花生抗旱性状鉴定及不同品种抗旱的生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验于2011-2012年在山东农业大学农学实验站及作物生物学国家重点实验室进行。以分属五大植物学类型的12个花生品种为试验材料,在人工控水条件下,于苗期及结荚期给予干旱胁迫及正常灌水对照2个土壤水分处理,苗期处理以盆栽种植方式进行,称重法控水,结荚期处理在池栽条件下进行,测墒补灌法控水,控水期间以电动防雨棚遮雨。研究了花生苗期和结荚期干旱胁迫下不同品种的抗旱性,系统分析了花生根、叶形态及生理生化特性与品种抗旱性的关系,揭示了不同生育时期花生的关键抗旱性状及不同品种抗旱的生理机制差异。并对不同类型的40个花生品种进行了抗旱性及抗旱性状的评价。为大批花生种质的抗旱性状鉴定以及花生抗旱育种、栽培提供试验方法和理论依据。得到的主要结果如下:
     1不同花生品种的干旱适应性及抗旱性差异
     以产量抗旱系数评价花生品种的综合抗旱性,苗期和结荚期的抗旱性基本一致,供试的12个品种排序为:如皋西洋生>A596>山花11号>农大818>花育20号>山花9号>海花1号>79266>蓬莱一窝猴>花17>ICG6848>白沙1016。花生品种的抗旱性可分为强、中、弱3级,强抗旱品种为A596、山花11号、如皋西洋生,中度抗旱品种为花育20号、农大818、海花1号、山花9号和79266,弱抗旱品种有ICG6848、白沙1016、花17和蓬莱一窝猴。苗期旱后复水,植株的生长恢复能力与品种的抗旱系数呈极显著相关(P<0.01),山花11号、如皋西洋生、A596、山花9号、农大818在苗期旱后复水有超补偿生长能力,干旱适应性较强。
     2不同抗旱性花生品种形态性状及水分平衡抗旱机制
     花生根系干重、体积及吸收面积随苗期干旱进程表现为先升高后降低的趋势,根冠比呈逐渐增加的趋势,整个干旱过程中,抗旱性越强的花生品种上述根系性状越大。苗期以40%土壤相对含水量持续胁迫14d的单株根系干重、体积、总吸收面积均与品种抗旱性呈极显著相关,它们是花生苗期抗旱的根系吸收机制,正常水分下的性状值也能反映根系性状的抗旱级别。干旱胁迫降低了花生单株叶面积、功能叶面积和气孔导度,增加了比叶重和气孔限制值,以此来降低水分散失,维持植株水分平衡。抗旱性强的品种在对照及干旱胁迫下均具有较高的比叶重和单株叶面积,较小的功能叶面积。海花1号、山花9号、山花11、花育20的根系干重和总吸收面积显著高于其他品种,根系吸收能力较强。农大818的气孔调节能力最强,如皋西洋生和山花11号的比叶重较大,保水性能较好。山花9号和花育20号的单株光合面积显著高于其他品种。
     3不同花生品种抗旱的生理机制及相关抗旱性状
     干旱胁迫增加了花生叶片脯氨酸、可溶性糖、可溶性蛋白的含量,它们与渗透调节能力呈极显著正相关,苗期的增幅显著大于结荚期增幅,因此苗期的渗透调节能力大于结荚期,且与品种抗旱系数的相关性也较结荚期密切。苗期和结荚期干旱胁迫下,仅叶片脯氨酸含量与品种抗旱性呈极显著正相关。在苗期鉴定花生品种渗透调能力的差异为宜。苗期以40%相对含水量胁迫14d的叶片脯氨酸含量和渗透调节能力与花生品种的抗旱性呈极显著正相关,A596、如皋西洋生、山花11号、农大818的渗透调节能力和脯氨酸含量优于其他品种。
     叶片光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSII)、光化学猝灭系数(qP)随干旱进程逐渐降低,复水后逐渐增加,抗旱性强的花生品种变幅较小。山花11号、如皋西洋生、A596、山花9号的Pn、Gs、ΦPSII、Fv/Fm、qP在复水5d恢复至对照水平,复水10d超过对照,79266、ICG6848、白沙1016、花17在复水10d仍未达对照水平,干旱及复水过程中强抗旱性品种显著高于弱抗旱性品种(P<0.05)。相关分析表明,苗期干旱胁迫14d和复水5d的Pn、ΦPSII、Fv/Fm、qP与花生品种抗旱性呈极显著正相关,可鉴定花生品种的干旱伤害程度及修复能力。结荚期以50%相对含水量胁迫30d的叶片Pn、Ls、Fv/Fm、qP能代表花生品种光合活性的高低。
     干旱胁迫过程中,花生叶片相对电导率呈逐渐增加趋势,与品种抗旱性呈极显著负相关。干旱导致结荚期的伤害大于苗期,表现为苗期相对电导率增幅显著低于结荚期增幅,品种间叶片的变异系数也小于结荚期。干旱胁迫下,强抗旱性品种的叶片抗氧化酶活性和抗氧化剂含量均显著高于弱抗旱性品种,膜脂过氧化产物MDA含量显著低于弱抗旱性品种,细胞膜伤害程度较轻。结荚期的抗氧化保护能力及与抗旱系数的相关性显著大于苗期,花生品种叶片抗氧化能力的差异在结荚期鉴定最好。结荚期以50%相对含水量胁迫30d的叶片SOD活性、MDA含量和相对电导率与品种抗旱系数的相关性达极显著水平。A596、如皋西洋生、山花11号、海花1号的SOD活性较高,相对电导率较低。
     干旱胁迫下,强抗旱性花生品种的根系SOD、POD、CAT等抗氧化酶活性,GSH及ASA等抗氧化剂含量显著高于弱抗旱性品种,MDA含量显著低于弱抗旱性品种。苗期以40%土壤相对含水量持续胁迫14d的根尖SOD活性、MDA含量与品种抗旱性呈极显著相关。A596、如皋西洋生、农大818、山花11号的根系抗氧化能力及膜稳定性较强。
     4花生品种抗旱鉴定的技术体系及不同品种的抗旱机制评价
     花生苗期抗旱性鉴定的适宜土壤相对含水量为40%,结荚期抗旱性鉴定的适宜土壤相对含水量为50%,持续胁迫时间分别为14d和30d为宜。山花11号可作为花生强抗旱性鉴定的标准品种,79266可作为弱抗旱性鉴定的标准品种。山花11号亦可作为花生优异抗旱性状鉴定的标准品种。如皋西洋生和山花11号的各抗旱性状值均较高,多种抗旱机制相互协调性最好。A596的主要抗旱机制为较强的渗透调节能力和抗氧化能力。山花9号和花育20的主要抗旱机制为较强的根系吸水能力和较大的光合面积。农大818的主要抗旱机制为较高的叶片保水能力和渗透调节能力。海花1号的主要抗旱机制为较强的根系吸水能力和抗氧化能力。
     根据抗旱鉴定标准品种,对主推花生品种的抗旱鉴定结果为:筛选出强抗旱品种为0616(E1)、莱宾大豆、濮花28号和山花11号。山花9号、山花12号、鲁花11、冀0212-4、花育25较大的比叶重是它们抗旱的关键性状。山花7号、农大073、濮花28、花育28、莱宾大豆、丰花1号、0616(E1)的渗透调节能力是它们重要的抗旱机制。徐州68-4、山花10号、丰花1号、潍花10号、莱宾大豆的抗旱机制为强抗氧化能力。莱宾大豆、濮花28、0616(E1)、冀0210-4、山花12号、徐州68-4的Fv/Fm和Pn较高是它们抗旱的光合机制。
This study was conducted from2011to2012in the agronomy experimental station andState Key Laboratory of Crop Biology of Shandong Agricultural University, Taian, China.With twelve peanut (Arachis Hypogaea L) cultivars of five botanical types grown underartificial water control at seedling and pod-setting stage, the drought resistance relatedmorphology, physiological and biochemical traits of peanut leaves and roots were studied, torevel key drought resistance traits and the drought resistance mechanism of different peanutcultivars. Two water treatments were designed, that were40%and70%of the soil relativewater content at seedling stage and50%and70%of the soil relative water content of the0~80cm soil layer, respectively, at pod-setting stage. Weighing method andsupplemental irrigation based on testing soil water were adopted at seedling pod planting andpod-setting stage pond culture respectively. Then, identifying the drought resistance and traitsof forty main popularized cultivars of main peanut production area in China. The main resultsshowed that:
     1Changes of drought resistance and drought adaptability in different peanut cultivars
     Drought resistance applied at seedling and pod-setting stage was basically identical.According to yield-drought resistance coefficient, sorting of twelve peanut cultivars was thatRugaoxiyangsheng> A596> Shanhua11> Nongda818> Huayu20> Shanhua9> Haihua1>79266> Penglaiyiwohou> Hua17> ICG6848> Baisha1016, which can be divided into3grads: high-resistance, including A596, Shanhua11and Rugaoxiyangsheng; mid-resistance,which were Huayu20, Nongda818, Haihua1, Shanhua9and79266; weak-resistance, asICG6848, Baisha1016, Hua17and Penglaiyiwohou. Rewatering after drought at seedling, thecapacity of compensatory growth was significant positive correlation with drought resistance (P<0.01), high drought adaptability cultivars were Shanhua11, Rugaoxiyangsheng, A596,Shanhua9, Nongda818, which were over-compensatory growth after rewatering.
     2Drought resistance mechanism of water balance and morphological traits in differentdrought resistant peanut cultivars
     The trend about dry weight, volume and absorbing area of roots was increased first andthen decreased, and root shoot ratio showed a growing trend with the drought processperformance. There were greater root morphological traits of the peanut cultivars with higherdrought resistance, throughout the course of the drought stress. Applied40%RWC droughtstress at10d-24d after germination, the root weight, volume, total absorption area per plantwere significantly positive correlated with drought resistance,which could identify thedrought resistance ability of peanuts root, it was suitable that identifying them under normalwater. Leaf area per plant, functional leaf area and stomatal conductance(Gs) were reduced,but SLW and Lswas increased under soil drought stress, so that reducing moisture loss andmaintaining moisture balance. The leaf area per plant and SLW of high-resistance cultivarswere significantly greater but functional leaf area were less than weak-resistance cultivarsunder both normal irrigation and drought stress. Haihua1, Shanhua9, Shanhua11and Huayu20presented as larger biomass and strong absorptive capacity, the ability of root waterabsorption was better. SLW of Rugaoxiyangsheng and Shanhua11were larger, stomatalregulation of Nongda818was optimal, which had better water retention. Shanhua9andHuayu20had larger photosynthesis area.
     3Physiological mechanism and related traits of drought resistance of different peanutcultivars
     The content of proline, soluble sugar, soluble protein were increased under drought stress,the amplification at seedling stage was greater than pod-setting stage, which were significantpositive correlation with osmotic adjustment ability (OA), the OA and its correlationcoefficient with drought resistance of seedling were greater than pod-setting stage. Justproline and drought resistance was significant positive correlation under both seedling andpod-setting stage. It was appropriate that identifying the OA of different peanut cultivars atseedling stage. Applied40%RWC drought stress at10d-24d after germination, The contentof proline and OA significantly positive correlated with drought resistance, A596,Rugaoxiyangsheng, Shanhua11, Nongda818were excellent than others.
     Photosynthetic rate(Pn), Gs, intercellular CO2concentration(Ci), maximumphotochemical efficiency(Fv/Fm), PSII actual quantum yield(ΦPSII), photochemical quenchingcoefficient(qP) were gradually decreased with the drought process, and that were graduallyincreased after rewatering, amplitudes of high-resistance cultivars were less than that ofweak-resistance. The recovery ability of Pn, Gs, ΦPSII, Fv/Fm, qPof Shanhua11,Rugaoxiyangsheng, A596and Shanhua9were faster than79266, ICG6848, Baisha1016andHua17, the former could recover to normal level in5d after rewatering and were higher thanthe control values in10d after rewatering, but the later could still not reach the normal valuesin10d after rewatering, photosynthetic parameters of the former were always higher than thelatter in the process of drought and rewatering(P<0.05). Correlation analysis showed that thedrought resistance significantly positive correlated with Pn, ΦPSII, Fv/Fm, qPin14d afterdrought stress and5d after rewatering, these traits could be used for identifies the damagedegree and repair capacity of peanuts. Pn、Ls、Fv/Fm、qPunder50%RWC drought stresssustained30d at pod-setting stage could stand for photosynthetic activity of peanut cultivars.
     In the process of drought stress, relative conductivity (RC) of peanut leaves showed atrend of increase gradually, which were very significant negative correlation with droughtresistance. The amplification of RC at seedling significantly less than pod-setting stage, thecoefficient of variation between cultivars was also. Antioxidase activity and antioxidantcontent of high-resistance cultivars leaves were significantly greater than weak-resistance, cellmembrane damage to a lesser degree. The anti-oxidation capability and correlation withdrought resistance of pod-setting stage were greater than seedling stage, it was appropriatethat identifying the anti-oxidation capability of different peanut cultivars at pod-setting stage.By correlation analysis, SOD activity, MDA content and relative conductivity of leaves under50%RWC drought stress sustained30d at pod-setting stage, were showed very significantlycorrelation with drought resistance coefficient. Under drought stress, antioxidase activity suchas SOD、POD、CAT and antioxidant content such as GSH and ASA of high-resistancecultivars were significantly greater than weak-resistance, but the content of MDA weresignificantly less than weak-resistance. Applied40%RWC drought stress at10d-24d aftergermination, the root SOD activities and MDA content were very significantly correlated withdrought resistance. Antioxidant ability and membrane stability of A596, Rugaoxiyangsheng, Shanhua11were preferable.
     4Technology system about identification of drought resistance and evalution of droughtresistance mechanism in different peanut cultivars
     The suitable relative soil water content of40%to identify drought resistance of peanutsat seedling stage, of50%to identify drought resistance of peanut at pod-setting stage, it wasappropriate to sustain stress14and30days respectively. Shanhua11and79266canrespectively serve as standard cultivar of high drought resistance and weaker droughtresistance identification. Shanhua11can serve as standard cultivar of drought resistance traitsidentification in peanut. The drought resistance mechanism of Shanhua11andRugaoxiyangsheng were excellent mutual compatibility. The main drought resistancemechanism of A596was the strong ability of OA and antioxidant capacity, of Shanhua9andHuayu20were better root water absorbing capacity, of Nongda818was higher leaf waterretention and osmotic regulation ability, of Haihua1was outstanding root water absorbingand ntioxidant capacity.
     According to the standard cultivar of drought resistance, in the40main cultivars, thehigh-resistance cultivars including0616(E1), Puhua28, Laibindadou and Shanhua11. Thekey drought resistance mechanism for higher SLW including Shanhua9, Shanhua12, Luhua11, Ji0212-4, Huayu25, for stronger OA including Shanhua7, Nongda073, Puhua28,Laibindadou, Fenghua1,0616(E1), for excellent resistance to oxidation including Xuzhou68-4, Shanhua10, Fenghua1,Weihua10, Laibindadou, for higher photosynthetic activityincluding Puhua28, Laibindadou,0616(E1), Shanhua12, Ji0212-4, Xuzhou68-4.
引文
陈家宙,吕国安,何圆球.土壤水分状况对花生和早稻叶片气体交换的影响.应用生态学报,2005,16(1):105-110
    陈建勋,王晓峰.植物生理学实验指导.广州:华南理工大学出版社,2006
    陈健辉,李荣华,郭培国,夏岩石,田长恩,缪绅裕.干旱胁迫对不同耐旱性大麦品种叶片超微结构的影响.植物学报,2011,46(1):28-31
    陈由强,叶冰莹,朱锦懋,庄伟建.渗透胁迫对花生幼叶活性氧伤害和膜脂过氧化作用的影响.中国油料作物学报,2000,22(1):53-56
    程曦,赵长星,王铭伦,王月福,单桂萍.不同生育时期干旱胁迫对花生抗旱指标值及产量的影响.青岛农业大学学报(自然科学版),2010,27(4):282-284
    段舜山,谷文祥,张大勇,李凤民.半干旱地区小麦群体的根系特征与抗旱性的关系.应用生态学报,1997,8(2):134-138
    封海胜,栾文琪.中国花生品种志.北京:中国农业出版社,1987. pp1-4
    盖钧镒,汪越胜,张孟臣,王继安,常汝镇.中国大豆品种熟期组划分的研究.作物学报,2001,27(3):286-292
    高国庆,周汉群,唐荣华.花生品种抗旱性鉴定.花生科技,1995,(3):7-10
    高国庆.花生抗旱生理研究综述.广西农业科学,1995,(4):155-158
    郭峰,万书波,王才斌,李新国,孟静静,徐平丽.麦套花生氮素代谢及相关酶活性变化研究.植物营养与肥料学报,2009,15(2):416-421
    郭龙彪,钱前.栽培稻抗旱性的田间评价方法.中国稻米,2003,2:26-27
    郭晓瑞,唐中华,孙艳斐,李晓微,祖元刚.自然干旱胁迫下长春花叶片和根部的激素和可溶性糖代谢变化.植物研究,2008,28:422-425
    胡荣海,昌小平,王嫒.反复干旱法的生理基础及其应用.华北农学报,1996,11(3):51-56
    胡文广,邱庆树,李正超,吴兰荣,董杰.花生品质的影响因素研究Ⅱ栽培因素.花生学报,2002,31(4):14-18
    姜慧芳,段乃雄.中国龙花生. Ⅱ龙花生在栽培种花生中的地位.中国油料.1995,(4):74-77
    姜慧芳,任小平,段乃雄.中国龙生型花生的耐旱性鉴定与综合评价.中国农业科学,1999,32(增刊):59-63
    姜慧芳,任小平.干旱胁迫对花生叶片SOD活性和蛋白质的影响.作物学报,2004,30(2):169-174
    景蕊莲,昌小平,朱志华,胡荣海.小麦幼苗根系形态与反复干旱存活率的关系.西北植物学报,2002,22(2):243-249
    兰巨生,胡福顺,张景瑞.作物抗旱指数的概念和统计方法.华北农学报,1990,5(2):20-25
    兰巨生.农作物综合抗旱性评价方法的研究.西北农业学报,1998,7(3):85-87
    黎裕.作物抗旱鉴定方法与指标研究.干旱地区农业研究,1993,11(l):91-99
    李长宁, M K SRIVASTAVA,农倩,李杨瑞.水分胁迫下外源ABA提高甘蔗抗旱性的作用机制.作物学报,2010,36(5):863-870
    李潮海,尹飞,王群.不同耐旱性玉米杂交种及其亲本叶片活性氧代谢对水分胁迫的响应.生态学报,2006,26(6):1912-1919
    李春香,王玮,李德全.长期水分胁迫对小麦生育中后期根叶渗透调节能力、渗透调节物质的影响.西北植物学报,2001,21(5):924-930
    李建梅,邓西平.干旱和复水条件下转基因甘薯的光合特性.水土保持学报,2007,21(4):193-196
    李俊庆.不同生育时期干旱处理对夏花生生长发育的影响.花生学报,2004,33(3):33-35
    李娘辉.水分胁迫对秋植花生结荚期同化物运输的影响.中国油料,1992,(3):25-30
    李向东,万勇善,于振文,陈雨海,张高英.花生叶片衰老过程中氮素代谢指标变化.植物生态学报,2001,25(5):549-552
    李向东,王晓云,张高英,万勇善,李军.花生衰老的氮素调控.中国农业科学,2000,33(5):1-7
    李永华,王玮,马千全,邹琦.干旱胁迫下抗旱高产小麦新品系旱丰9703的渗透调节与光合特性.作物学报,2003,29(5):759-764
    李予霞,崔百明,董新平,王雪莲.水分胁迫下葡萄叶片脯氨酸和可溶性总糖积累与叶龄的关系.果树学报,2004,21(2):170-172
    李震,吴北京,陆光远,程勇,邹崇顺,张学昆.不同基因型油菜对苗期水分胁迫的生理响应.中国油料作物学报,2012,34(1):033-039
    李壮,许文娟,薛兵东,曹萍.玉米苗期抗旱性评定方法探讨.玉米科学,2004,12(2):73-75
    梁银丽,陈培元.土壤水分和氮磷营养对小麦根系生理特性的调节作用.植物生态学报,1996,20(3):255-262
    梁银丽,杨翠玲.不同抗旱型小麦根系形态与生理特性对渗透胁迫的反应.西北农业学报,1995,4(4):31-36
    刘长海,周莎莎,邹养军,梁东,马锋旺.干旱胁迫条件下不同抗旱性苹果砧木内源激素含量的变化.干旱地区农业研究,2012,30: l94-98
    刘庚山,郭安红,任三学,安顺清,林日暖,赵花荣.人工控制有限供水对冬小麦根系生长及土壤水分利用的影响.生态学报,2003,23(11):2342-2352
    刘吉利,赵长星,吴娜,王月福,王铭伦.苗期干旱及复水对花生光合特性及水分利用效率的影响.中国农业科学,2011,44(3):469-476
    刘瑞显,王友华,陈兵林,郭文琦,周治国.花铃期干旱胁迫下氮素水平对棉花光合作用与叶绿素荧光特性的影响.作物学报,2008,34(4):675-683
    刘莹,盖钧镒,吕慧能.黄淮海地区大豆耐旱根系性状的遗传分析.华北农学报,2007,22(5):31-35
    罗俊,张木清,林彦铨,张华,陈如凯.甘蔗苗期叶绿素荧光参数与抗旱性关系研究.中国农业科学,2004,37(11):1718-1721
    蒙祖庆,宋丰萍,刘振兴,张方凯.干旱及复水对油菜苗期光合及叶绿素荧光特性的影响.中国油料作物学报,2012,34(1),040-047
    孟庆杰,王光全,董绍锋,张丽,龚正道.桃叶片组织解剖结构特征与其抗旱性关系的研究.干旱地区农业研究,2004,22(3):123-126
    慕自新,张岁岐,郝文芳,梁爱华,梁宗锁.玉米根系形态性状和空间分布对水分利用效率的调控.生态学报,2005,25(11):2895-2900
    钮福祥,华希新,郭小丁,邬景禹,李洪民,丁成伟.甘薯品种抗旱性生理指标及其综合评价初探.作物学报,1996,22(4):392-398
    蒲伟凤,李桂兰,张敏,王丹,王卢平,纪展波,代波,乔亚科.干旱胁迫对野生和栽培大豆根系特征及生理指标的影响.大豆科学,2010,29(4):615-622
    齐伟,张吉旺,王空军,刘鹏,董树亭.干旱胁迫对不同耐旱性玉米杂交种产量和根系生理特性的影响.应用生态学报,2010,21:48-52
    尚晓颍,刘化冰,张小全,林娟,段旺军,杨铁钊.干旱胁迫对不同烤烟品种根系生长和生理特性的影响.西北植物学报,2010,30:357-361
    史刚荣,程雪莲,刘蕾,马成仓.扁担木叶片和次生木质部解剖和水分生理特征的可塑性.应用生态学报,2006,17(10):1801-1806
    宋海星,王学立.玉米根系活力及吸收面积的空间分布变化.西北农业学报,2005,14(1):137-141
    孙爱清,万勇善,刘凤珍,张昆,秦兴国.干旱胁迫对不同花生品种光合特性和产量的影响.山东农业科学,2010,(10):32-38
    谭忠,朱新亮,刘文霞,吴学军.花生种质资源抗旱性鉴定及综合利用评价.中国油料,1997,19(4):73-75
    谭忠.花生品种形态性状与抗旱性关系的研究.花生科技,1998,(1):17-19
    陶龙兴,符冠富,宋建,熊杰,乐明凯,王熹.花期干旱胁迫钝感与敏感水稻保持系的生理特性.作物学报,2010,36(10):1796-1803
    田梦雨,李丹丹,戴廷波,姜东,荆奇,曹卫星.水分胁迫下不同基因型小麦苗期的形态生理差异.应用生态学报,2010,21(1):41-47
    万勇善,张高英.土壤水分对花生净光合速率的影响.山东农业大学学报,1992,23(1):31-35
    汪立刚,李恭志,沈阿林,龚光炎,张素菲.抗旱指数在旱地小麦引种中的应用.干旱地区农业研究,1998,16(4):61-64
    汪耀富,杨天旭,刘国顺,赵春华,王佩,陈新建.渗透胁迫下烟草叶片基因的差异表达研究.作物学报,2007,33(6):914-920
    王爱国,罗广华,邵从本,吴淑君,郭俊彦.大豆种子超氧物歧化酶的研究.植物生理学报,1983,9:77-84
    王才斌,刘云峰,吴正锋,郑亚萍,万书波,孙奎香,孙学武,冯昊.山东省不同生态区花生品质差异及稳定性研究.中国生态农业学报,2008,16(5):1138-1142
    王晨阳,马元喜.不同土壤水分条件下小麦根系生态生理效应的研究.华北农学报,1992,7(4):1-8
    王福青,王铭伦,郑芝荣,孟祥霞.花生苗期耐旱性与品种关系的研究.干旱地区农业研究,2000,18(4):82-87
    王福青,王铭伦,郑芝荣,张海凤,解金兰.干旱对花生苗期生长发育影响的研究.莱阳农学院学报,2000,17(1):12-16
    王贺正,李艳,马均,张荣萍,李旭毅,汪仁全.水稻苗期抗旱性指标的筛选.作物学报,2007,33(9):1523-1529
    王贺正,马均,李旭毅,李艳,张荣萍,汪仁全.水分胁迫对水稻结实期活性氧产生和保护系统的影响.中国农业科学,2007,40(7):1379-1387
    王贺正,马均,李旭毅,张荣萍.水稻苗期生理生化特性与品种抗旱性的关系.华北农学报,2009,24(4):174-178
    王磊,张彤,丁圣彦.干旱和复水对大豆光合生理生态特性的影响.生态学报,2006,26(7),2073-2078
    王士强,胡银岗,佘奎军,周琳璘,孟凡磊.小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析.中国农业科学,2007,40(11):2452-2459
    王思思,张吉旺,刘鹏,董树亭,王空军.干旱对不同玉米品种苗期根系生理生化特性的影响.山东农业科学,2009,6:36-38
    王万里.植物对水分胁迫的反应.植物生理学专题讲座.北京,科学出版社,1986,357-369
    王玮,李德全,杨兴洪,邹琦,周燮,杨军.水分胁迫对不同抗旱性小麦品种芽根生长过程中IAA、ABA含量的影响.作物学报,2000,26:737-742
    王在序,盖树人.山东花生.上海:上海科学技术出版社,1999,232-251
    吴甘霖,段仁燕,王志高,张中信,吴礼凤.干旱和复水对草莓叶片叶绿素荧光特性的影响.生态学报,2010,30(14):3941-3946
    武玉叶,李德全.土壤水分胁迫对冬小麦叶片渗透调节及叶绿体超微结构的影响.华北农学报,2001,16(2):87-93
    许大全.光合作用效率.上海:上海科学技术出版社,2002,821-834
    薛慧勤,孙兰珍,甘信民.花生品种抗旱性综合评价及其抗旱机制的数量分析.干旱地区农业研究,1999,17(1):83-87
    薛慧勤,孙兰珍.水分胁迫对不同抗旱性花生品种生理特性的影响.干旱地区农业研究,1997,15(4):82-85
    严美玲,李向东,矫岩林,王丽丽.不同花生品种的抗旱性比较鉴定.花生学报,2004,33(1):8-12
    严美玲,李向东,林英杰,王丽丽,周录英.苗期干旱胁迫对不同抗旱花生品种生理特性、产量和品质的影响.作物学报,2007,33(1):113-119
    杨建昌,刘凯,张慎凤,王学明,王志琴,刘立军.水稻减数分裂期颖花中激素对水分胁迫的响应.作物学报,2008,34(1):111-118
    杨建昌,王志琴,朱庆森.水稻品种的抗旱性及其生理特性的研究.中国农业科学,1995,28(5):65-72
    杨守萍,陈加敏,刘莹,喻德跃,盖钧镒.大豆苗期耐旱性与根系性状的鉴定和分析.大豆科学,2005,24(3):176-182
    姚君平,罗瑶年,杨新道,周元富,宋满堂.早、中熟花生不同生育阶段土壤水分亏缺对植株生育及产量的影响.花生学报,1985,(2):1-83
    姚君平,罗瑶年,杨新道.干旱对花生早熟种籽仁发育及其品质影响究研初报.中国油料,1982,(3):174-178
    袁野,邴鑫,徐克章,张治安李大勇.大豆品种抗旱性早期鉴定方法.中国油料作物学报,2010,32(4):518-524
    张昆,万勇善,刘风珍.遮光对花生产量、成熟饱满度及品质的影响.中国粮油学报,2009,24(11):91-96
    张明生,谈锋,张启堂.快速鉴定甘薯品种抗旱性的生理指标及方法的筛选.中国农业科学,2001,34(3):260-265
    张仁和,薛吉全,浦军,赵兵,张兴华,郑友军,卜令铎.干旱胁迫对玉米苗期植株生长和光合特性的影响.作物学报,2011,37(3):521-528
    张彦芹,贾玮珑,杨丽莉,徐珊珊.不同玉米品种苗期抗旱性研究.干旱地区农业研究,2001,19(1):83-86
    张智猛,戴良香,丁红,陈殿绪,杨伟强,宋文武,万书波.中国北方主栽花生品种抗旱性鉴定与评价.作物学报,2012,38:495-504
    张智猛,万书波,戴良香,宋文武,陈静,石运庆.不同花生品种对干旱胁迫的响应.中国生态农业学报,2011,19(3):631-638
    张智猛,万书波,戴良香,宋文武,陈静,石运庆.花生抗旱性鉴定指标的筛选与评价.植物生态学报,2011,35:100-109
    张智猛,万书波,宁堂原,戴良香.不同花生品种氮代谢相关酶活性的研究.植物营养与肥料学报,2007,13(4):707-713
    赵世杰,许长成,邹琦,孟庆伟.植物组织中丙二醛测定方法的改进.植物生理学通讯,1994,30(3):207-210
    周桂元,李艳,梁炫强,李少雄,洪彦彬,林坤耀.节水耐旱花生品种的特征.花生学报,2008,37(2):32-34
    朱维琴,吴良欢,陶勤南.干旱逆境下不同品种水稻叶片有机渗透调节物质变化研究.土壤通报,2003,34(1):25-28
    Acharya B R, Assmann S M. Hormone interactions in stomatal function. Plant Mol Biol,2009,69:451-462
    Archie R P J, Martin A J Parry. Discoveries in Rubisco (Ribulose1,5-bisphosphatecarboxylase/oxygenase): a historical perspective. Photosynth Res,2007,94:121-143
    Arnon D I. Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris.Plant Physiology,1949,24:1-15
    Asseng S, Ritchie J T, Smucker A J M, Robertson M J. Root growth and water uptake duringwater deficit and recovering in wheat. Plant and Soil,1998,201(2):265-273
    Attipalli Ramachandra Reddy, Kolluru Viswanatha Chaitanya, Munusamy Vivekanandan.Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants.Journal of Plant Physiology,2004,161:1189-1202
    Bai L P, Sui F G, Ge T D, Sun Z H, Lu Y Y, Zhou G S. Effect of soil drought stress on leafwater status, membrane permeability and enzymatic antioxidant system of maize.Pedosphere,2006,16(3):326-332
    Basu S, Roychoudhury A, Saha P P,. Sengupta D N. Differential antioxidative response ofindica rice cultivars to drought stress. Plant Growth Regul,2010,60:51-59
    Bhagsari A. S, Brown R H, Schepers J S. Effect of Moisture Stress on Photosynthesis andSome Related Physiological Characteristics in Peanut. Crop Sci,1976,16(5):712-715
    Blum A. Breeding crop varieties for stress environments. Critical Rev. Plant Sci.,1984,2:199-238
    Blum A. Crop responses to drought and the interpretation of adaptation. Plant GrowthRegulation,1996,20:135-148
    Blum A. Osmotic adjustment and growth of barley genotypes under drought stress. Crop Sci,1989,29(1):230-233
    Booma A, J.S. Sinninge Damstéa, J.W. de Leeuwa. Cutan, a common aliphatic biopolymer incuticles of drought-adapted plants. Organic Geochemistry,2005,36(4):595-601
    Campalans A, Messeguer R, Goday A, Pagès M. Plant responses to drought, from ABA signaltransduction events to the action of the induced proteins. Plant Physiology andBiochemistry,1999,37:327-340
    Celikkol Akcay U, Ercan O, Kavas M, Yildiz L, Yilmaz C, Oktem H A, Yucel M.Drought-induced oxidative damage and antioxidant responses in peanut (Arachishypogaea L.) seedlings. Plant Growth Regul,2010,61:21-28
    Cengiz T, Canci H, Yildirim T. Evaluation of perennial wild Cicer species for droughtresistance. Genet Resour Crop Evol,2007,54:1781-1786
    Chandra B R., Jingxian Zhang, Blum A, David H T H., R. Wu, Nguyenf H T. HVA1, a LEAgene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) viacell membrane protection. Plant Sci,2004,166:855-862
    Chapman S C, Ludlow M M, Blamey F P C, Fischer K S. Effect of drought during earlyreproductive development on growth of cultivars of groundnut (Arachis hypogaea L.). I.Utilization of radiation and water during drought. Field Crops Res,1993,32:193-210
    Chartzoulakis K, Patskas A, Kofidis G, Bosabalidis A M, Nastou A. Water stress affects leafanatomy, gas exchange, water relations and growth of two avocado cultivers. ScientiaHorticulturae,2002,95:39-50
    Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulationmechanisms from whole plant to cell. Annals of Botany,2009,103:551-560
    Chernyad’ev I I, Monakhova O F. Effects of cytokinin preparations on the pools of pigmentsand proteins of wheat cultivars differing in their tolerance to water stress. AppliedBiochemistry and Microbiology,2003,39:524-531
    Choluj D, Karwowska R, Ciszewska A. Influence of long-term drought stress on osmolyteaccumulation in sugar beet (Beta vulgaris L.) plants. Acta Physiol Plant,2008,30:679-687
    Collino D J, Dardanelli J L, Sereno R, Racca R W. Physiological responses of argentinepeanut varieties to water stress. Light interception, radiation use efficiency andpartitioning of assimilates. Field Crops Res,2011,70:177-184
    Collino D J, Dardanelli J L, Sereno R, Racca R W. Physiological responses of argentinepeanut varieties to water stress. Water uptake and water use efficiency. Field Crops Res,2000,68:133-142
    Collino D J, Dardanelli J L, Sereno R, Racca R W. Physiological responses of argentinepeanut varieties to water stress. Light interception, radiation use efficiency andpartitioning of assimilates. Field Crops Res,2001,70:177-184
    Colom M R, Vazzana C. Photosynthesis and PSII functionality of drought-resistant anddrought-sensitive weeping lovegrass plants. Environmental and Experimental Botany,2003,49:135-144
    Danièle Clavel, Omar Diouf, Jean L. Khalfaoui, Serge Braconnier. Genotypes variations influorescence parameters among closely related groundnut (Arachis hypogaea L.) linesand their potential for drought screening programs. Field Crops Res,2006,96:296-306
    Dorner, J W, Cole R J, Blankenship P D. Use of a biocompetitive agent to control preharvestaflatoxin in drought stressed peanuts. Journal of food protection,1992,55(11):888-892
    Dramé K N, Clavel D, Repellin A, Passaquet C, Fodil Y Z. Water deficit induces variation inexpression of stress-responsive genes in two peanut (Arachis hypogaea L.) cultivarswith different tolerance to drought. Plant Physio and Bioche,2007,45:236-243
    Dwivedi S L, Nigam S N, Nageswara R R C, Singh U, Rao K V S. Effect of drought on oil,fatty acids and protein contents of groundnut (Arachis hypogaea L.) seeds. Field CropsRes,1996,48(2):125-133
    Ehanayake I J, Garrity D, Masajo T. Root pulling resistance in rice: inheritance andassociation with drought tolerance. Euphytica,1985,34:905-913
    Ellis R J. The most abundant protein in the word. Trends Biochem Sci,1979,4:241-244
    Engels C, Mollenkopf M, Marschner H. Effect of drying and rewetting the topsoil on rootgrowth of maize and rape in different soil depths. Journal of Plant Nutrition and SoilScience,1994,157(2):139-144
    Ephrath J E. The effects of drought stress on leaf elongation, photosynthesis and transpirationrate in maize leaves. Photosynthetica,1991,25:607-619
    Eric S. Ober, Mich Le Bloa, Chris J.A. Clark, Andy Royal, Keith W. Jaggard, John D. Pidgeon. Evaluation of physiological traits as indirect selection criteria for drought tolerance insugar beet. Field Crops Res,2005,91:231-249
    Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Ann Rev PlantPhysiol,1982,33:317-345
    Felix J F, Obaton M, Messiaen C M, Salsac L. Nitrate reductase and nitrogenase activities ofcommon beans (Phaseolus vulgaris L.) from different geographic locations. Plant andSoil,1981,63(3):427-438
    Ferreyra R A, Dardanelli J L, Pachepsky L B, Collino D J, Faustinelli P C, Giambastiani G,Reddy V R, Jones J W. Nonlinear effects of water stress on peanut photosynthesis at cropand leaf scales. Ecological Modelling,2003,168:57-76
    Flagella Z, Campanile R G, Range G, Stoppelli M C, Pasture D, De Caro A, Di Fonzo N. Themaintenance of Photosynthetic electron transport in relation to osmotic adjustment indurum wheat cultivars differing in drought resistance. Plant Sci,1996,118(2):127-133
    Fu Jinmin, Huang Bingru. Involvement of antioxidants and lipid peroxidation in theadaptation of two cool-season grasses to localized drought stress. Environmental andExperimental Botany,2001,45(2):105-114
    Fukai S, Pantuwan G, Jongdee B, Cooper M. Screening for drought resistance in rainfedlowland rice. Field Crops Res,1999,64(1):61-74
    Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stresstolerance in crop plants. Plant Physiology and Biochemistry,2010,12:909-930
    Goicoechea N, Antolín M C, Díaz M S. Gas exchange is related to the hormone balance inmycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiologia Plantarum,1997,100:989-997
    Gomes F P, Oliva M A, Mielke M S, Almeidaa A A F, Aquinob L A. Osmotic adjustment,proline accumulation and cell membrane stability in leaves of Cocos nucifera submittedto drought stress. Scientia Horticulturae,2010,126:379-384
    Hashim I B, Koehler P E, Eitenmiller R R, Kvien C K. Fatty acid composition and tocopherolcontent of drought stressed florunner peanuts. Peanut Sci,1993,20(1):21-24
    Hill R A, Blankenship P D, Cole R J, Sanders T H. Effects of soil moisture and temperatureon preharvest invasion of peanuts by the Aspergillus flavus group and subsequentaflatoxin development. Appl. Environ. Microbiol,1983,45(2):628-633
    Holbrook C C, Kvien C K, Rucker K S, Wilson D M, Hook J E, Matheron M E. Preharvestaflatoxin contamination in drought-tolerant and drought-intolerant peanut genotypes.Peanut Sci,2000,27(2):45-48.
    Holbrook C, Stalker H. Peanut breeding and genetic resources. Plant Breeding Reviews,2003,22:297-346
    Hoogenboom G, Huck M G, Peterson C M. Root growth rate of soybean as affected bydrought stress. Agronomy Journal,1987,79(4):607-614
    Jain A K, Basha S M, Holbrook C C. Indentification of drought-responsive transcripts inpeanut(Arachis hypogaea L.). Molecular Biotechnology and Genetics,2001,4:502-514
    Jongrungklang N, Toomsan B, Vorasoot N, Jogloy S, Boote K J, Hoogenboom G, PatanothaiA. Rooting traits of peanut genotypes with different yield responses to pre-floweringdrought stress. Field Crops Res,2011,120:262-270
    Jung S. Variation in antioxidant metabolism of young and mature leaves of Arabidopsisthaliana subjected to drought. Plant Sci,2004,166:459-466
    Jyostna Devi M., Sinclair T R, Vadez V, Krishnamurthy L. Peanut genotypic variation intranspiration efficiency and decreased transpiration during progressive soil drying. FieldCrops Res,2009,114:280-285
    Kim J Y, Mahé A, Guy S, Brangeon J, Roche O, Chourey P S, Prioul, J L. Characterization oftwo members of the maize gene family, Incw3and Incw4, encoding cell-wall invertases.Gene,2000,245:89-102
    Kocsy G, Laurie R, Szalai G, Szilágyi V, Sarkadi L S, Galiba G,. Ronde J A D. Geneticmanipulation of proline levels affects antioxidants in soybean subjected to simultaneousdrought and heat stresses. Physiologia Plantarum,2005,124(2):227-235
    Krishnamurthy L, Vadez V, Devi M.J, Serraj R, Nigam S.N, Sheshshayee M.S, Chandra S,Aruna R. Variation in transpiration efficiency and its related traits in a groundnut(Arachis hypogaea L) mapping population. Field Crops Res,2007,103:189-197
    Kulkarni M, Schneider B, Raveh E, Tel-Zur N. Leaf anatomical characteristics andphysiological responses to short-term drought in Ziziphus mauritiana (Lamk.). ScientiaHorticulturae,2010,124:316-322
    Lauriano J A, Campos P S, Ramalho J C, Lidon F C, Guedes M E, Matos M do Ceu. Partialdecline of Arachis hypogaes L photosynthesis triggered by drought stress.Photosynthetica,1997,33(1):81-90
    Lauriano J A, Ramalho J C, Lidon F C, Matos M do Ceu. Peanut photosynthesis underdrought and re-watering. Photosynthetica,2004,42(1):37-41
    Lenoble M E, Spollen W G, Sharp R E. Maintenance of shoot growth by endogenous ABA:genetic assessment of the involvement of ethylene suppression. J Exp Bot,2004,55:237-245
    Levitt J. Response of plants to environmental stresses. In: Water, Radiation, Salt and OtherStresses. New York: Academic Press,1980:325-358
    Liu F L, Jensen C R, Shahanzari A, Andersen M N, Jacobsen S E. ABA regulated stomatalcontrol and photosynthetic water use efficiency of potato (Solanum tuberosum L.)during progressive soil drying. Plant Sci,2005,168:831-836
    Mardeh A S S, Ahmadi A, Poustini K, Mohammadi V. Evaluation of drought resistanceindices under various environmental conditions. Field Crops Res,2006,98:222-229
    Mccree K J. Whole-plant carbon balance during osmotic adjustment to drought and salinitystress. Australian Journal of Plant Physiology,1986,13(1):33-43
    Medrano H, Escalona J M, Bota J, Gulías J, Flexas J. Regulation of photosynthesis of C3plants in response to progressive drought: stomatal conductance as a reference parameter.Annals of Botany,2002,89(7):895-905
    Milier G, Suzuki N, Sultan C Y, Mittler R. Reactive oxygen species homeostasis and signalli-ng during drought and salinity stresses. Plant, Cell and Environment,2010,33:453-467
    Mittler R. Oxidative stress, antioxidants and stress tolerance. Plant sci,2002,7(9):405-410
    Mohammed B, Stanley L, Jean M K. Water deficit effects on solute contribution to osmoticadjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.)cultivars performing differently in arid conditions. Plant Sci,2001,160:669-681
    Munné-Bosch S, Pe uelas J. Drought-induced oxidative stress in strawberry tree (Arbutusunedo L.) growing in Mediterranean field conditions. Plant Sci,2004,166:1105-1110
    Nageswara R C, Williams J H. Effect of water deficit at different growth phases of peanut. I.Yield responses. Agronomy Journal,1985,77:782-786
    Nageswara R R C, Williams J H, Wadia K D R, Hubick K T, Farquhar G D. Crop growth,water use efficiency and carbon isotope discrimination in groundnut(Arachis hypogaeaL.) genotypes under end-of-season drought condition. Ann of Appl Biol,1993,122:357-367
    Nageswara Rao R C. Drought research on groundnut at ICRISAT. Groundnut-a global persp-ective. I-CRISAT, India.1991:455
    Neill S J, Desikan R, Clarke A, Hurst R D, Hancock J T. Hydrogen peroxide and nitric oxideas signalling molecules in plants. Journal of Experimental Botany,2002,53(372):1237-1247
    Nepomuceno A L, Oosterhuis D M, Stewart J M. Physiological responses of cotton leaves androots to water deficit induced by polyethylene glycol. Environmental and experin entalBotany,1998,40:29-41
    Painawadee M, Jogloy S, Kesmala T, Akkasaeng C, Patanothai A. Identification of traitsrelated to drought resistance in peanut (Arachis hypogaea L.). Asian Journal of Plant Sci,2009,8(2):120-128
    Passioura J B. Roots and drought resistance. Agricultural Water Management,1983,7:265-280
    Passioura, J. B. The interaction between the physiology and the breeding of wheat. In: L. T.Evans and W. J. Peacock eds. Wheat Science-Today and Tomorrow CambridgeUniversity Press, Cambridge,1981,191-201
    Patel C. L., Padalia, M. R.. Nutrient accumulation and nutrient-use-efficiency in groundnutunder different sequences of soil-water potential. Legume Research,1980,3(1):45-50
    Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. CurrentOpinion in Plant Biology,2011,14:290-295
    Peltzer D, Dreyer E, Polle A. Differential temperature dependencies of antioxidative enzymesin two contrasting species: Fagus sylvatica and Coleus blumei. Plant Physiol. Biochem,2002,40:141-150
    Pimratch S, Jogloy S, Vorasoot N, Toomsan B, Patanothai A, Holbrook C. Relationshipbetween biomass production and nitrogen fixation under drought-stress conditions inpeanut genotypes with different levels of drought resistance. J. Agronomy&CropScience,2008,194:15-25
    Pitman M G. Transport across the root and shoot/root inter-action[A].Salinity tolerance inplant-strategies for crop improvement[C]. Newyork: John Wiley and sons,1984,93-123
    Pooja Bhatnagar-Mathur, M.Jyostna Devi, Vincent Vadez, KiranK. Sharma. Differentialantioxidative responses in transgenic peanut bear no relationship to their superiortranspiration efficiency under drought stress. Journal of Plant Physiology,2009,166:1207-1217
    Potters G, Pasternak T P, Guisez Y, Palme K J, Marcel A. K. Jansen. Stress-inducedmorphogenic responses: growing out of trouble? Trends in Plant Science,2007,12(3):98-105
    Puangbut D, Jogloy S, Toomsan B, Vorasoot N, Akkasaeng C, Kesmala T, Rachaputi RCN,Wright GC, Patanothai A. Physiological basis for genotypic variation in tolerance to andrecovery from pre-flowering drought in peanut. J. Agronomy&Crop Science,2010,196:358–367
    Puangbut D, Jogloy S, Vorasoot N, Akkasaeng C, Kesmala T., Rao C.N. Rachaputi, Wright GC, Patanothai A. Association of root dry weight and transpiration efficiency of peanutgenotypes under early season drought. Agricultural Water Management,2009,96:1460-1466
    Reddy T. Y., V. R. Reddy, V. Anbumozhi. Physiological responses of peanut (Arachis hypgeaL.) to drought stress and its amelioration: a critical review. Plant Growth Regul,2003,41:75-88
    Ricardo J. Haro, Julio L. Dardanelli, María E. Otegui b, Daniel J. Collino. Seed yielddetermination of peanut crops under water deficit: Soil strength effects on pod set, thesource-sink ratio and radiation use efficiency. Field Crops Res,2008,109:24-33
    Rosario Azcón, Rosa Mar a Tobar. Activity of nitrate reductase and glutamine synthetase inshoot and root of mycorrhizal Allium cepa: Effect of drought stress. Plant Sci,1998,133(1):1-8
    Rose I A. Effects of moisture stress on the oil and protein components of soybean seed. Aust JAgric Res,1988,39:163-170
    Rucker K. S., Kvien C. K., Holbrook C.C., Hook J. E.. Identification of peanut genotypeswith improved drought avoidance traits. Peanut Sci,1995,22:14-18
    Sairam R K, Deshmukh P S, Saxena D C. Role of antioxidant systems in wheat genotypestolerance to water stress. Biologia Plantarum,1998,41(3):387-394
    Sanders T H, Cole R J, Blankenship P D, Dorner J W. Aflatoxin contamination of peanutsfrom plants drought stressed in pod or root zones. Peanut Sci,1993,20(1):5-8
    Sarkar R K, Saini J P, Dubey C D. Testing of soybean (Glycine max) genotypes for droughttolerance. J Agri. Sci,1991,61:369-373
    Schachtman D P, Goodger J Q D. Chemical root to shoot signaling under drought.Trends inplant science,2008,13:281-287
    Serraj R, Krishnamurthy L, Kashiwagi J, Kumar J, Chandra S, Crouch J H. Variation in roottraits of chickpea (Cicer arietinum L.) grown under terminal drought. Field Crops Res,2004,88:115-127
    Shahenshah, Y. Yoshizumi, Li M S, Isoda Akihiro. Assessment of photochemical reflectanceindex as a tool for evaluation of chlorophyll fluorescence parameters in cotton and peanutcultivars under water stress condition. Agricultural Sci in China,2010,9(5):662-670
    Sharkey T D. Transpiration-induced changes in the photosynthetic capacity of leaves. Planta,1984,160(2):143-150
    Sheshshayee M S, Bindumadhava H, Rachaputi N R, Prasad T G, Udayakumar M, Wright GC, Nigam S N. Leaf chlorophyll concentration relates to transpiration efficiency inpeanut. Ann Appl Biol,2006,148:7-15
    Silberbush M, Golan-Goldhirsh A, Heimer Y, Ben-Asher J, Lips S H. Response of Peanuts(Arachis hypogaea L.) grown in Saline Nutrient Solution to Potassium Nitrate. J of PlantPhysiology,1998,132(2):229-233
    Singh S K, Reddy K R. Regulation of photosynthesis, fluorescence, stomatal conductance andwater-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought. J ofPhotochemistry and Photobiology B: Biology,2011,105:40-50
    Sinha S K. Drought resistance in crop plants: A critical physiological and biochemical assess-ment In: Drought tolerance in winter cereals(ed. Srivastava J.P.).Wiley Chichester,1987,349-364
    Smucker A J M, Aiken R M. Dynamic root responses to water deficits. Soil Sci,1992,154(4):281-289
    Songsri P, Jogloy S, Holbrook CC, Kesmala T, Vorasoot N, Akkasaeng C, Patanothai A.Association of root, specific leaf area and SPAD chlorophyll meter reading to water useefficiency of peanut under different available soil water. Agricultural water management,2009,96:790-798
    Songsri P, Jogloy S, Kesmala T, Vorasoot N, Akkasaeng C, Patanothai A, Holbrook C C.Heritability of drought resistance traits and correlation of drought resistance andagronomic traits in peanut. Crop Sci,2008,48(6):2245-2253
    Songsri P, Jogloy S, Vorasoot N, Akkasaeng C, Patanothai A, Holbrook C C. Root distributionof drought-resistant peanut genotypes in response to drought. J. Agronomy&Crop Sci,2008,194:92-103
    Stansell J R, Pallas J J E. Yield and quality response of florunner peanut to applied drought atseveral growth stages. Peanut Sci,1985,12(2):64-70
    Subbaraoa G V, Chauhanb Y S, Johansenb C. Patterns of osmotic adjustment in pigeonpea-itsimportance as a mechanism of drought resistance. European Journal of Agronomy,2000,12:239-249
    Sumran Pimratch, Sanun Jogloy, Nimitr Vorasoot, Banyong Toomsan, Thawan Kesmala, AranPatanothai, C. Corley Holbrook. Effect of drought stress on traits related to N2fixationin eleven peanut(Arachis hypogaea L.)genotypes differing in degrees of resistance todrought. Asian J of Plant Sci,2008,7(4):334-342
    Tang Y L, Chen M, Xu Y N, Kuang T Y. Changes in thermostability of photosystemⅡ andleaf lipid composition of rice mutant with deficiency of light-harvesting chlorophyll a/bprotein complexes. J of Integrative Plant Biology,2007,49:515-522
    Timothy H Sanders, Richard J Cole, Paul D Blankenship, Robert A Hill. Relation ofenvironmental stress duration to Aspergillus flavus invasion and aflatoxin production inpreharvest peanuts. Peanut Sci,1985,12(2):90-93
    Turner N C. Further progress in crop water relations. Adv Agron,1997,58:293-339
    Upadhyaya H D. Variability for drought resistance related traits in the mini core collection ofpeanut. Crop Sci,2005,4:1432-1440
    Wakamatsu K, Takahama U. Changes in peroxidase activity andin peroxidsae isozymes incarrot callus. Physiol Plant,1993,88:167-171
    Wang S C, Liang D, Li C, Hao Y L, Ma F W, Shu H R. Influence of drought stress on thecellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks.Plant Physiology and Biochemistry,2012,51:81-89
    Wang W B, Kim Y H, Lee H S, Kim K Y, Deng X P, Kwak S S. Analysis of antioxidantenzyme activity during germination of alfalfa under salt and drought stresses. PlantPhysiology and Biochemistry,2009,7:570-577
    Wright G.C, Rao R C N, Farquhar G D. Water-use efficiency and carbon isotopediscrimination in peanut under water-deficit conditions. Crop Sci,1994,34:92-97
    Zhu J K. Salt and drought stress signal transduction in plants. Ann Rev Plant Biol,2002,53:247-273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700