超高空观测平台半实物仿真系统设计与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高空观测平台可以携带大载荷,长时间在20~30km驻留,因此可用于对地观测、导航和制导,军事价值及民用价值极高。半实物仿真平台的设计与实现可以帮助用户在控制系统开发初期找到系统存在的问题,降低开发成本,缩短开发周期。本文针对超高空观测平台控制系统仿真的特点,以及控制系统设计的要求,提出了超高空观测平台半实物仿真系统设计方案,设计并实现了半实物仿真系统。
     首先,提出了基于xPC Target的半实物仿真硬件回路设计方案,确定各部分功能及工作模式。通过半实物仿真可以有效解决惯性测量单元等部件的非线性环节及延迟环节无法用数学模型准确描述的问题。
     其次,详细论述了构建基于xPC Target的超高空观测平台半实物仿真系统的关键技术和实现方法。根据xPC Target驱动模块设计技术开发了RS-422串口板卡的驱动模块设计,解决了串口通讯问题。并提出了同步问题的一种解决方案。
     再次,在VC++6.0环境下开发了超高空观测平台半实物仿真系统控制台软件,实现仿真过程控制的基本功能、参数在线调整、历史曲线显示、动画显示等功能。
     最后,构建完整的超高空观测平台半实物仿真系统,并进行仿真测验和分析。超高空观测平台半实物仿真结果证明了基于xPC Target构建硬件在回路半实物仿真平台的可行性及正确性。
     该技术方案具有通用、快速、方便、成本低等特点。该技术的研究对于超高空观测平台飞行和姿态控制系统仿真具有极高的应用价值。
Due to its ability to hover at a stratospheric altitude of 20~30km carrying heavy payload for a long duration, the high altitude platform has an important application potential in observation, navigation and guidance, and can be widely applied to both military and civil uses. The design and implementation of the hardware-in-loop simulation system provide us a good means to recognize problems as early as possible in the developing process of high altitude platform control system. According to the characteristics and requirements of high altitude platform control system, this thesis proposes a design scheme and its implementation of the hardware-in-the-loop simulation system of a high altitude platform.
     First, the design of the hardware-in-the-loop simulation system of a high altitude platform is proposed. The functions of each part and operation mode are determined. The problems such as the nonlinearities in inertial measurement unit and other components, time delay properties, which cannot be accurately described, can be effectively resolved using hardware-in-the-loop simulation.
     Second, the thesis discusses the essential techniques and the implementation methods based on the xPC Target toolbox which is used to develop the hardware-in-loop simulation system of the high altitude platform. According to driving design principles of xPC Target, software driving of the RS-422 serial port card is designed to solve the problem of serial port communication. And a solution of the synchronization communication problem is proposed.
     Third, based on VC++6.0 software, console software of the high altitude platform hardware-in-loop simulation system is developed, to realize basic functions in simulation process, adjust parameters on-line, display historical curves, and display the animated simulation results. At last, the hardware-in-loop simulation system for the high altitude platform is developed. Experiments and analysis of hardware-in-loop simulation are carried on.
     The results show the feasibility and validity of design of the hardware-in-loop simulation system.
     The technique scheme proposed in the thesis characterizes generality, fast run speed, low cost and some other properties. The research in the thesis has significant application values in flight and attitude control system simulation of high altitude platforms.
引文
[1]张乐平,兰俊杰,马妍.军用飞艇的发展现状与趋势[J].飞航导弹. 2007(12): 35~37.
    [2]立早.美国进行军用飞艇研究[J].航空电子技术. 2005(1): 54.
    [3]刘刚,张玉军.平流层飞艇定点驻留控制分析与仿真[J].兵工自动化. 2008(12): 64~66.
    [4]高铁生.英国重视发展军用飞艇[N].中国国防报.
    [5]吕小红.世界军用飞艇发展新动向[J].飞航导弹. 2003(7): 20~23.
    [6]华锋,高维,彭小龙,等.浅谈美军飞艇发展[J].飞航导弹. 2007(7): 62~64.
    [7]侯勇,杨军.平流层飞艇上升段高度控制方案[J].兵工自动化. 2011(3): 73~74.
    [8] Ren Yipeng,Tian Zhongwei,Wu Ziniu. Some Aerodynamics Problems of Airship[J]. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica. 2010, 31(3): 431~443.
    [9]韩放.超高空观测平台姿态控制设计与控制策略研究[D].哈尔滨工业大学, 2008.
    [10] Herlik E. Weeks to Years On-Station? Unmanned Airship Technology Markets[C]. Denver, CO, United states: 2010.
    [11]王子才.仿真技术发展及应用[J].中国工程科学. 2003(2): 40~44.
    [12]单勇.实时半实物仿真平台关键技术研究与实现[D].国防科学技术大学, 2010.
    [13] Shao L, An S, Chang H, et al. Study On Real-Time Test-Bench of Speed Governor Using Matlab/Xpc Target[C]. Xian, China: 2007.
    [14] Teng F C. Real-Time Control Using Matlab Simulink[C]. Nashville, TN, USA: 2000.
    [15]杨涤等编著.系统实时仿真开发环境与应用[M].北京:清华大学出版社, 2002.
    [16]徐林.基于Simulink的一体化实时半实物仿真平台的研究与实现[D].国防科学技术大学, 2008.
    [17]王超,王仕成,刘志国.基于Matlab/Xpc Target的实时仿真系统研究[J].控制工程. 2007(S2): 165~167.
    [18]樊晓丹,孙应飞,李衍达.一种基于Rtw的实时控制系统快速开发方法[J].清华大学学报(自然科学版). 2003(7): 895~898.
    [19]张旺林,熊诗波.实验室基于Matlab实时工作间的快速原型仿真系统的研究[J].科技情报开发与经济. 2003(4): 150~151.
    [20]任传俊.基于Rtx的Matlab实时仿真技术研究与实现[D].国防科学技术大学, 2006.
    [21] Grega W, Kolek K. Simulation and Real-Time Control: From Simulink to Industrial Applications[C]. 2002.
    [22] Tahboub K A, Albakri M I, Arafeh A M. Development of a Flexible Educational Mechatronic System Based On Xpc Target[C]. Las Vegas, NV, United states: 2008.
    [23] Wang F, Cao X B, Yang Y, et al. Small Satellite Large Angle Attitude Maneuver Hardware-in-the-Loop Simulation Based On Three-Axis Air Bearing Table[C]. Keystone, CO, United states: 2006.
    [24] Chin C S, Lau M W S, Tan Y J, et al. Development and Testing of an Autonomous Underwater Vehicle Using Industrial Xpc-Target Platform[C]. 2009.
    [25] Cheol H P, Sang-Kyu C, Young S S, et al. Development of 5Kwh Flywheel Energy Storage System Using Matlab/Xpc Target[C]. 2009.
    [26] Peilin S, Lidong M, Guangde Z, et al. Development of Uniform Hardware Driver for Real-Time Windows and Xpc Target[C]. 2009.
    [27]王宁强,刘向东.卫星姿态控制系统硬件在回路仿真研究[J].计算机仿真. 2005(10).
    [28]张乐飞,刘利,王旭永.基于Xpc实时控制的中空液压马达伺服系统的研究[J].液压与气动. 2005(6): 45~47.
    [29]张良.基于Xpc Target的汽车Esp硬件在环仿真试验台的开发[D].吉林大学, 2009.
    [30] Le T, Renner F M, Glesner M. Hardware in-the-Loop Simulation-a Rapid Prototyping Approach for Designing Mechatronics Systems[C]. 1997.
    [31] Quinones Reyes P, Benitez Perez H, Cardenas Flores F, et al. Reconfigurable Fuzzy Takagi Sugeno Networked Control Using Edf Scheduling in Xpc Target[C]. Cuernavaca, Mexico: 2007.
    [32] Lizarraga M I, Dobrokhodov V, Elkaim G H, et al. Simulink Based Hardware-in-the-Loop Simulator for Rapid Prototyping of Uav Control Algorithms[C]. Seattle, WA, United states: 2009.
    [33] Shiakolas P S, Piyabongkarn D. On the Development of a Real-Time Digital Control System Using Xpc-Target and a Magnetic Levitation Device[C]. Orlando, FL, United states: 2001.
    [34] Low K H, Wang H, Wang M Y. On the Development of a Real Time Control System by Using Xpc Target: Solution to Robotic System Control[C]. Edmonton, Canada: 2005.
    [35] Gani A, Salami M J E, Khan R. Active Vibration Control of a Beam withPiezoelectric Patches: Real-Time Implementation with Xpc Target[C]. 2003.
    [36] Dobrokhodov V, Lizarraga M. Developing Serial Communication Interfaces for Rapid Prototyping of Navigation and Control Tasks[C]. San Francisco, CA, United states: 2005.
    [37]吴佳楠,吴成富,陈怀民.实时仿真设备驱动程序开发技术研究[J].计算机仿真. 2005(4): 32~35.
    [38]进兵.基于Xpc Target的无人机飞行控制软件快速原型设计[D].南京航空航天大学, 2008.
    [39]张旺林,熊诗波,魏晋宏.基于Matlab实时视窗目标的数据采集研究[J].太原理工大学学报. 2003(4): 463~464.
    [40]侯浩亮,姚新宇,冯晓梅,等. C Mex S函数在Simulink中的应用[J].微计算机信息. 2010(19): 140~141.
    [41]路静,李亚伟.利用Mex实现对硬件的实时处理和仿真[J].现代电子技术. 2003(3): 59~61.
    [42] Juan C, Junhong Z. Semi-Physical Simulation of an Optoelectronic Tracking Servo System Based On C Mex S Functions[C]. Changchun, China: 2010.
    [43] Song C, Li J, Jin L, et al. Development of Can Card Driver Module Using S-Function in Xpc Target[C]. 2010.
    [44] Xu W, Chen J, Yang J. Design of Servo System for 3-Axis Cnc Drilling Machine Based On Xpc Target[C]. 2009.
    [45] Shen Yan Xia, Ji Zhi Cheng. Study On Modeling and Simulation of Permanent-Magnet Synchronous-Motor Control System Based On C Mex S-Function[J]. Xitong Fangzhen Xuebao / Journal of System Simulation. 2005, 17(8): 1820~1825.
    [46]时亚忠,王旭永,张红伟.采用C Mex S函数编写Xpc环境下设备驱动模块的研究[J].测控技术. 2006(7): 59~61.
    [47]边新迎,刘亮,刘君,等.基于Matlab环境的实时仿真研究[J].微计算机信息. 2006(19): 250~252.
    [48] Ka W L, Nguyen-Vu T, Rhodes B, et al. Development of a Remote Access Control Laboratory Using Xpc Target and Virtual Reality Modeling Language[C]. 2010.
    [49] Yusivar F, Wakao S. Minimum Requirements of Motor Vector Control Modeling and Simulation Utilizing C Mex S-Function in Matlab/Simulink[C]. Denpassar, Bali, Indonesia: 2001.
    [50] Mathworks. Xpc Target Version 4.3 (R2010a)/日期.
    [51]陈特. Matlab-Dsp集成开发环境的研究与设计[D].天津大学, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700