持绿型高粱、玉米对干旱胁迫响应的生理机制比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验于2010~2011年在沈阳农业大学试验基地进行。盆栽条件下以持绿型高粱、玉米为研究对象,通过对持绿型高粱、玉米在干旱条件下响应的生理机制的比较,探讨持绿性高粱、玉米抗旱的生理机制差异,为促进作物持绿性状的应用、指导作物抗性的改良提供理论依据。本研究主要研究结果如下:
     1.与非持绿型高粱、玉米相比,持绿型高粱、玉米具有较大的根冠比、根干重、总根长、根表面积和较好的根系还原能力,并且这些指标受水分胁迫影响小。在水分胁迫下,持绿型高粱、玉米的根系指标的变化情况不同,持绿型高粱有较大的根冠比,水分胁迫下根系还原力降幅小于持绿型玉米。
     2.与非持绿型高粱、玉米相比,在正常条件下,持绿型高粱、玉米的叶绿素a、b及叶绿素总量高,并且在生育后期降幅小;在水分胁迫下,持绿型高粱、玉米的叶绿素含量、Pn、Gs、Tr、φPSⅡ、qL、F_0、FV/_FM、rETR、P_M和α受水分胁迫影响较小,水分胁迫下降幅小。非持绿型高粱、玉米的NPQ上升幅度则大于持绿型高粱、玉米。水分胁迫下,持绿型高粱和玉米的叶绿素含量,光合指标及叶绿素荧光参数的变化情况存在差异。水分胁迫对持绿型高粱开花期的叶绿素含量影响大,灌浆期影响小;而水分胁迫对持绿型玉米开花期叶绿素含量影响小,灌浆期影响大。持绿型玉米的Pn、Gs和Tr对开花期水分胁迫敏感,而持绿型高粱的光合指标则对灌浆期水分胁迫敏感。持绿型玉米的φPSⅡ、qL、rETR、P_M和α在水分胁迫下的降幅均高于持绿型高粱。开花期水分胁迫对持绿型高粱NPQ、FV/F_M和F0的影响程度大于持绿型玉米,而灌浆期受水分胁迫影响则小于持绿型玉米。
     3.与非持绿型高粱、玉米相比,持绿型高粱、玉米的叶片和根系都具有较强的SOD、CAT、POD活性及较高的·OH清除率,并且这些保护性酶活性受水分胁迫抑制程度较小,增幅较大;水分胁迫下持绿型高粱、玉米叶片和根系中MDA和O_2~-的含量增幅小。与持绿型玉米相比,水分胁迫胁迫下持绿型高粱叶片和根系的SOD、POD活性和·OH清除率的增加幅度大,MDA和O_2~-含量增幅小,并且从开花期到灌浆期的过程中,SOD、POD活性以及·OH清除率下降幅度小。持绿型玉米叶片和根系的CAT活性调控能力好于持绿型高粱。高粱和玉米均为叶片SOD和POD活性大于根系,根系CAT活性大于叶片,而·OH清除率则叶片与根系相差不多。高粱和玉米的保护性酶对根系与叶片的作用的相关性分析表明,玉米叶片和根系的保护性酶作用的协调性较高粱略低。玉米和高粱保护性酶与Chl含量的相关性分析表明,玉米是以CAT和·OH清除率调节为主来保护叶绿体,而高粱则是以SOD和POD调节为主。
     4.与非持绿型高粱、玉米相比,持绿型高粱、玉米的叶片束缚水含量和相对含水量较高;水分胁迫下,自由水含量、叶片相对含水量和硝酸还原酶活降低幅度小,水分饱和亏缺和电导率的升高幅度相对较低。水分胁迫下持绿性高粱、玉米叶片和根系的脯氨酸,可溶性糖和可溶性蛋白含的调节能力较非持绿型高粱、玉米好。持绿型高粱与玉米的叶片水分、细胞透性及调节物质在水分胁迫下变化情况存在差异。与持绿型高粱相比,持绿型玉米的自由水含量,相对含水量和饱和亏缺在水分胁迫下的降幅大;束缚水含量增加多,叶片参与代谢水分减少,缺水程度大。水分胁迫下持绿型玉米的相对电导率升高幅度,以及硝酸还原酶活性降低幅度均大于持绿型高粱。与持绿型玉米相比,水分胁迫下持绿型高粱叶片和根系的脯氨酸升高幅度大;可溶性糖升高幅度小;可溶性蛋白含量降低幅度小。高粱、玉米叶片相对含水量与光合系统关系紧密,均为显著正相关或极显著正相关。高粱、玉米的脯氨酸、可溶性糖及可溶性蛋白与光合系统的相关性分析表明,高粱、玉米均以可溶性蛋白调节为主要调节物。不同的是,高粱的脯氨酸和可溶性糖在对初始荧光有一定调节作用,而玉米的脯氨酸对叶绿素含量有一定的调节作用,可溶性糖则对玉米的光合系统调节作用不大。
     5.与非持绿型高粱、玉米相比,正常条件下持绿型高粱、玉米较有较高的CTK含量和较低的ABA含量。在水分胁迫下持绿型高粱、玉米的激素调节力强,能适当的减小CTK的含量和有效的增加ABA的积累量来应对水分胁迫的变化。水分胁迫下持绿型高粱、玉米的ABA和CTK的调节能力不同。持绿型高粱在水分胁迫下ABA的积累量要较持绿型玉米多,CTK含量降低幅度较持绿型玉米相对少。高粱、玉米的ABA、CTK对光合系统、叶片水分及调节物质的调控上作用一致,无差异。
     6.水分胁迫下非持绿型高粱、玉米的叶绿体形状变的不规则,叶绿体中的淀粉颗粒解体消失,基粒变的松散,不规则,只能分辨出少量的类囊体,并且出现较多的脂类小滴;片层结构已经难以辨认,结构混乱。持绿型高粱和玉米的叶绿体及片层结果则保持的相对较好,但两者的超微结构也存在差异。持绿型高粱的叶绿体形状较为规则,各个细胞器排列较为紧凑。持绿型玉米的叶绿体形状则较为松散,有不规则化的趋势,各个细胞器之间存在一定的距离。持绿型高粱的片层结构清晰,类囊体和淀粉颗粒清晰可辨,并且局部基粒成柱状。持绿型玉米的片层虽然可以辨认出基粒和类囊体等结构,但较为模糊并且有的细胞器出现解体的趋势。
     7.与非持绿型高粱、玉米相比,持绿型高粱、玉米在水分胁迫下叶片等干物重降幅小;籽粒产量下降小;抗旱指数大。与持绿型玉米相比,水分胁迫下持绿型高粱叶片、鞘,穗的干物重降低幅度小;籽粒产量受水分胁迫影响小;抗旱指数相对较大。
Researches into stay green sorghum and maize were conducted under pot cultivation inthe experimental base of Shenyang Agricultural University from2010to2011. The aim ofthe study was to seek out difference between stay green sorghum and maize in physiologicalmechanism under drought stress and to provide academic basis of promoting the applicationof stay green and guiding to the improvement of crop resistance. The main results were asfollows:
     1. Compared with the non-stay green sorghum and maize, stay green sorghum and maizeshowed higher root dry weight, root/shoot, total root length, root surface area and rootreducing capacity. Under water stress, root morphology indexes and reducing capacity ofstay green sorghum and maize decreased in smaller extents than did non-stay green sorghumand maize. Compared with stay green maize, stay green sorghum had higher root/shoot, androot reducing capacity decreased in smaller extents than those of did stay green maize underdrought stress.
     2. Under normal water condition, Chla, Chlb and total Chl content of stay green sorghumand maize were higher than those of non-stay green sorghum and maize. From floweringstage to filling stage, the content of Chla, Chlb and total Chl in stay green sorghum andmaize decreased less than those in non-stay sorghum and maize. Under drought stress, Chlcontents, Pn, Gs, Tr, φPSⅡ, qL, F0, FV/FMand rETR of stay green sorghum and maize wereless influenced than those of non-stay green sorghum and maize by water stress. Indexes ofphotosynthetic and fluorescence of stay green sorghum and maize decreased in smallerextents than those of did non-stay green sorghum and maize. The NPQ of non-stay greensorghum and maize was higher than that of stay green sorghum and maize under droughtstress. The PMand α of rapid light curves of stay green sorghum and maize decreased insmaller extents than did those of non-stay green sorghum and maize.
     There were different changes in Chl content, photosynthetic indexes and chlorophyllfluorescence parameters between stay green sorghum and maize under drought stress. TheChl content of stay green sorghum was larger influenced than that of stay green maize duringthe flowering stage and was smaller influenced than that of stay green maize during thefilling stage by water stress. From flowering stage to filling stage, the Chl content of staygreen sorghum decreased in smaller extents than did that of stay green maize under normalwater condition and drought stress. The Pn, Gs and Tr of stay green maize were sensitive towater stress during flowering stage. The Pn, Gs and Tr of stay green sorghum were sensitiveto water stress during filling stage. The φPSⅡ, qL, rETR, PMand α of stay green maizedecreased in larger extents than did those of stay green sorghum under drought stress. TheNPQ, FV/FMand F0of stay green sorghum were largely influenced than those of stay green maize during the flowering stage and were smaller influenced than those of stay green maizeduring the filling stage by water stress. In addition, from flowering stage to filling stage, thechlorophyll fluorescence parameters of stay green sorghum decreased in smaller extents thandid those of stay green maize under drought stress.
     3. The SOD, CAT, POD activity and·OH clearance of leaf and root in stay greensorghum and maize were bigger than those of non-stay green sorghum and maize. Theprotective enzyme activity of leaf and root in stay green sorghum and maize had littlesensitive to water stress and decreased in smaller extents than did that of non-stay greensorghum maize under drought stress. The content of MDA and O_2~-of leaf and root in staygreen sorghum and maize were lower than their control and increased smaller extents thandid those of their control under drought stress.
     There were different changes in protective enzyme activity of leaf between stay greensorghum and maize under drought stress. The SOD, POD activity and·OH clearance of leafin stay green sorghum increased larger extents than did those of stay green maize underdrought stress. From flowering stage to filling stage, the SOD, POD activity and·OHclearance of leaf in stay green sorghum decreased in smaller extents than did those of staygreen maize under normal water condition and drought stress. The regulative ability of leafCAT activity in stay green maize was better than stay green sorghum. The content of MDAand O_2~-of leaf in stay green maize increased larger extents than did those of stay greensorghum under drought stress. The trend of active oxygen metabolism of root in stay greensorghum and maize were the same as leaf under drought stress.The SOD and POD activity of leaf were bigger than root,and CAT activity of root wasbigger than leaf in sorghum and maize. The·OH clearance of leaf was the same as root. Theprotective enzyme activity of coordination of leaf and root in maize was worse than that ofsorghum. The correlation analysis between protective enzyme activity and Chl content ofsorghum and maize showed that CAT and·OH clearance were mainly regulators of maize;SOD and POD were mainly regulators of sorghum.
     4. Compared with the non-stay green sorghum and maize, stay green sorghum and maizeshowed higher bound water content and relative water content. Under drought stress, the freewater content, relative water content and nitrate reductase of stay green sorghum and maizedecreased in smaller extents than those of did non-stay green sorghum and maize; watersaturation deficit and relative conductivity of stay green sorghum and maize increasedsmaller extents than those of did non-stay green sorghum and maize. Compared with thenon-stay green sorghum and maize, the soluble sugar and soluble protein content of leaf androot in stay green sorghum and maize were higher and the soluble sugar and proteinadjustment ability of leaf and root in stay green sorghum and maize were better under drought stress; the proline content of leaf and root in stay green sorghum and maize wassignificantly increased under drought stress.
     There were different changes in leaf water, cell permeability and regulating substancebetween stay green sorghum and maize under drought stress. Under water stress, the freewater content, relative water content and water saturation deficit of stay green maizedecreased larger extents than those of did stay green sorghum, and bound water content ofstay green maize increased larger extents than that of did stay green sorghum whichindicated the leaf water of stay green maize was lower than stay sorghum. The relativeconductivity of stay green sorghum increased in smaller extents than that of did stay greenmaize, and nitrate reductase activity deceased in smaller extents than that of did stay greenmaize under water stress.
     The increasing amplitude of proline of leaf and root in stay green sorghum was higherthan stay green maize; the increasing amplitude of soluble sugar content was smaller thanstay green maize; the decreased degree of soluble protein was smaller than stay green maizeunder drought stress.
     There was significant positive correlation or a significantly positive correlation betweenrelative water content and photosynthetic system in sorghum and maize. The correlationanalysis among proline, soluble sugar and soluble protein of sorghum and maize showed thatsoluble protein was mainly regulators of sorghum and maize; proline and soluble sugar ofsorghum had influence on F0; proline of maize had influence on Chl content, and solublesugar of maize was little influence on photosynthetic system.
     5. Compared with the non-stay green sorghum and maize, stay green sorghum and maizeshowed higher cytokinin content and lower abscisic acid content under normal watercondition. Hormonal regulation of stay green sorghum and maize was better under droughtstress. In order to adapt to changes of water, cytokinin content of stay green sorghum andmaize could decrease properly, and abscisic acid content could increase effectively.
     Compared with the stay green maize, the increasing amplitude of abscisic acid content ofstay green sorghum was higher and the decreased degree of cytokinin content was smallerunder drought stress.
     The correlation analysis among photosynthetic system, leaf water and regulatingsubstance of sorghum and maize showed that regulation of cytokinin and abscisic acid werethe same in sorghum and maize.
     6. Under drought stress, the changes of chloroplast ultrastructure in non-stay greensorghum and maize showed that the chloroplasts became irregular shape, the starch granulesin chloroplasts disintegrated, the grana became loosely, fat droplets increased in number, anda little of thylakoids could be picked out. The chloroplast lamellae distinguished hardly and arranged disorderly. The chloroplast ultrastructure and chloroplast lamellae in stay greensorghum and maize had little influence by drought stress.
     There were different changes in chloroplast ultrastructure and chloroplast lamellaebetween stay green sorghum and maize under drought stress. The chloroplast ultrastructureof stay green sorghum had regular shape, and the organelles in chloroplast ultrastructurearranged densely. The chloroplast ultrastructure of stay green maize had loosely shape, andbecame irregularly. There were air space between one organelle and another in chloroplast ofstay green maize. The chloroplast lamellae structure of stay green sorghum was clear, andthylakoids and starch granules could be distinguished easily. Some cylindrical granaesexisted in stay green sorghum leaf cells. Although the grana and thylakoid could bedistinguished in chloroplast lamellae structure of stay green maize, the shape of granaes andthylakoids were unclear and some organelles tended to disintegrate.
     7. Compared with the non-stay green sorghum and maize, dry matter weight of leaves,sheath, stem and era(panicle) of stay green sorghum and maize decreased in smaller underdrought stress. The yield of stay green sorghum and maize decreased in smaller extents thanthat of did non-stay green sorghum and maize under drought stress. The drought resistanceindex of stay green sorghum and maize were bigger.
     Leaf, sheath and era(panicle) dry matters of stay green sorghum decreased in smallerextents than those of did stay green maize under drought stress. The yield of stay greensorghum decreased in smaller extents than that of did stay green maize under drought stress.Compared with stay green maize, the drought resistance index of stay green sorghum wasbigger.
引文
1.卜令铎,张仁和,常宇,等.2010.苗期玉米叶片光合特性对水分胁迫的响应.生态学报,30(5):1184-1191
    2.曹宛虹.1994.作为叶绿体H2O2分解系统关键的抗坏血醣过氧化物酶.植物生理学通讯,30(6):452-458
    3.陈桂珠,缪绅裕,谭凤仪,等.1994.人工合成污水对秋茄幼苗的几个生态生理学指标影响初报.应用生态学报,5(2):221-224
    4.陈建明,俞晓平,程家安.2006.叶绿素荧光动力学及其在植物抗逆生理研究中的应用.浙江农业学报,18(1):51-55
    5.程智慧,孟焕文,RolfeS A,等.2002.水分胁迫对番茄叶片气孔传导及光合色素的影响.西北农林科技大学学报(自然科学版),30(6):93-96
    6.代贵金,华泽田,陈温福,等.2008.杂交粳稻、常规粳稻、旱稻、籼稻根系特征比较.沈阳农业大学学报,39(5):515-519
    7.单长卷,韩蕊莲,梁宗锁.2012.I-旱胁迫下黄上高原4种乡上禾草抗氧化特性.生态学报,32(4):1174-1184
    8.葛体达,隋方功,白莉萍,等.2005.水分胁迫下夏玉米根叶保护酶活性变化及其对膜脂过氧化作用的影响.中国农业科学,38(5):922-928
    9.管建慧,刘克礼,郭新宇.2006.玉米根系构型的研究进展.玉米科学,16(6):162-166
    10.郝格格,孙忠富,张录强,等.2009.脱落酸在植物逆境胁迫研究中的进展.中国农学通报,25(18):212-215
    11.何萍,金继运.2000.保绿型玉米的营养生理研究进展.玉米科学,8(4):41-44
    12.何宇炯,徐如涓,赵毓橘.1996.油菜素内酷对绿豆幼叶衰老的生理作用.植物生理学报,22:58-62
    13.侯彩霞,砖新建,李荣.1998.甜菜碱稳定PSII放氧中心外周多肤机理.中国科学,28(4):355-361
    14.胡继超,曹卫星,姜东,等.2004.小麦水分胁迫影响因子的定量研究iv.干旱和渍水胁迫对光合、蒸腾及干物质积累与分配的影响.作物学报,30(4);315-320
    15.黄开健,杨华铨.2001.秋玉米高产栽培技术的最佳密度和施肥量研究.玉米科学,9(1):74-77
    16.黄瑞冬,刘哲,许文娟,等.2003.不同叶片对高粱生长发育和产量形成的作用.作物杂志,6:13-15
    17.黄瑞冬,马鸿图.1993.玉米、高粱根系生长发育规律探讨.耕作与栽培,4:21-23
    18.黄瑞冬,孙璐,肖木辑,等.2009.持绿型高粱B35灌浆期对干旱的生理生化响应.作物学报,35(3):560-565
    19.黄瑞冬,王进军,许文娟.2005.玉米和高粱叶片叶绿素含量及动态比较.杂粮作物,25(1):30-31
    20.黄瑞冬.1991.植物根系研究方法的发展.沈阳农业大学学报,22(2):164-168
    21.黄瑞冬.2008.作物持绿性的遗传、生理基础及其应用前景.沈阳农业大学学报,39(4):387-391.
    22.黄玉山,罗广华,关棨文.1997.镉诱导植物的自由基过氧化损伤.植物学报,39(6):522-526.
    23.霍仕平,晏庆九,宋光英,等.1995.玉米抗旱鉴定的形态和生理生化指标研究进展.干旱地区农业研究,13(3):67-72
    24.贾文锁,王学臣,张蜀秋,等.1996.水分胁迫下ABA由蚕豆根向地上部运输及其在叶片组织中的分布.植物生理学报,22:363-367
    25.蒋明义,郭绍川.1996.水分亏缺诱导的氧化胁迫和植物的抗氧化作用.植物生理学通讯,32(2):144-150
    26.蒋明义,杨文英,徐江,等.1994.渗透胁迫诱导水稻幼苗的氧化伤害.作物学报,20(6):733-738
    27.景蕊莲.1999.作物抗旱研究的现状与思考.干旱地区农业研究,17(2):79-85
    28.兰巨生,胡福顺,张景瑞.1990.作物抗旱指数的概念和统计方法.华北农学报,5(2):20-25
    29.雷振生,林作揖.1996.淮麦区高产小麦品种产量结构及其生理基础的研究.华北农学报,11(1):70-75
    30.李春俭,彭云峰,牛君仿,等.2010.土壤中的玉米根系生长及其研究应注意的问题.植物营养与肥料学报,16(1):225-231
    31.李德全,邹琦,程炳嵩.1992.土壤干早下不同抗早性小麦品种的渗透调节和渗透调节物质.植物生理学报,18(1):37-44
    32.李德全,邹琦,程炳嵩.1989.植物在逆境下的渗透调节.山东农业大学学报,2:75-80
    33.李德顺,刘芳,马永光.2010.玉米根系与抗旱性的关系研究.杂粮作物,30(3):195-197.
    34.李淮滨,宾郁泉,张永明,等.1984.千斤高粱干物质积累分配与产量形成.作物学报,(2):87-93
    35.李良勇,崔国贤.2002.营养胁迫下植物内源激素变化研究进展.作物研究,5:240-243
    36.李雪华,蒋德明,阿拉木萨,等.2002.科尔沁沙地4种植物抗旱性的比较研究.应用生态学报,13(11):1385-1388
    37.李永攀,罗培高,任正隆.2008.小麦持绿性及其产量关系研究.西南农业学报,21(5):1221-1225
    38.李忠光,龚明.2005.植物中超氧阴离子自由基测定方法的改进.云南植物研究,27(2):211-216
    39.林建明,汤玉玮.1986.低pH对水稻黄化叶片硝酸还原酶活性暗诱导的调节.植物生理学报,12(4):307-314
    40.刘崇怀.1993.水分胁迫对葡萄叶片碳水化合物含量的影响.葡萄栽培与酿酒,(4):3-5
    41.刘殿英,石立岩,黄炳茹,等.1993.栽培措施对冬小麦根系及其活力和植株性状的影响.中国农业科学,26(5):51-56
    42.刘海龙,郑桂珍,关军锋,等.2002.干旱胁迫下玉米根系活力和膜透性的变化.华北农学报,17(2):20-22
    43.刘开昌.2003.不同玉米基因型叶片保绿性生理机制及遗传研究.山东农业大学博士学位论文.
    44.刘林.2011.茄未成熟叶与衰老叶叶绿体超微结构比较研究.电子显微学报,30(6):541-546
    45.刘梦雨,陈培元.1990.水分胁迫条件下气孔与非气孔因素对小麦光合的限制.植物生理通讯,(4):24-27
    46.刘少华,陈国祥,胡艳.等.2004.高产杂交稻“两优培九”功能叶抗氧化系统对水分胁迫的响应.作物学报,30(12):1244-1249
    47.刘贤德,李晓辉,李文华,等.2004.玉米自交系苗期耐旱性差异分析.玉米科学,12(3):63-65
    48.刘晓忠,李建坤,王志霞,等.1995.涝渍逆境下玉米叶片超氧物歧化酶和过氧化氢酶活性与抗涝性的关系.华北农学报,10(3):29-32
    49.刘晓忠,李建坤,王志霞,等.1996.应用细胞分裂素类物质提高玉米抗涝能力的效果与作用.作物学报,22(4):403-408
    50.刘永红,杨勤,杨文钰,等.2006.花期干湿交替对玉米干物质积累与再分配的影响.作物学报,32(11):1723-1727
    51.卢从明,张其德,匡廷云,等.1995.水分胁迫对小麦叶绿体激发能分配和光系统Ⅱ原初光能转换效率的影响.生物物理学报,11(1):82-86
    52.鲁雪林,王秀萍,张国新.2006.旱稻抗旱性评价指标研究.中国农学通报,22(1):124-126
    53.陆定志.1983.叶片的衰老及其调节控制.植物生理生化进展,2:20-52
    54.马宗仁,郭博.1991.短芒批碱草和老芒麦在水分胁迫下游离脯氨酸积累的研究—植物的抗早性与脯氨酸积累能力关系的标准.中国草地,(4):12-16
    55.牟筱玲,鲍啸.2003.土壤水分胁迫对棉花叶片水分状况及光合作用的影响.中国棉花,30(9):9-10
    56.裴冬,张喜英,王峻.2002.高粱、谷子根系发育及其抗旱性研究.中国生态农业学报,10(4):28-30
    57.彭海欢,翁晓燕,徐红霞,等.2006.缺钾胁迫对水稻光合特性及光合防御机制的影响.中国水稻科学,20(6):621-625
    58.齐健,宋凤斌,刘胜群.2006.苗期玉米根叶对干旱胁迫的生理响应.生态环境,15(6):1264-1268
    59.曲东,王保莉,山仑,等.1996.水分胁迫下磷对玉米叶片光合色素的影响.西北农业大学学报,24(4):94-97
    60.任东涛,赵松岭.1997.水分胁迫对半干旱区春小麦旗叶蛋白质代谢的影响.作物学报,23(4):468-473
    61.任丽花,王义祥,翁伯琦,等.2005.土壤水分胁迫对圆叶决明叶片含水量和光合特性的影响.厦门大学学报(自然科学版),赠刊
    62.任永峰,刘景辉,李倩,等.2009.不同水分胁迫对裸燕麦根系生长的影响.作物杂志,2:17-21
    63.桑玉强,吴文良,张劲松.2006.毛乌素沙地杨树防护林内紫花苜蓿蒸散耗水规律的研究.农业工程学报,22(5):44-49
    64.上官周平,陈培元.1990.水分胁迫对小麦叶片光合作用的影响及其与抗旱性的关系.西北植物学报,10(1):1-7.
    65.上官周平,陈培元.1989.土壤干旱对小麦叶片渗透调节和光合作用的影响.华北农学报,4:44-49
    66.沈文鹰,叶茂炳,徐朗莱,等.1997.小麦旗叶自然衰老过程中清除活性氧能力的变化.植物学报,39(7):634-640
    67.沈艳,谢应忠.2004.干旱对紫花苜蓿叶绿素含量与水分饱和亏缺的影响.宁夏农学院学报,25(2):25-28
    68.盛宏达,奚雷,王韶唐.1986.小麦籽粒发育初期土壤水分亏缺对植株各部位光合作用的影响.植物生理学报,12(1):109-115
    69.石岩,于振文,位东斌,等.1998.土壤水分胁迫对小麦根系与旗叶衰老的影响.西北植物学报,18(2):196-201
    70.史吉平,董永华.1995.水分胁迫对小麦光合作用的影响.国外农学-麦类作物,5:49-51
    71.斯琴巴特尔,吴红英.2001.不同逆境对玉米幼苗根系活力及硝酸还原酶活性的影响.干旱地区农业研究,19(2):67-70
    72.宋凤斌,戴俊英,谷卫彬,等.1995.水分胁迫对玉米叶片水分状况的影响.吉林农业大学学报,17(1):5-9
    73.宋海星,李生秀.2003.玉米生长空间对根系吸收特性的影响.中国农业科学,36(8):899-904
    74.宋海星,李生秀.2004.水、氮供应和土壤空间所引起的根系生理特性变化.植物营养与肥料学报,10(1):6-11
    75.宋海星,王学立.2005.玉米根系活力及吸收面积的空间分布变化.西北农业学报,14(1):137-141
    76.孙彩霞,沈秀瑛.2002.作物抗旱性鉴定指标及数量分析方法的研究进展.中国农学通报,18(1):49-51
    77.孙存华,白嵩,白宝璋,等.2003.水分胁迫对小麦幼苗根系生长和生理状态的影响,吉林农业大学学报,25(5):485-489
    78.孙国荣,张睿,姜丽芬,等.2001.干旱胁迫下白桦(Betula platyphylla)实生苗叶片的水分代谢与部分渗透调节物质的变化.植物研究,21(3):413-415
    79.孙庆泉,胡昌浩,董树亭,等.2003.我国不同年代玉米品种生育全程根系特性演化的研究.作物学报,29(5):641-645
    80.孙庆泉等.我国不同年代玉米品种叶片iPAS和ABA比较研究.华北农学报,2000(15):105-108
    81.汤日圣,唐现洪,钟雨,等.2006.微生物源脱落酸(ABA)提高茄苗抗旱能力的效果及机理.江苏农业学报,22(1):10-13
    82.汤学军,王康.1993.激动素和抗坏血酸保护受冷害苗细胞膜和促进SOD合成的效应.植物学报(增刊):45-49
    83.汤玉玮,林振武,陈敬祥.1985.硝酸还原酶活力与怍物耐肥性的相关性及其在生化育种上应用的探讨.中国农业科学,18(6):39-45
    84.汤章城,土育启,吴亚华.1986.不同抗旱品种高梁苗中脯氨酸积累的差异.植物生理与分子生物学学报,12:154-162
    85.汪宗立,刘晓忠,李建坤.1988.玉米的涝溃伤害与膜脂过氧化作用和保护酶活性的关系.江苏农业学报,4(3):1-8
    86.王帮锡,黄九常.1990.旱地施肥对春小麦产量和水分利用效率影响的研究.干旱地区农业研究,(4):98-104
    87.王贺正,马均,李旭毅,等.2005.水稻开花期抗旱性鉴定指标的筛选.作物学报,31(11)1485-1489
    88.王建国,杜桂娟,蔡纪新,等.2003.玉米持绿性与其它农艺性状的相关研究.杂粮作物,23(6):336-339
    89.王建国,杜桂娟.2003.玉米持绿性评价方法的探讨.辽宁农业科学,(5):1-4.
    90.王静,杨德光,马凤鸣,等.水分胁迫对玉米叶片可溶性糖和脯氨酸含量的影响.玉米科学,15(6):57-59
    91.王娟,李德全.2001.逆境条件下植物体内渗透调节物质的积累与活性氧代谢.植物学通报,18(4):459-465.
    92.王可玢,许春辉,赵福洪等.1997.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响.生物物理学报,13(2):273~278
    93.王空军,董树亭,胡昌浩,等.2002.我国玉米品种更替过程中根系生理特性的演进Ⅱ.根系保护酶活性及膜脂过氧化作用的变化.作物学报,28(3):384-388
    94.王空军,郑洪建,刘开昌,等.2001.我国玉米品种更替过程中根系时空分布特性的演变.植物生态学报,25(4):472-475
    95.王磊,张彤,丁圣彦,等.2008.干旱和复水对不同倍性小麦光合生理生态的影响.作物学报,28(4):1593-1599
    96.王三根,梁颖.1995.6_BA对低温下水稻幼苗细胞膜系统保护作用的研究.中国水稻科学,9(4):223-229
    97.王书宏,杜永吉.2008.外源激素对干旱胁迫下草莓光合特性的影响.中国农学通报,24(12):367-371
    98.王思思,张吉旺,刘鹏,等.2009.干旱对不同玉米品种苗期根系生理生化特性的影响.山东农业科学,6:36-38
    99.王月福,于振文,潘庆民,等.1998.水分处理与耐旱性不同的小麦光合特性及物质转运.麦类作物学报,18(3):44-47
    100.王振镒,郭蔼光,罗淑萍.1989.水分胁迫对玉米SOD和POD活力及同工酶的影响.西北农业大学学报,17(1):45-49
    101.王忠,2000.植物生理学,北京:中国科学技术出版社
    102.武永胜.2009.持绿型小麦抗旱性的研究.西北农林科技大学硕士学位论文.
    103.萧浪涛,往三根.2004,植物生理学.
    104.谢寅峰,沈惠娟.2000.水分胁迫下3种针叶树幼苗抗旱性与硝酸还原酶和超氧化物歧化酶活性的关系.浙江林学院学报,17(1):24-27
    105.徐世昌,戴俊英,沈秀瑛,等.1995.水分胁迫对玉米光合性能及产量的影响.作物学报,21(3):356-363
    106.薛慧勤,孙兰玲.1997.水分胁迫对不同抗旱性花生品种生理特性的影响.干旱地区农业研究,15(4):82-85
    107.严寒,许本波,赵福永,等.2008.脱落酸和水杨酸对干旱胁迫下芝麻幼苗生理特性的影响.干旱地区农业研究,26(6):163-166
    108.阎成仕,李德全,张建华.2000.冬小麦旗叶早促衰老过程中氧化伤害与抗氧化系统的响应.河北植物学报,20(4):568-576
    109.杨德光,沈秀瑛,赵天宏,等.2002.水分胁迫对不同抗旱性玉米杂交种产量和光合作用的影响.天津农学院学报,9(1):22-25
    110.颜军,苟小军,邹全付,等.2006.分光光度法测定Fenton反应产生的羟基自由基.成都大学(自然科学版),28(2):91-93,103
    111.杨俊霞,郭宝林,鲁韧强,等.2003.土壤含水量对美国黑莓光合特性的影响.果树学报,20(2):116-119
    112.杨兰芳,庞静,彭小兰,等.2011.紫外分光光度法测定植物过氧化氢酶活性.农业基础科学,20::364-366
    113.杨淑慎,山仑,郭蔼光,等.2005.水通道蛋白与植物的抗旱性田.干旱地区农业研究,23(6):214-218
    114.姚庆群,谢贵水.2005.干旱胁迫下光合作用的气孔与非气孔限制.热带农业科学,25(4):80-85
    115.姚雅琴,汪沛洪,胡东维,等.1993.水分胁迫下小麦叶肉细胞超微结构变化与抗旱性的关系.西北植物学报,13(1):16-20
    116.于海秋,徐克章,武志海,等.2002.土壤干旱对玉米叶片膜透性及叶绿体超微结构的影响.吉林农业大学学报,24(3):17-23
    117.于同泉,秦岭,王有年.1996.渗透胁迫板栗苗可溶性糖的积累及组分变化的研究.北京农学院学报,11(1):43-47.
    118.余让才,李明启,范燕萍.1997.高等植物硝酸还原酶的光调控.植物生理学通讯,33(1):61-65
    119.余先驹,王秀全,何丹,等.2004.玉米自交系根系性状遗传初步分析,西南农业学报,17(4):426-429
    120.鱼小军,土芳,白小明.2005.草坪草抗旱性研究现状.草业科学,22(2):96-100
    121.袁永慧,邓西平.2004.干旱与复水对小麦光合和产量的影响.西北植物报,24(7):1250-1254
    122.曾庆平,郭勇.1997.植物的逆境赢与系统抗性诱导.生命的化学,17(3):31-33
    123.张承烈,杨成德,梁厚果.1990.萝卜离体子叶衰老与膜脂过氧化的关系.植物生理学报,16(3):227-232
    124.张春林,郝扬,张仁和,等.2010.干旱及复水对不同抗旱性玉米光合特性的影响.西北农业学报,19(5):76-80
    125.张立新,李生秀.2004.甜菜碱与植物抗旱/盐性研究进展.西北植物学报.24(9):1765-1771
    126.张烈,沈秀瑛,孙彩霞.1999.脯氨酸对玉米抗旱性影响的研究.华北农学报,14(1):38-41
    127.张林刚,邓西平.2000.小麦抗早性生理生化研究进展.干旱地区农业研究,18(3):87-91
    128.张守仁.1999.叶绿素荧光动力学参数的意义及讨论.植物学通报,16(4):444-448
    129.张雄.1982.用TTC(红四氮唑)法测定小麦根和花粉活力及其应用.植物生理学通讯,3:48-50
    130.张宪政.1992.作物生理研究法.农业出版社.
    131.张银锁,宇振荣, P. M. Driessen.2002.环境条件和栽培管理对夏玉米干物质积累、分配及转移的试验研究.作物学报,28(1):104-109
    132.张正斌编著.2003.作物抗旱节水的胜利遗传育种基础.北京:科学出版社
    133.赵博生.衣艳君.刘家/2001/外源甜菜碱对干旱/盐胁迫下的小麦幼苗生长和光合功能的改善.植物学通报,18(3):378-380
    134.赵春江.康书江.王纪华.等.2000.植物内源激素对小麦叶片衰老的调控机理研究.华北农学报,15(2):53-56
    135.赵恢武,陈杨坚,胡鸢雷,等.2000.干旱诱导性启动子驱动的海藻糖-6-磷酸合酶基因载体的构建及转基因烟草的耐旱性.植物学报,42(6):616-619
    136.赵江涛,李晓峰,李航,等.2006.可溶性糖在高等植物代谢调节中的生理作用.安徽农业科学,34(24):6423-6425,6427
    137.赵可夫,王韶唐.1990.作物抗性生理.北京.农业出版社,157-161
    138.赵丽英,邓西平,山仑.2007.不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究.中国农业生态学报,15(1):63-66
    139.赵天宏,沈秀瑛,杨德光,等.2003.水分胁迫及复水对玉米叶片叶绿素含量和光合作用的影响,23(1):33-35
    140.赵宇,蒋明义,张阿英.2008.水分胁迫诱导玉米Zmrboh基因表达及ABA在其中的作用.南京农业大学学报,31(3):26-30
    141.郑盛华,严昌荣.2006.水分胁迫对玉米苗期生理和形态特性的影响.生态学报,26(4):1138-1143
    142.邹定辉,萧凯,张荣铣,等.1996.小麦生育后期根系活性变化的研究.湖南农业大学学报,22(5):427-432
    143.邹琦.2000.植物对水分胁迫的响应及其在旱作农业和抗早育种中的应用见吴平.陈昆松主编植物分子生理学进展浙江:浙江大学出版社7月第一版
    144. Alia, S, Saradhi, P.1991. Proline accumulation under heavy metal stress. Plant Physiol,138:554-558.
    145. Almoguera, C, Jordano, J.1992. Developmental and environmental concurrent expression ofsunflower dry-seed-stored low-molecular-weight heat-shock protein and Lea mRNAs. Plant molecularbiology,19(5):781-792.
    146. Bannister P.1986. Observation on water potential and drought-resistance of trees and shrubs after aperiod of summer drought around Dunedin. New Zealand Journal of Botany,24(1):387-392.
    147. Barry, C.S.2009. The stay-green revolution: recent progress in deciphering the mechanisms ofChlorophyll degradation in higher plants. Plant Science,176:325-333
    148. Barton R.1970. The production and behavior of phytoferritin particles during senescence of Phasolusleaves. Planta,94:73.
    149. Bekavac G.1998. Path analysis of stay-green trait in maize. Cereal research communications.26(2):1661-1671.
    150. Borrell A K, Bindinger F R, Tao Y, Mcintyre C L,Douglas A C.2001.Physiological and molecularaspects of stay green in sorghum. In”Proc.4thAust. Sorghum Conf., Kooralbyn, Queensland,5-8February2001”
    151. Borrell, A. K., Tao, Y. and McIntyre, C. L.1999. Physiological basis, QTL and MAS of the stay-greendrought resistance trait in grain sorghum. In: Workshop on Molecular Approaches for the GeneticImprovement of Cereals for Stable Production in Water-Limited,21-25.
    152. Borrell, A.K., Hammer, G.L.2000. Nitrogen dynamics and the physiological basis of stay-green insorghum. Crop Science,40:1295-1307
    153. Campos, H., Cooper, M., Habben, J.E., Edmeades, G.O., Schussler, J.R.2004. Improving droughttolerance in maize: a view from industry. Field Crop Research,90:19-34
    154. Cha K W, Lee Y J, Koh H J, Lee B M, Nam Y W, Paek N C.2002. Isolation, characterization, andmapping of the stay green mutant in rice. Theoretical and Applied Genetics,104(4):526-532.
    155. Choi KJ, Chin MS, parkKY, KimSL, Chung, TW, Lee Hs.1995. Segregation of stay-green charactersin an F2population. Maize-Genetics-Cooper-ation-Newsletter,69,123
    156. Close, T.1996. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins.Physiologia Plantarum,97(4):795-803.
    157. Craft-Brandner SJ, Below FE, Wittenbach VA, Harper JE, Hageman RH.1984. Differentialsenescence of maize hybrids following ear removal:II Selected leaf. Plant Physiol,74:368-373
    158. Creelman, R., Mullet, J.1995. Jasmonic acid distribution and action in plants: regulation duringdevelopment and response to biotic and abiotic stress. Proceedings of the National Academy ofSciences of the United States of America,92(10):4114-4119.
    159. Crowe JH, Hoekstra FA, Crowe LM.1992. Anhydrobiosis. Annual Review of Physiology54,579-600
    160. Cukadarolmedo Miller J F, Hammond J J.1997. Combining ability of the stay green trait and seedmoisture content sunflower. Crop Sci,37(2):378-382.
    161. Cumbes, Q.1989. Hydroxyl radical scavenging activity of compatible Smirnoff, solutes.Phytochemistry,28(4):1057-1060.
    162. Cuming, A.1999. Seed Proteins. Kluwer Academic Publishers, Dordrecht, LEA proteins TheNetherlands,753-780.
    163. Dhindsa R S. Matowe W.1982. Drought tolerance in two mosses: Correlated with enzymatic defenceagainst lipid peroxidation. Journal Experimental Botany,32:79-91.
    164. Dure III, L.1997. LEA proteins and the desiccation tolerance of seeds.
    165. Dure L.1993. Plant responses to cellular dehydration during environment stress. Plant Physiology,103(10):91-93.
    166. Duvick DN.1984. Genetic contribution to yield gains of US hybrid maize1930-1980. In Geneticcontribution to yield gains of five major crop plants (CssAspecial publication7).15-47.
    167. Feder, M., Hofmann, G.1999. Heat-shock proteins, molecular chaperones, and the stress response:evolutionary and ecological physiology. Annual Review of Physiology,61(1):243-282.
    168. Fridovich I.1975. Superoxide dismutase. Ann Rev Biochem,44:147-159
    169. G. Spano, N. Di Fonzo and C. Perrotta.2003. Physiological characterization of stay green mutants indurum wheat. Journal of experimental botany.54(386):1415-1420.
    170. GAN S, AMASINO R M.1995. Inhibition of leaf senescence by auto regulated production ofcytokinin. Science,270:1986-1987
    171. Gentinetta E, Ceppi D, Lepori C, et al.1986. A major gene for delayed senescence in maize. PlantBreeding,97:193-203
    172. Genty B, Briantais J-M, Baker N R.1989.Biochim. Biophys. Acta,900:87-92
    173. Griffith CM, Hosken SE, Oliver D, Vhojecki J, Thomas H.1997. Sequencing, expression pattern andRFLP mapping of a senescence-enhanced cDNA from Zea mays with high homology to oryzain χ andaleurain. Plant Molecular Biology34:815-821.
    174. Guiamet JJ, Schwartz E, Picher sky E, Nooden LD (1991).1996. Characterization of cytoplasmic andnuclear mutations affecting Chlorophyll and Chlorophyll-binding proteins during sense cenceinsoybean. Plant Physiol,227-231.
    175. Hashimoto H, Kura-Hotta M and Katoh S.1989. Changes in protein content and in the structure andnumber of Chloroplasts during leaf senescence in rice seedings. Plant Cell Physiology,30:705-707
    176. Heidrum D, Helga W, Heike H, et al.1996. Change in D-protein turnover and recovery ofphotosystem II activity precede accumulation of cholorophyll in plants after release from mineral stress.Planta,199:34-42.
    177. Hlavinka, P., Trnka, M., Semeradova, D., Dubrovsky, M., Zalud, Z., Mozny, M.2009. Effect ofdrought on yield variability of key crops in Czech Republic. Agricultural and Forest Meteorology,149:431-442
    178. Hoekstra, F, Golovina, E, Buitink, J.2001. Mechanisms of plant desiccation tolerance. Trends in PlantScience,6(9):431-438.
    179. Hortensteiner S, Vicentini F, Matile P.1995. Chlorophyll breakdown in senescent leaves: enzymiccleavage of phaeophorbide a in vitro. New phytologist129:237-246.
    180. Howarth CJ, Cavan GP, Sket KP, Layton RHW, Witcombe JR.1994. Mapping QTLs (quantitative traitloci) for heat tolerance in pearl millet. combe, JR, Duncan RR, eds. Use of molecular markers insorghum and pearl millet breeding for developing countries. Proceedings of an ODA Plant SciencesResearch Programme Conference, Norwich, Overseas Development Administration.
    181. Hsiao T.C., Brodford K J.1983.Physiological consequences of cellular water deficits[A].Taylor H M,et a1.Limitations to Efficient Water Use in Crop Production[C]. Madison, USA: American Society ofAgronomy,217-265
    182. Hsiao T. C.1973. Plant responses to water stress. Annual Review of Plant Physiology.24(6):519-570.
    183. Hugh J E.2002. Stomatal and non-stomatal restrictions to carbon assimilation in soybean (Glycinemax) lines differing in water use efficiency. Environmental and Experimental Botany.48(3):237-246.
    184. Humbeck K, Quast S and Krupinska K.1996. Functional and molecular changes in the photosyntheticapparatus during senescence of flag leaves from field-grown barley plants. Plant Cell and Environment,19:337-344.
    185. HURNG W P. KAOCH.1994. Effect of flooding on the activities of some enzymes of activatedoxygen metabolism the levels of antioxidants and lipid peroxidation senescing tobacco leaves. PlantGrowth Regulation.39:634-640
    186. Jiang L-F, Shi F-C, Wang H-T, et al.2005. Application tryout of Chlorophyll meter SPAD-502inforestry. Chinese Journal of Ecology,24(12):1543-1548.
    187. Jones M M, Rawson H M.1979. Influence of rate of development of leaf water deficits uponphotosynthesis, leaf conductance, water use efficiency and osmotic potential in sorghum. PlantPhysiology,45(2):103-111.
    188. Karpinska B, Wingsle G,2000. Antagonistic effects peroxide and glutathione of hydrogen onacclimation to excess excitation energy in Karpinski S. Arabidopsis. IUBMB Life50,2I-26.
    189. Kermode, A.1997. Approaches to elucidate the basis of desiccation-tolerance in seeds. Seed ScienceResearch,7(2):75-95.
    190. Koda, Y,1992. The role of jasmonic acid and related compounds in the regulation of plantdevelopment. International Review of Cytology: A Survey of Cell Biology,135:155-181.
    191. Krause GH,Weis E.1991. Chlorophyll fluorescence and photosynthesis. Ann. Rew. Plant physiol. Mol.Biol.,42:313-349
    192. Kühl M, Chen M, Ralph P J, Schreiber U, Larkum A W D.2005.A niche for cyanobacteria containingChlorophyll d. Nature,433:820
    193. Leshem Y Y, Wurzburger J, Grossman S,1981.Cytokinin interaction with tree radical metabolism andsenescence. Physiol Plant,53:9-12
    194. Li, L, Van Staden, J.1998. Effects of plant growth regulators on the antioxidant system in callus oftwo maize cultivars subjected to water stress. Plant Growth Regulation,24(1):55-66
    195. Lobell, D.B., Field, C.B.2007. Global scale climate-crop yield relationships and the impacts of recentwarming. Environmental Research Letters,2:1-7
    196. Luna M. Badiani M. Felice M.1985. Selective enzyme inactivation under water stress in maize (Zeamays L.) and wheat (Triticum aestiwlm L.) seedlings. Environmental and Experimental Botany.25:153-156.
    197. Lynch J P.1995.Root architecture and plant productivity. Plant Physiol,109:7-13
    198. Mae T, Thomas H, Gay AP, Makino A, Hidema J.1993. Leaf development in Loliym temulentum:photosynthesis and photosynthetic proteins in leaves senescing under different irradiances. Plant andCell physiology34,391-399.
    199. Mark well J, Osterman JC, Mitchell JL.1995. Calibration of the Minolta SPAD-502leaf Chlorophyllmeter. Photosynthesis Research,46:467-472.
    200. Morgan J M, Tan M K.1996. Chromosomal location of a wheat osmoregulation gene using RFLPanalysis. Aust J. Plant Physiol,23:803-806
    201. gren E.1991.Prediction of photoinhibition of photosynthesis from measurements of fluorescencequenching components. Planta,184:538-544
    202. PASTORIGM, TRIPPIVS.1993. Antioxidant protection in a drought-resistant maize strain during leafsenescence. Physiol. Plant,87:227-231
    203. Pierce R O, Knowles P F, Phillips D A.1984. Inheritance of delayed leaf senescence in soybean. CropSci,24:515-518.
    204. Quartacci M F. Vari-Zzo F.1992. Water stress an free radical mediated changes in sunflower seedlings.Plant Physiology.142:621-625.
    205. Ralph P J, Gademann R.2005.Rapid light curves: A powerful tool to assess photosynthetic activity.Aquat Bot,82:222-237
    206. Roberts, J, DeSimone, N, Lingle, W, et al.1993. Cellular concentrations and uniformity of cell-typeaccumulation of two LEA proteins in cotton embryos. The Plant Cell Online,5(7):769.
    207. Rong-hua LI, MSc candidate, Pei-guo GUO, Baum Michael, Grando Stefania, Ceccarelli Salvatore.
    2006. Evaluation of Chlorophyll Content and Fluorescence Parameters ad Indicators of DroughtTolerance in Barley. Agricultural Sciences in China,5(10):751-757.
    208. Russell W.A..1991. Registration of B93and B94inbred lines of maize. Crop Science,31(1):247-248.
    209. Rut-Chi, P., Huang-Qing, G.1995. Effect of Methyl Jasmonate on the Growth and Drought Resistsncein Peanut Seedlings. ACTA PHYTOPHISIOLOGICA SINICA,3
    210. Schnettger B, CritChley C, Santore UJ.1994. Relationship between photoinhibition of photosynthesis,D1protein turnover and Chloroplast structure: Effect of protein synthesis. Plant Cell Environ,17:55-64.
    211. Schreiber U, Bilger W, Neubauer G.1994. In: Ecophysiology of Photosynthesis.(eds Schulze, E-D andCaldwell, MM.),Springer-Verlag, Berlin
    212. Shah C J, Llan1i L, Liang G S.2012. Antioxidant properties of four nativeg, ses in Loess Plateauunder drought stress. Actx L, Cologicx Sinicx,32(4):1174-1184.
    213. Smart CM, Gene expression during leaf senescence, New Phytologist,1994,126:419-448
    214. Smucker A J M. Aiken R M.1992. Dynamic root responses to water deficits. SoilScience,154(4):281-289.
    215. Solomon, A, Beer, S, Waisel, Y, et al.1994. Effects of NaCI on the carboxylating activity of Rubiscofrom Tamarix jordanis in the presence and absence of proline-related compatible solutes. PhysiologiaPlantarum,90(1):198-204.
    216. Spano G, Di Fonzo N, Perrotta C, Platani C, Ronga G, Lawlor DW. Napier J A, Shewry P R.Physiological characterization of ‘stag-green’ mutants in durum wheat. Journal of Experimental Botany,2003,54(386):1415-1420
    217. Staden V, Cook E L.1988. Cytokinins and senescence. In: Nooden L D, Leopold A C eds. Senescenceand Aging in Plant. San Diego(USA). Academic Press,281
    218. Stoop JMH, Williamson JD, Pharr DM.1996. Mannitol metabolism in plants: a method for copingwith stress. Trends in Plant Science1,139-144.
    219. Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M.2002. Yamaguchi-Shinozaki Kgalactinol synthase in Shinozaki K.(4)17-26.
    220. Tang R-S, Mei C-S, Chen Y F.1997. The regulation of4-PU on senescence of rice leaves andendogenous hormones. Acta Phytophysiol Sin,23:169-174
    221. Thomas, H., Howarth, C.J.2000. Five ways to stay green. Journal of Experimental Botany,51:329–337
    222. Thorogood D, Humphreys M, Turner L, Laroche S.1999. QTL analysis of Chlorophyll Loliumperenne. Abstracts of Plant and Animal Genome, San Diego,280.
    223. Van Kooten O, Snel J F H.1990.The use of Chlorophyll fluorescence in plant stress physiology.Photosynthesis Research25:147-150
    224. Van Oosterom E J, Jayachandran R, Bidinger F R.1996. Diallel analysis of the stay-green trait and itscomponents in sorghum. Crop Sci,36:549-555.
    225. Virginia M. Luquez Juan J. Cuiamet.2002. The stay green mutations d1and d2increase water stresssusceptibility in soybeans.53(373):421-1428.
    226. W. Xu. D. T. Rosenow. H. T. Nguyen.2000. Stay green traits in grain sorghum: relationship betweenvisual rating and leaf Chlorophyll concentration. Plant Breeding,119(4):365-367.
    227. Waggoner PE, Berger RD.1987. Defoliation, disease, and growth. Phytopathology,77:393-398
    228. Walulu R S, Rosenow D T, Wester D B, Nguyen H T.1994. Inheritance of the stay green trait insorghum. Crop Sci,34(4):970-972.
    229. Wehmeyer, N, Hernandez, L, Finkelstein, R, et al.1996. Synthesis of small heat-shock proteins is partof the developmental program of late seed maturation. Plant Physiology,112(2):747.
    230. Wehmeyer, N, Vierling, E.2000. The expression of small heat shock proteins in seeds responds todiscrete developmental signals and suggests a general protective role in desiccation tolerance. PlantPhysiology,122(4):1099.
    231. White A J, CritChley C.1999. Rapid light curves: A new fluorescence method to assess the state of thephotosynthetic apparatus. Photosynth Res,59:6372
    232. Willman, M. R., Below, F. E. Hageman, R. H., Lambert, R. J.1987. Relationship betweenear-removal-induced leaf senescence and green score in maize. Crop Science,27:898-902
    233. Xu, W., Rosenow, D.T., Nguyen, H.T.2000. Stay green trait in grain sorghum: relationship betweenvisual rating and leaf Chlorophyll. Plant Breeding,119:365-367
    234. Zhang J X. Kirham M B.1994. Drought stress induced changes in activities of superoxide dismutasecatalase and peroxidase in wheat species. Plant and Cell Physiology.35(5):785-791.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700