
    [64]国防科学技术工业委员会.GJB/Z57-94.维修性分配与预计手册[S].1994.
    [65]Dorf, R C, et al. Technology Management Handbook[M]. CRC Press, Boca Raton, Florida, 1999.
    [66]钟佩思,王景林,刘梅,刘凤景.基于有限元的传动轴受扭分析[J].机械传动,2008,32(5):88-90.
    [67]陈桂平,文桂林,崔中,于洪伟.高速磨床主轴模态测试与分析研究[J].湖南大学学报(自然科学版),2010.37(4):21-26.
    [68]ACMP-132. Engineering Design Handbook:Maintenance Engineering Techniques [S]. Washington, D.C.:Department of Defense,1976.
    [69]邱晓峰,陈昌鄂,侯秀举.船舶主推调距桨方案设计与实现[J].航海工程,2006,(6):23-25.
    [70]巴克什特,洛芬费利德,鲁谢茨基.可调螺距螺旋桨[M].北京:国防工业出版社,1966:19.
    [71]龙飞,王孟莲,杨俊飞.艏侧推装置及其应用研究[J].船电技术,2005,(2):6-9.
    [72]中国船舶工业总公司.CB/Z 241-87.可调螺距螺旋桨桨叶图谱设计计算方法[S].1987.
    [73]董世汤.导管螺旋桨环流理论计算方法[J].舰船性能研究,1977(3):1-74.
    [74]Cummings R A. Dictionary of ship hydrodynamics [C]. Proc. of the 14th ITTC,1974.
    [75]龚吕,姚征,吴曼.船舶反弯扭螺旋桨水动力特性的数值模拟与分析[J].上海理工大学学报,2007,29(1):65-69.
    [76]赵峰,冯有章.基于B-8图谱的螺旋桨计算机初步和终结设计[J].船舶工程,1995,5:13-19.
    [77]盛振邦,杨家盛,柴扬业.中国船用螺旋桨系列试验图谱集[M].中国造船编辑部,1982.
    [78]Justin E Kerwin. Hydrofoils and propellers[M]. Lecture Notes for MIT Course,1994.
    [79]吴小平,杨松林Matlab辅助船用螺旋桨设计[J].江苏船舶,2004,21(1):4-6.
    [80]王福军.计算流体力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [81]张志荣,李百齐.螺旋桨/船体粘性流场的整体数值求解[J].船舶力学,2004,8(5):19-26.
    [82]Fluent软件用户使用手册[K].
    [83]Lucia Sileo, Aldo Bonfigliolo. RANSEs Simulation of the Flow past a Marine Propeller under Design and Off-design Conditions[J].14th Annual Conference Computational Fluid Dynamics Society of Canada(CFD 2006),2006, July:16-18.
    [84]李巍,王国强.螺旋桨粘流水动力特性数值模拟[J].上海交通大学学报,2007,41(7):1200-1208.
    [85]朱红钧,林元华,谢龙汉Fluent 12流体分析及工程仿真fM].北京:清华大学出版社,2011.
    [86]常欣,Fluent船舶流体力学仿真计算工程应用基础[M].哈尔滨:哈尔滨工程大学出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700