氨基糖苷类药物残留检测筛选和确证方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着抗体制备技术、荧光示踪标记技术、色谱质谱技术的不断发展,小分子化合物的新的检测模式和检测方法也不断涌现。氨基糖普类(AGs)抗生素是一类含有氨基糖与氨基环醇结构的药物,在我国畜牧养殖中广泛用于奶牛乳房炎的治疗和促生长作用,对该类抗生素在动物性食品中的残留监控也是我国食品安全工作的重要组成部分。因此,以现有检测方法为基础,结合新的检测模式或新的示踪材料,开展AGs类抗生素快速筛选和仪器确证新方法的探索研究具有非常重要的意义。
     本研究制备了安普霉素、庆大霉素和卡那霉素的酶标抗原,建立了可视化凝胶ELSA快速检测方法。其中,安普霉素可视化凝胶ELSA方法灵敏度为0.5μg/L,对猪肉、鸡肉的Cut-off值为3μg/kg,对牛奶的Cut-off值为3μg/L,对猪肝、鸡肝的Cut-off值为10μg/kg,方法采用二步法,检测时间为20min;同步检测庆大霉素和卡那霉素的可视化凝胶ELISA方法的灵敏度为2.0μg/L,对牛奶的Cut-off值为6μg/L,方法采用一步法,检测时间为15min。
     制备了庆大霉素和卡那霉素荧光微球示踪物,建立了荧光微球免疫层析检测方法。其中,庆大霉素检测方法为定性方法,方法灵敏度为100μg/L,牛奶样品Cut-off值为100μg/L,方法采用微孔垂直上样法,检测时间为20min;卡那霉素检测方法为定量方法,方法的IC50值为24.8μg/L,线性范围(以20%~80%抑制率对应的浓度计算)为9.5~100μg/L,最低检出限(以10%抑制率对应的浓度计算)为5μg/L。以25、50和100μg/L浓度添加,牛奶中的平均添加回收率在78.4%~92.7%之间,变异系数在10.8%~12.4%之间。
     本研究尝试采用亲水作用色谱(HILIC)模式,利用低密度键合C18柱对AGs类抗生素进行分离测定,建立了牛奶中12个AGs类抗生素的UPLC-MS/MS检测方法。方法采用常见的乙腈和甲酸水作为流动相,梯度洗脱条件,12种AGs类抗生素均得到良好的保留和洗脱,出峰时间在1min以后,峰型尖锐对称,整个反应条件中均没有使用离子对试剂。该方法的LOD为为10~50μg/L,LOQ为20~100μ/L,在20~5000pg/L范围内线性关系良好。以20~1000μg/L浓度添加试验表明,样品中的平均添加回收率在60.9%~109.2%之间,日内变异系数在4.6%~14.8%之间,日间变异系数在6.0%~16.2%之间。综上所述,本研究建立的AGs类抗生素残留检测快速筛选和仪器确证的方法,其方法性能符合残留检测的需求,丰富了AGs类残留检测方法体系,为动物性食品中AGs类抗生素的残留监测提供了有效的技术手段。
With the development of antibody preparation, fluorescent tracer marker, chromatography and mass spectrometry technologies, there are many novel and rapid methods emerging for detection of small molecule compounds. Aminoglycosides (AGs) are a class of antibiotic drugs containing amino sugars and amino alcohols ring structure, which are widely used to treat mastitis in dairy and to promote growth in our country. At the same time, the monitoring for AGs antibiotics residue in animal foods is an important part in China's food safety system. Therefore, it is very important significance to explore and develop new rapid screening methods and validation methods for detection of AGs antibiotics residue, based on the combination of existing residue detection method with new analytical technologies.
     In this study, Antigen-enzyme tracers were prepared, and visual gel-ELISA methods were established. For detection of apramycin, the sensitivity of the gel-ELISA method was0.5μg/L, and the Cut-off values for raw milk, muscles and livers was3μg/L,3μg/kg, and10μg/kg, respectively.It was a two-steps method with the detection time of20min. For detection of gentamicin and kanamycin simultaneously, the sensitivity of the gel-ELISA method was2.0μg/L, and the Cut-off values for raw milk was5μg/L. It was a one-step method with the detection time of15min.
     Antibody-fluorescent microspheres tracers were prepared, and Fluorescent immunochromatographic methods were established. For detection of gentamicin, it was a yes/no method, with the Cut-off value of100μg/L in solution and milk. Vertical chromatography mode in wells was applied, and the detection time was within20min. For detection of kanamycin, it was a qualitative method, with the LOD of5μg/L. The dynamic range IC20~IC80was calculated as9.5-100μg/L, and the IC5o was24.8μg/L. When the blank samples were spiked at25,50and100μg/L, the mean recovery ranged from78.4~92.7%, with intra-assay CVs ranging from10.8~12.4%.
     In the study, low-density bonded C18column was selected for determination of AGs based on hydrophilic interaction chromatography (HILIC) mode, and a UPLC-MS/MS method for determination of12AGs antibiotics residue in milk was developed successfully. The common reagents (such as acetonitrile, formic acid and water) were used as mobile phase, and gradient elution mode was used. The results showed sharp symmetrical peaks and good retention for12AGs antibiotics, with the retention time of more than1min. There is no ion-pair reagents used in the method.
     The result showed good linear relationships for analytes ranged from20-5000μg/L, and the LOD and LOQ for the method were10~50μg/L and20~100μg/L, respectively. Fortification at the range of20~1000μg/L, mean recoveries were60.9%~109.2%with intra-and inter-assay CVs of4.6%-14.8%and6.0%~16.2%in milk.
     In summary, the methods established in the study were rapid and effective, which could provide effective techniques and enrich the detection system for AGs antibiotics residue monitoring.
引文
[1]国务院文件.中华人民共和国食品安全法实施条例.[2014-4-19].http://www.gov.cn/zwgk/2009-07/24/content_1373609.htm.
    [2]国务院文件.国务院办公厅关于印发国家食品安全监管体系“十二五”规划的通知国办发[2012)36号. [2014-4-19]. http://www.gov.cn/zwgk/2012-07/21/content_2188309.htm.
    [3]陈仗榴.兽医药理学(第3版)[平装].第3版.中国农业出版社,2011.
    [4]MS Boyce P. Wanamaker DVM, LVMT Kathy Massey. Applied pharmacology for veterinary technicians [平装].Saunders; 4,2008.
    [5]刘晓霞.动物源性食品中氨基糖苷类抗生素残留分析方法研究:[硕士论文]湖南师范大学,2011.
    [6]方应权马廷升.药物化学[其他].第1版.化学工业出版社,2013.
    [7]吴立军.天然药物化学.第6版.人民卫生出版社,2011.
    [8]Forge A, Schacht J. Aminoglycoside antibiotics. Audiology and Neurotology,2000,5(l):3-22.
    [9]陈蔚东.氨基糖苷类抗生素有关物质检测方法研究.海峡药学,2008(09):128-130.
    [10]郑卫.氨基糖苷类抗生素研究的新进展.国外医药(抗生素分册),2005(03):101-110.
    [11]林文良.氨基糖苷类抗生素发展概述.海峡药学,2001(04):5-9.
    [12]Hodgson E, Smart R C. Introduction to biochemical toxicology. Toxicology,2001,2.
    [13]Additives J F W E, Meeting J F W E, Organization W H. Toxicological evaluation of certain veterinary drug residues in food. World Health Organization,2005.
    [141 Guthrie O N W. Aminoglycoside induced ototoxicity. Toxicology,2008,249(2-3):91-96.
    [15]Kaloyanides G J, Pastoriza-Munoz E. Aminoglycoside nephrotoxicity. Kidney Int,1980,18(5):571-582.
    [16]Morales A I, Buitrago J M, Santiago J M, et al. Protective effect of trans-resveratrol on gentamicin-induced nephrotoxicity. Antioxidants and Redox Signaling,2002,4(6):893-898.
    [17]Avent M L, Rogers B A, Cheng A C, et al. Current use of aminoglycosides:Indications, pharmacokinetics and monitoring for toxicity. Internal Medicine Journal,2011,41(6):441-449.
    [18]Lemeire K, Van Merris V, Cortvrindt R. The antibiotic streptomycin assessed in a battery of in vitro tests for reproductive toxicology. Toxicology in Vitro,2007,21(7):1348-1353.
    [19]Arya D P. Aminoglycoside antibiotics:From chemical biology to drug discovery. John Wiley & Sons, 2007.
    [20]Forge A, Schacht J. Aminoglycoside antibiotics. Audiology and Neurotology,2000,5(l):3-22.
    [21]Woodward K N, Watson D H. The toxicity of particular veterinary drug residues. Pesticide, veterinary and other residues in food,2004:175-223.
    [22]Morar M, Wright G D. The genomic enzymology of antibiotic resistance. Annual review of genetics, 2010,44:25-51.
    [23]Jana S, Deb J K. Molecular understanding of aminoglycoside action and resistance. Applied Microbiology and Biotechnology,2006,70(2):140-150.
    [24]Shi K, Berghuis A M. Structural basis for dual nucleotide selectivity of aminoglycoside 2-phosphotransferase IVa provides insight on determinants of nucleotide specificity of aminoglycoside kinases. Journal of Biological Chemistry,2012,287(16):13094-13102.
    [25]Magalhaes M L, Vetting M W, Gao F, et al. Kinetic and structural analysis of bisubstrate inhibition of the Salmonella enterica aminoglycoside 6'-N-acetyltransferase. Biochemistry,2008,47(2):579-584.
    [26]Wright E, Serpersu E H. Enzyme-substrate interactions with an antibiotic resistance enzyme: Aminoglycoside nucleotidyltransferase (2")-Ia characterized by kinetic and thermodynamic methods. Biochemistry,2005,44(34):11581-11591.
    [27]Zhang W, Fisher J F, Mobashery S. The bifunctional enzymes of antibiotic resistance. Current Opinion in Microbiology,2009,12(5):505-511.
    [28]Caldwell S J, Berghuis A M. Small-angle X-ray scattering analysis of the bifunctional antibiotic resistance enzyme aminoglycoside (6') acetyltransferase-Ie/aminoglycoside (2 ") phosphotransferase-Ia reveals a rigid solution structure. Antimicrobial Agents and Chemotherapy, 2012,56(4):1899-1906.
    [29]武灵芝,胡栋,秦猛.氨基糖苷类修饰酶引起的细菌耐药性机制的研究进展.生物物理学报,2013(01):15-25.
    [30]动物性食品中兽药最高残留限量.中国猪业,2010(08):10-12.
    [31]Council Regulation (EU) N 37/2010 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Official Journal of European Union, 2010,L15:1-72.
    [32]Provisional maximum residue limits for agricultural chemicals in foods. http://www.mhlw.go.jp/english/topics/mrls/dl/mrls8.pdf.
    [33]FDA. Part 556 tolerances for residues of new animal drugs in food. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=556,Page Last Updated:06/01/2013.
    [34]Kitagawa T, Fujiwara K, Tomonoh S, et al. Enzyme immunoassays of kanamycin group antibiotics with high sensitivities using anti-kanamycin as a common antiserum:reasoning and selection of a heterologous enzyme label. Journal of Biochemistry,1983,94(4):1165-1172.
    [35]Schnappinger P, Usleber E, Martlbauer E, et al. Enzyme immunoassay for the detection of streptomycin and dihydrostreptomycin in milk. Food and Agricultural Immunology,1993,5(2):67-73.
    [36]Kampsholtzapple C, Stanker L H, Deloach J R. Development of a monoclonal antibody-based ELISA for the anthelmintic hygromycin-B. Journal of Agricultural and Food Chemistry,1994,42(3):822-827.
    [37]Tanaka T, Ikebuchi H, Sawada J, et al. Easy enzyme-linked immunosorbent assay for spectinomycin in chicken plasma. Journal of AOAC International,1995,79(2):426-430.
    [38]Watanabe H, Satake A, Kido Y, et al. Production of monoclonal antibody and development of enzyme-linked immunosorbent assay for kanamycin in biological matrices. Analyst, 1999,124(11):1611-1615.
    [39]Nouws J M, Keukens H. Immunochemical detection of aminoglycosides in milk and kidney. Analyst, 1999,124(3):301-305.
    [40]Watanabe H, Satake A, Kido Y, et al. Monoclonal-based enzyme-linked immunosorbent assay and immunochromatographic rapid assay for dihydrostreptomycin in milk. Analytica Chimica Acta, 2002,472(1):45-53.
    [41]Loomans E, Van Wiltenburg J, Koets M, et al. Neamin as an immunogen for the development of a generic ELISA detecting gentamicin, kanamycin, and neomycin in milk. Journal of Agricultural and Food Chemistry,2003,51(3):587-593.
    [42]Samsonova J, Bashkurov M, Ivanova N, et al. ELISA of streptomycin in buffer and milk:Effect of reagents'structure and analysis format on assay performance. Food and agricultural immunology, 2005,16(1):47-57.
    [43]Jin Y, Jang J W, Han C H, et al. Development of immunoassays for the detection of kanamycin in veterinary fields. JOURNAL OF VETERINARY SCIENCE,2006,7(2):111-117.
    [44]Jin Y, Jang J, Lee M, et al. Development of ELISA and immunochromatographic assay for the detection of neomycin. Clinica Chimica Acta,2006,364(1):260-266.
    [45]Jin Y, Jang J, Han C, et al. Development of ELISA and immunochromatographic assay for the detection of gentamicin. Journal of Agricultural and Food Chemistry,2005,53(20):7639-7643.
    [46]Darwish I A, Mahmoud A M, Al-Majed A A. Generic simple enzyme immunoassay approach to avert small molecule immobilization problems on solid phases:Application to the determination of tobramycin in serum. Talanta,2007,72(4):1322-1328.
    [471 Chen Y, Shang Y, Wu X, et al. Enzyme-linked immunosorbent assay for the detection of neomycin in milk:Effect of hapten heterology on assay sensitivity. Food and Agricultural Immunology, 2007,18(2):117-128.
    [48]Chen Y, Wang Z, Wang Z, et al. Rapid enzyme-linked immunosorbent assay and colloidal gold immunoassay for kanamycin and tobramacin in swine tissues. Journal of Agricultural and Food Chemistry,2008,56(9):2944-2952.
    [49]Chen Y, Shang Y, Li X, et al. Development of an enzyme-linked immunoassay for the detection of gentamicin in swine tissues. Food chemistry,2008,108(1):304-309.
    [50]Galvidis I A, Burkin M A. Monoclonal antibody-based enzyme-linked immunosorbent assay for the aminoglycoside antibiotic kanamycin in foodstuffs. Russian Journal of Bioorganic Chemistry, 2010,36(6):722-729.
    [51]Xu N F, Qu C L, Ma W, et al. Development and application of one-step ELISA for the detection of neomycin in milk. Food and Agricultural Immunology,2011,22(3):259-269.
    [52]Sheng W, Yang L, Wang J, et al. Development of an enzyme-linked immunosorbent assay for the detection of gentamycin residues in animal-derived foods. LWT-Food Science and Technology, 2013,50(1):204-209.
    [53]Burkin M, Galvidis I. Immunochemical detection of apramycin as a contaminant in tissues of edible animals. Food Control,2013,34(2):408-413.
    [54]Stead D A. Current methodologies for the analysis of aminoglycosides. Journal of Chromatography B: Biomedical Sciences and Applications,2000,747(1):69-93.
    [55]Yang J Y, Zhang Y, Lei H T, et al. Development of an ultra-sensitive chemiluminescence enzyme immunoassay for the determination of diethylstilbestrol in seafood. Analytical Letters, 2013,46(14):2189-2202.
    [56]Haiyang J, Wenjun W, Jinghui Z, et al. Determination of zeranol and its metabolites in bovine muscle and liver by a chemiluminescence enzyme immunoassay:Compared to an ultraperformance liquid chromatography tandem mass spectroscopy method. Luminescence,2013.
    [57]Tao X, Chen M, Jiang H, et al. Chemiluminescence competitive indirect enzyme immunoassay for 20 fluoroquinolone residues in fish and shrimp based on a single-chain variable fragment. Analytical and Bioanalytical Chemistry,2013,405(23):7477-7484.
    [58]Wang Q, Haughey S A, Sun Y, et al. Development of a fluorescence polarization immunoassay for the detection of melamine in milk and milk powder. Analytical and Bioanalytical Chemistry, 2011,399(6):2275-2284.
    [59]Zhang S, Wang Z, Nesterenko I S, et al. Fluorescence polarisation immunoassay based on a monoclonal antibody for the detection of sulphamethazine in chicken muscle. International Journal of Food Science &Technology,2007,42(1):36-44.
    [60]Xu X, Draney D R, Cheung L. Cyanine dyes and their conjugates. Google Patents,2013.
    [61]Waggoner A S. Cyanine dyes as labeling reagents for detection of biological and other materials by luminescence methods. Google Patents,2000.
    [62]Bienenmann-Ploum M E, Huet A C, Campbell K, et al. Fiveplex flow cytometric immunoassay for the simultaneous detection of six coccidiostats in feed and eggs.|Conference poster].:Residues of veterinary drugs in food. Proceedings of the EuroResidue VII Conference, Egmond aan Zee, The Netherlands,14-16 May,2012. Volume 1,2 and 3.,2012[C]. Board of the EuroResidue Conferences Foundation.
    [63]Wang Y, Wang D, Zou M, et al. Application of suspension array for simultaneous detection of antibiotic residues in raw milk. Analytical Letters,2011,44(16):2711-2720.
    [64]Christie M, Boland A, Huntzinger E, et al. Structure of the PAN3 pseudokinase reveals the basis for interactions with the PAN2 deadenylase and the GW182 proteins. Molecular Cell,2013,51(3):360-373.
    [65]Charest Morin X, Fortin J P, Bawolak M T, et al. Green fluorescent protein fused to peptide agonists of two dissimilar G protein-coupled receptors:Novel ligands of the bradykinin B2 (rhodopsin family) receptor and parathyroid hormone PTH1 (secretin family) receptor. Pharmacology Research & Perspectives,2013,1(1).
    [66]Le T, Yan P, Liu J, et al. Simultaneous detection of sulfamethazine and sulfaquinoxaline using a dual-label time-resolved fluorescence immunoassay. Food Additives & Contaminants:Part A, 2013,30(7):1264-1269.
    [67]Xia X, Xu Y, Ke R, et al. A highly sensitive europium nanoparticle-based lateral flow immunoassay for detection of chloramphenicol residue. Analytical and Bioanalytical Chemistry, 2013,405(23):7541-7544.
    [68]Wang Q, Nchimi Nono K, Syrja'npa'a" M, et al. Stable and highly fluorescent europium (III) chelates for Time-Resolved immunoassays. Inorganic Chemistry,2013,52(15):8461-8466.
    [69]Chen J, Xu F, Jiang H, et al. A novel quantum dot-based fluoroimmunoassay method for detection of Enrofloxacin residue in chicken muscle tissue. Food Chemistry,2009,113(4):1197-1201.
    [70]Zhu K, Li J, Wang Z, et al. Simultaneous detection of multiple chemical residues in milk using broad-specificity antibodies in a hybrid immunosorbent assay. Biosensors and Bioelectronics, 2011,26(5):2716-2719.
    [71]Shen J, Xu F, Jiang H, et al. Characterization and application of quantum dot nanocrystal-monoclonal antibody conjugates for the determination of sulfamethazine in milk by fluoroimmunoassay. Analytical and Bioanalytical Chemistry,2007,389(7-8):2243-2250.
    [72]Wu J, Xu F, Zhu K, et al. Rapid and sensitive fluoroimmunoassay based on quantum dots for detection of melamine in milk. Analytical Letters,2013,46(2):275-285.
    [73]Liu J, Yang X, He X, et al. Fluorescent nanoparticles for chemical and biological sensing. Science China Chemistry,2011,54(8):1157-1176.
    [74]Guirgis B S, E Cunha C S, Gomes I, et al. Gold nanoparticle-based fluorescence immunoassay for malaria antigen detection. Analytical and bioanalytical chemistry,2012,402(3):1019-1027.
    [75]Zhu L, Cui X, Wu J, et al. Fluorescence immunoassay based on carbon dots as labels for the detection of human immunoglobulin G. Analytical Methods,2014.
    [76]Bu D, Zhuang H, Yang G, et al. An immunosensor designed for polybrominated biphenyl detection based on fluorescence resonance energy transfer (FRET) between carbon dots and gold nanoparticles. Sensors and Actuators B:Chemical,2014.
    [77]JI D, XIONG H, FU Z, et al. Recent advances of nanotechnology application in detection for food safety [J]. China Food Additives,2008,1:31.
    [78]Medina M B. Development of a fluorescent latex immunoassay for detection of a spectinomycin antibiotic. Journal of Agricultural and Food Chemistry,2004,52(11):3231-3236.
    [79]Liao Q G, Li Y F, Huang C Z. A light scattering and fluorescence emission coupled ratiometry using the interaction of functional CdS quantum dots with aminoglycoside antibiotics as a model system. Talanta,2007,71(2):567-572.
    [80]Liu Z, Liu S, Wang L, et al. Resonance Rayleigh scattering and resonance non-linear scattering method for the determination of aminoglycoside antibiotics with water solubility CdS quantum dots as probe. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,74(1):36-41.
    [81]Sardinha J P M, Gil M H, Mercader J V, et al. Enzyme-linked immunofiltration assay used in the screening of solid supports and immunoreagents for the development of an azinphos-methyl flow immunosensor. Journal of Immunological Methods,2002,260(1-2):173-182.
    [82]Itoh S, Kariya M, Nagano K, et al. New rapid Enzyme-Linked immunosorbent assay to detect antibodies against bacterial surface antigens using filtration plates. Biological and Pharmaceutical Bulletin,2002,25(8):986-990.
    [83]Ribble D, Goldstein N B, Norris D A, et al. A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnology,2005,5(1):12.
    [84]Ho T Y J, Chan C, Chan K, et al. Development of a novel bead-based 96-well filtration plate competitive immunoassay for the detection of Gentamycin. Biosensors and Bioelectronics, 2013,49:126-132.
    [85]饶宝,肖松云,李文刚,等.生物芯片技术研究进展,中国畜牧兽医,2010(1):77-79.
    [86]张厅志,邓欢英.生物芯片技术及其在食品检测中的应用.中国食品学报,2007(2):134-137.
    [87]Radi A, Munoz-Berbel X, Cortina-Puig M, et al. An electrochemical immunosensor for ochratoxin a based on immobilization of antibodies on diazonium-functionalized gold electrode. Electrochimica Acta, 2009,54(8):2180-2184.
    [88]Parker C O, Lanyon Y H, Manning M, et al. Electrochemical immunochip sensor for aflatoxin M1 detection. Analytical Chemistry,2009,81(13):5291-5298.
    [89]Dorokhin D, Haasnoot W, Franssen M C, et al.Imaging surface plasmon resonance for multiplex microassay sensing of mycotoxins. Analytical and bioanalytical chemistry,2011,400(9):3005-3011.
    [90]Mulvaney S P, Myers K M, Sheehan P E, et al. Attomolar protein detection in complex sample matrices with semi-homogeneous fluidic force discrimination assays. Biosensors and Bioelectronics, 2009,24(5):1109-1115.
    [91]Rubina A Y, Filippova M A, Feizkhanova G U, et al. Simultaneous Detection of Seven Staphylococcal Enterotoxins:Development of hydrogel biochips for analytical and practical application. Analytical Chemistry,2010,82(21):8881-8889.
    [92]Nichkova M, Dosev D, Davies A E, et al. Quantum dots as reporters in multiplexed immunoassays for biomarkers of exposure to agrochemicals. Analytical Letters,2007,40(7):1423-1433.
    [93]Ramon-Azcon J, Yasukawa T, Mizutani F. Sensitive and spatially multiplexed detection system based on dielectrophoretic manipulation of dna-encoded particles used as immunoreactions platform. Analytical Chemistry,2010,83(3):1053-1060.
    [94]Kloth K, Niessner R, Seidel M. Development of an open stand-alone platform for regenerable automated microarrays. Biosensors and Bioelectronics,2009,24(7):2106-2112.
    [95]Zhong L, Zhang W, Zer C, et al. Protein microarray:Sensitive and effective immunodetection for drug residues. BMC Biotechnology,2010,10(1):12.
    [96]Rebe Raz S, Bremer M G, Haasnoot W, et al. Label-free and multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor. Analytical Chemistry, 2009,81(18):7743-7749.
    [97]Goryacheva I Y, Beloglazova N V, Eremin S A, et al. Gel-based immunoassay for non-instrumental detection of pyrene in water samples. Talanta,2008,75(2):517-522.
    [98]Beloglazova N V, Goryacheva I Y, Rusanova T Y, et al. Gel-based immunotest for simultaneous detection of 2,4,6-trichlorophenol and ochratoxin a in red wine. Analytical Chimica Acta, 2010,672(1-2):3-8.
    [99]Rusanova T Y, Beloglazova N V, Goryacheva I Y, et al. Non-instrumental immunochemical tests for rapid ochratoxin a detection in red wine. Analytical Chimica Acta,2009,653(1):97-102.
    [100]Beloglazova N V, Goryacheva I Y. de Saeger S, et al. New approach to quantitative analysis of benzo[a]pyrene in food supplements by an immunochemical column test. Talanta,2011,85(1):151-156.
    [101]Beloglazova N V, De Boevre M, Goryacheva I Y, et al. Immunochemical approach for zearalenone-4-glucoside determination. Talanta,2013,106:422-430.
    [102]Speranskaya E S, Beloglazova N V, Lenain P, et al. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay. Biosensors and Bioelectronics,2014,53:225-231.
    [103]Ediage E N, Di Mavungu J D, Goryacheva I Y, et al. Multiplex flow-through immunoassay formats for screening of mycotoxins in a variety of food matrices. Analytical and Bioanalytical Chemistry, 2012,403(1):265-278.
    [104]Yuan M, Sheng W, Zhang Y, et al. A gel-based visual immunoassay for non-instrumental detection of chloramphenicol in food samples. Analytical Chimica Acta,2012,751:128-134.
    [105]鞠莹,曹远银.胶体金免疫层析快速诊断技术.现代生物医学进展,2009(11):2191-2193.
    [106]吴刚,姜瞻梅,霍贵成,等.胶体金免疫层析技术在食品检测中的应用.食品工业科技,2007(12):216-218.
    [107]Verheijen R, Stouten P, Cazemier G, et al. Development of a one step strip test for the detection of sulfadimidine residues.Analyst,1998,123(12):2437-2441.
    [108]刘功良,陶嫦立,白卫东,等.兽药免疫检测的研究进展.黑龙江畜牧兽医,2010(19):26-27.
    [109]Verheijen R, Osswald I K, Dietrich R, et al. Development of a one step strip test for the detection of (dihydro) streptomycin residues in raw milk. Food and Agricultural Immunology,2000,12(l):31-40.
    [110]Jin Y, Jang J W, Han C H, et al. Development of ELISA and immunochromatographic assay for the detection of gentamicin. Journal of Agricultural and Food Chemistry,2005,53(20):7639-7643.
    [111]Chen Y, Wang Z, Wang Z, et al. Rapid enzyme-linked immunosorbent assay and colloidal gold immunoassay for kanamycin and tobramycin in swine tissues. Journal of Agricultural and Food Chemistry,2008,56(9):2944-2952.
    [112]倪同浩.链霉素胶体金免疫层析快速检测试纸条的研制:[硕士论文]扬州大学,2009.
    [113]李向梅.猪组织中庆大霉素残留检测方法及残留消除研究:[硕士论文]中国农业大学,2009.
    [114]Wu J X, Zhang S E, Zhou X P. Monoclonal antibody-based ELISA and colloidal gold-based immunochromatographic assay for streptomycin residue detection in milk and swine urine. Journal of Zhejiang University Science B,2010,11(1):52-60.
    [115]Byzova N A, Zvereva E A, Zherdev A V, et al. Pretreatment-free immunochromatographic assay for the detection of streptomycin and its application to the control of milk and dairy products. Analytical Chimica Acta,2011,701(2):209-217.
    [116]王爱萍,李发弟,胡骁飞,等.新霉素免疫膜层析检测方法研究.中国农业科学,2011(11):2387-2397.
    [117]王学立.同步检测头孢类抗生素与链霉素胶体金免疫层析法的建立:[硕士论文]安徽农业大学,2012.
    [118]刘淑华,何方洋,冯才伟,等.牛奶中新霉素残留胶体金免疫层析快速检测技术的研制.食品工业科技.
    [119]Anfossi L, Di Nardo F, Giovannoli C, et al. Increased sensitivity of lateral flow immunoassay for ochratoxin a through silver enhancement. Analytical and Bioanalytical Chemistry, 2013,405(30):9859-9867.
    [120]张改平,王方雨,宋春美,等.用于庆大霉素定量检测的荧光二氧化硅标记的免疫层析试纸及制备方法:2013-12-11.
    [121]张改平,职爱民,王方雨,等.用于新霉素定量检测的上转换荧光免疫层析试纸及制备方法:2013-12-18.
    [122]Goryacheva I Y, Lenain P, De Saeger S. Nanosized labels for rapid immunotests. TrAC Trends in Analytical Chemistry,2013,46(0):30-43.
    [123]胡杰,刘白玲,汪地强.高通量药物筛选中的荧光微球.现代化工,2003(06):59-62.
    [124]韩文敏.免疫检测荧光微球的制备和性能研究:[华中科技大学,2008.
    [125]于淼,邹明强,何昭阳.高分子荧光微球在生物医学领域中的某些应用.分析测试学报,2006(03):115-119.
    [1261Tauro F, Mocio G, Rapiti E, et al. Assessment of fluorescent particles for surface flow analysis. Sensors, 2012,12(11):15827-15840.
    [127]Czeh A, Mandy F, Feher-Toth S, et al. A flow cytometry based competitive fluorescent microsphere immunoassay (CFIA) system for detecting up to six mycotoxins. Journal of Immunolyogical Methods, 2012,384(1-2):71-80.
    [128]Toledano R M, Cortes J M, Andini J C, et al. On-line derivatization with on-line coupled normal phase liquid chromatography-gas chromatography using the through oven transfer adsorption desorption interface:Application to the analysis of total sterols in edible oils. Journal of Chromatography A, 2012,1256:191-196.
    [1291Guo Y R, Tian J, Liang C Z, et al. Multiplex bead-array competitive immunoassay for simultaneous detection of three pesticides in vegetables. Microchimica Acta,2013,180(5-6):387-395.
    [130]Thiollet S, Higson S, White N, et al. Investigation and development of quantum Dot-Encoded microsphere bioconjugates for DNA detection by flow cytometry. Journal of Fluorescence, 2012,22(2):685-697.
    [131]Fuller K M, Arriaga E A. Analysis of individual acidic organelles by capillary electrophoresis with laser-induced fluorescence detection facilitated by the endocytosis of fluorescently labeled microspheres. Analytical Chemistry,2003,75(9):2123-2130.
    [132]宋秀玲.多酸基荧光检测微球的制备及布鲁氏菌检测方法的研究:[硕士论文]吉林大学,2013.
    [133]董香梅.单核细胞增生李斯特菌单克隆抗体制备及荧光微球免疫层析试纸条的研制:[硕士论文]南昌大学,2013.
    [134]Xie Q, Wu Y, Xiong Q, et al. Advantages of fluorescent microspheres compared with colloidal gold as a label in immunochromatographic lateral flow assays. Biosensors and Bioelectronics, 2014,54(0):262-265.
    [135]李姮.伏马菌素b1和脱氧雪腐镰刀菌烯醇的免疫层析检测方法研究:[硕士论文]中国农业大学,2013.
    [136]Bian S M, Chu X G, Jin Y, et al. A novel microsphere-based fluorescence immunochromatographic assay for monitoring cefalexin residues in plasma, milk, muscle and liver. Analytical Methods, 2013,5(22):6441-6448.
    [137]崔浩.莱克多巴胺荧光微球免疫层析快速检测方法的建立:[硕士论文]暨南大学,2012.
    [138]Chen R, Li H, Zhang H, et al. Development of a lateral flow fluorescent microsphere immunoassay for the determination of sulfamethazine in milk. Analytical and Bioanalytical Chemistry, 2013,405(21):6783-6789.
    [139]杨飞,赵雄燕,王鑫,等.聚合物荧光微球的研究进展.塑料科技,2013(09):90-94.
    [140]Long Y H, Hernandez M, Kaale E, et al. Determination of kanamycin in serum by solid-phase extraction, pre-capillary derivatization and capillary electrophoresis. Journal of Chromatography B, 2003,784(2):255-264.
    [141]Vinas P, Balsalobre N, Hernandez-Cordoba M. Liquid chromatography on an amide stationary phase with post-column derivatization and fluorimetric detection for the determination of streptomycin and dihydrostreptomycin in foods. Talanta,2007,72(2):808-812.
    [142]Kijak P J, Jackson J, Shaikh B. Determination of gentamicin in bovine milk using liquid chromatography with post-column derivatization and fluorescence detection. Journal of Chromatography B:Biomedical Sciences and Applications,1997,691(2):377-382.
    [143]Turnipseed S B, Clark S B, Karbiwnyk C M, et al. Analysis of aminoglycoside residues in bovine milk by liquid chromatography electrospray ion trap mass spectrometry after derivatization with phenyl isocyanate. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2009,877(14-15):1487-1493.
    [144]Barbosa Antunes E D A, Lourenco F R, Andreoli Pinto T D J. Determination of apramycin in oral soluble powder by a HPLC method using pre-column derivatization with o-phthalaldehyde and UV detection. Brazilian Journal of Pharmaceutical Sciences,2011,47(2):261-268.
    [145]Yang M, Tomellini S A. Non-derivatization approach to high-performance liquid chromatography-fluorescence detection for aminoglycoside antibiotics based on a ligand displacement reaction. Journal of Chromatography A,2001,939(1):59-67.
    [146]Megoulas N C, Koupparis M A. Twenty years of evaporative light scattering detection. Critical reviews in analytical chemistry,2005,35(4):301-316.
    [147]Clarot I, Regazzeti A, Auzeil N, et al. Analysis of neomycin sulfate and framycetin sulfate by high-performance liquid chromatography using evaporative light scattering detection. Journal of Chromatography A,2005,1087(1):236-244.
    [148]Serrano J M, Silva M. Determination of amikacin in body fluid by high-performance liquid-chromatography with chemiluminescence detection. Journal of Chromatography B, 2006,843(1):20-24.
    [149]Sierra-Rodero M, Fernandez-Romero J M, Gomez-Hens A. Determination of aminoglycoside antibiotics using an on-chip microfluidic device with chemiluminescence detection. Microchimica Acta, 2012,179(3-4):185-192.
    [150]Serrano J M, Silva M. Rapid and sensitive determination of aminoglycoside antibiotics in water samples using a strong cation-exchange chromatography non-derivatisation method with chemiluminescence detection. Journal of Chromatography A,2006,1117(2):176-183.
    [151]Van Bruijnsvoort M, Ottink S J M, Jonker K M, et al. Determination of streptomycin and dihydrostreptomycin in milk and honey by liquid chromatography with tandem mass spectrometry. Journal of Chromatography A,2004,1058(1-2):137-142.
    [152]Babin Y, Fortier S. A high-throughput analytical method for determination of aminoglycosides in veal tissues by liquid chromatography/tandem mass spectrometry with automated cleanup. Journal of AOAC International,2007,90(5):1418-1426.
    [153]Kajita H, Akutsu C, Hatakeyama E, et al. Simultaneous determination of aminoglycoside antibiotics in milk by liquid chromatography with tandem mass spectrometry. Shokuhin eiseigaku zasshi. Journal of the Food Hygienic Society of Japan,2008,49(3):189-195.
    [154]Zhu W, Yang J, Wei W, et al. Simultaneous determination of 13 aminoglycoside residues in foods of animal origin by liquid chromatography-electrospray ionization tandem mass spectrometry with two consecutive solid-phase extraction steps. Journal of Chromatography A,2008,1207(1-2):29-37.
    [155]Hong Y, Lee S, Kim H, et al. Simultaneous analytical method for the neomycin, gentamicin residues in seafood. Journal of Applied Biological Chemistry,2010,53(1):25-30.
    [156]Cheng C, Liu S, Xiao D, et al. The application of trichloroacetic acid as an ion pairing reagent in LC-MS-MS method development for highly polar aminoglycoside compounds. Chromatographia, 2010,72(1-2):133-139.
    [157]Almeida M P, Rezende C P, Souza L F, et al. Validation of a quantitative and confirmatory method for residue analysis of aminoglycoside antibiotics in poultry, bovine, equine and swine kidney through liquid chromatography-tandem mass spectrometry. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment,2012,29(4):517-525.
    [158]Kaufmann A, Butcher P, Maden K. Determination of aminoglycoside residues by liquid chromatography and tandem mass spectrometry in a variety of matrices. Analytical Chimica Acta, 2012,711:46-53.
    [159]Breaud A R, Henemyre-Harris C L, Schools S, et al. Rapid quantification of the aminoglycoside arbekacin in serum using high performance liquid chromatography-tandem mass spectrometry. Clinica Chimica Acta,2013,418:102-106.
    [160]Bousova K, Senyuva H, Mittendorf K. Quantitative multi-residue method for determination antibiotics in chicken meat using turbulent flow chromatography coupled to liquid chromatography-tandem mass spectrometry. Journal of Chromatography A,2013,1274:19-27.
    [161]Alpert A J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. Journal of chromatography A,1990,499:177-196.
    [162]Buszewski B, Noga S. Hydrophilic interaction liquid chromatography (HILIC)--a powerful separation technique. Analytical and Bioanalytical Chemistry,2012,402(1):231-247.
    [163]韩超.强极性中药组分的亲水作用色谱保留行为研究:[硕士论文]西北大学,2010.
    f164]Kumar P, Rubies A, Companyo R, et al. Hydrophilic interaction chromatography for the analysis of aminoglycosides. Journal of Separation Science,2012,35(4):498-504.
    [165]Kumar P, Rubies A, Companyo R, et al. Determination of aminoglycoside residues in kidney and honey samples by hydrophilic interaction chromatography-tandem mass spectrometry. Journal of Separation Science,2012,35(20):2710-2717.
    [166]Gremilogianni A M, Megoulas N C, Koupparis M A. Hydrophilic interaction vs ion pair liquid chromatography for the determination of streptomycin and dihydrostreptomycin residues in milk based on mass spectrometric detection. Journal of Chromatography A,2010,1217(43):6646-6651.
    [167]Peru K M, Kuchta S L, Headley J V, et al. Development of a hydrophilic interaction chromatography-mass spectrometry assay for spectinomycin and lincomycin in liquid hog manure supernatant and run-off from cropland. Journal of Chromatography A,2006,1107(1-2):152-158.
    [168]Ishii R, Horie M, Chan W, et al. Multi-residue quantitation of aminoglycoside antibiotics in kidney and meat by liquid chromatography with tandem mass spectrometry. Food additives and contaminants, 2008,25(12):1509-1519.
    [169]Oertel R, Neumeister V, Kirch W. Hydrophilic interaction chromatography combined with tandem-mass spectrometry to determine six aminoglycosides in serum. Journal of Chromatography A, 2004,1058(1):197-201.
    [170]Oertel R, Renner U, Kirch W. Determination of neomycin by LC-tandem mass spectrometry using hydrophilic interaction chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2004,35(3):633-638.
    [171]Peru K M, Kuchta S L, Headley J V, et al. Development of a hydrophilic interaction chromatography mass spectrometry assay for spectinomycin and lincomycin in liquid hog manure supernatant and run-off from cropland. Journal of Chromatography A,2006,1107(1):152-158.
    [172]Shen A Q, Morgan L, Barroso M L, et al. Method development of LC-MS/MS analysis of aminoglycoside drugs:Challenges and solutions:ASMS Conference, Denver, CO,2008[C].
    [173]Kawano S I. Analysis of impurities in streptomycin and dihydrostreptomycin by hydrophilic interaction chromatography/electrospray ionization quadrupole ion trap/time- of -flight mass spectrometry. Rapid Communications in Mass Spectrometry,2009,23(6):907-914.
    [174]Bohm D A, Stachel C S, Gowik P. Confirmatory method for the determination of streptomycin in apples by LC-MS/MS. Analytica chimica acta,2010,672(1):103-106.
    [1751Gremilogianni A M, Megoulas N C, Koupparis M A. Hydrophilic interaction vs ion pair liquid chromatography for the determination of streptomycin and dihydrostreptomycin residues in milk based on mass spectrometric detection. Journal of Chromatography A,2010,1217(43):6646-6651.
    [176]Tao Y, Chen D, Yu H, et al. Simultaneous determination of 15 aminoglycoside (s) residues in animal derived foods by automated solid-phase extraction and liquid chromatography-tandem mass spectrometry. Food chemistry,2012,135(2):676-683.
    [177]Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry,1971,8(9):871-874.
    [178]李志勇.食品安全elisa快速检测技术.中国标准出版社,2009.
    [179]陈勇,应汉杰.亲和层析研究进展.离子交换与吸附,2001,17(3):276-280.
    [180]王建龙,文湘华.现代环境生物技术.清华大学出版社有限公司,2001.
    [181]庄海宁.免疫亲和色谱的原理及其在食品安全检测中的应用.中国食品添加剂,2006(05):154-158.
    [182]张清杰.Iac-lc法检测食品中氯霉素、玉米赤霉醇类兽药残留量:[硕士论文]南华大学,2013.
    [183]Beloglazova N V, Goryacheva I Y, Rusanova T Y, et al. Gel-based immunotest for simultaneous detection of 2,4,6-trichlorophenol and ochratoxin a in red wine. Analytical Chimica Acta, 2010,672(1-2):3-8.
    [184]Goryacheva I Y, Beloglazova N V, Eremin S A, et al. Gel-based immunoassay for non-instrumental detection of pyrene in water samples. Talanta,2008,75(2):517-522.
    [185]百度文库.装柱与上样的方法.[3月30日].http://wenku.baidu.com/link?url=msWZASQs1DCwt3MePGKzZg7a9LoTFT37Rx3hY_qxXq7fSRCjtW j8pC3FuKNoHvsjwWDVzuqekl17s-kb6qI5oy8fbW6-aqfwPJwdbyzCHuO.
    [186]仪器信息网.气控操作架.[3月30日].http://www.instrument.com.cn/netshow/SH101790/Product-C4803-0-0-l.htm.
    [187]杨海波,李亚清,刘艳,等.凝胶柱装柱新方法:2005-03-02.
    [188]徐明波.牛血清白蛋白在自组装膜表面非特异性吸附——基于表面等离子体共振技术.湖北师范学院学报(自然科学版),2010(03):15-18.
    [189]王龙刚,张娟,林伟锋,等.抗蛋白质非特异性吸附纳米颗粒的制备与表征:2011年全国高分子学术论文报告会,中国辽宁大连,2011[C].
    [190]陈圣福,曹志强,江绍毅.抗蛋白质非特异性吸附的“隐形”多肽研究:2009年全国高分子学术论文报告会,中国天津,2009[C].
    [191]王龙刚,张娟,林伟锋,等.抗蛋白质非特异性吸附纳米颗粒的制备与表征:2011年全国高分子学术论文报告会,中国辽宁大连,2011.
    [192]何道伟,葛曼丽,刘立华.降低abc-elisa非特异性吸附的实验方法探讨.南京铁道医学院学报,1993(01):57-59.
    [193]宓捷波,郭振泉,冯仁青.现代抗体技术及其应用[平装].第1版.北京大学出版社,2006.
    [194]康熙雄.免疫胶体金技术临床应用[平装].第1版.军事医学科学出版社,2010.
    [195]Wong Raphael C., Tse Harley Y. Lateral flow immunoassay [平装]. Humana Press Inc.; 1st ed. Softcover of orig. ed.2009,2010.
    [196]张贺秋.生物医学实验技术系列丛书:胶体金标记探针与酶联免疫斑点技术[平装].第1版.军事医学科学出版社,2012.
    [197]王亚辉.地克珠利和常山酮残留免疫分析方法的建立及其elisa试剂盒的研制[[农学博士论文]中国农业大学,2013.
    [198]汪地强,刘白玲,胡杰,等.荧光微球的制备及应用.高分子材料科学与工程,2004(04):42-45.
    [199]张荣荣,徐自力.荧光微球的制备技术及其应用进展.高分子通报,2009(01):63-70.
    [200]Probes M. Working with FluoSpheres(?) fluorescent microspheres. [2014-4-8]. http://tools.lifetechnologies.com/content/sfs/manuals/mp05001.pdf.
    [201]丁香园.免疫胶体金稀释液的五原则.[2014-4-11].http://www.biomart.cn/experiment/430/502/527/530/18409.htm.
    [202]王硕,张鸿雁,王俊平.酶联免疫吸附分析方法:基本原理及其在食品化学污染物检测中的应用[平装].第1版.科学出版社,2011.
    [203]Zhou Y, Li Y, Meng X, et al. Development of an immunochromatographic strip and its application in the simultaneous determination of Hg(II), Cd(Ⅱ) and Pb(Ⅱ). Sensors and Actuators B:Chemical, 2013,183(0):303-309.
    [204]Nagatani N, Tanaka R, Yuhi T, et al. Gold nanoparticle-based novel enhancement method for the development of highly sensitive immunochromatographic test strips. Science and Technology of Advanced Materials,2006,7(3):270-275.
    [205]Fernandez-Sanchez C, McNeil C J, Rawson K, et al. One-step immunostrip test for the simultaneous detection of free and total prostate specific antigen in serum. Journal of Immunological Methods, 2005,307(1-2):1-12.
    [206]顾春峰,兰秀风,于银山,等.牛奶水溶液的荧光光谱研究.光子学报,2012,41(1):107-111.
    [207]Shen J, Guo L, Xu F, et al. Simultaneous determination of fluoroquinolones, tetracyclines and sulfonamides in chicken muscle by UPLC-MS-MS. Chromatographia,2010,71(5-6):383-388.
    [208]Shen J, Li H, Jiang H, et al. Simultaneous determination of 13 quinolones in eggs using column high-performance liquid chromatography/electrospray ionization-tandem mass spectrometry and depletion of pefloxacin methanesulfonate in eggs. Journal of AOAC International, 2008,91(6):1499-1506.
    [209]Jiang H, Ding S, Xu F, et al. Determination of eprinomectin in bovine urine and feces using UPLC with fluorescence detection. Chromatographia,2007,66(5-6):411-414.
    [210]Younes A A, Mangelings D, Heyden Y V. Chiral separations in normal phase liquid chromatography: Enantioselectivity of recently commercialized polysaccharide-based selectors. Part I:Enantioselectivity under generic screening conditions. Journal of Pharmaceutical and Biomedical Analysis, 2011,55(3):414-423.
    [211]Dejaegher B, Vander Heyden Y. HILIC methods in pharmaceutical analysis. Journal of Separation Science,2010,33(6-7):698-715.
    [212]Commission Of The European Communities. Council directive 96/23/EC. Off. Journal of European Communities Legislation,1996:L125.
    [213]Commission Of The European Communities. Commission decision 2002/657/EC:Off. Journal of European Communities Legislation.2002:L221,8-36.
    [214]Johnsen E, Wilson S R, Odsbu I, et al. Hydrophilic interaction chromatography of nucleoside triphosphates with temperature as a separation parameter. Journal of Chromatography A,, 2011,1218(35):5981-5986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700