产后抑郁大鼠行为学与激素水平、单胺递质变化及补益心脾法干预机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:以产后抑郁模型动物为研究载体,采用具有补益心脾作用的参芪解郁方进行干预,从行为学、脑组织形态学、神经内分泌系统相关激素与受体、单胺递质及其代谢产物的变化等方面,探讨产后抑郁症(PPD)神经生物学发病机制以及中医补益心脾法的干预作用,明确参芪解郁方治疗PPD的作用途径,进一步完善补益心脾法在PPD治疗方面的理论学说。
     方法:选用雌性SD大鼠,随机分为正常、假手术、模型、中药、西药组,每组均设处理后1、2、4、6w四个不同观察时点。模型、中药、西药组经去势手术后连续雌孕激素注射制备PPD模型,后分别予双蒸水、参芪解郁方、氟西汀灌胃干预。正常组给予等容积双蒸水,假手术组行假手术后予双蒸水灌胃。所有动物分别于1、2、4、6w不同时点予行为学测试。测试完毕后,行相关指标检测:①通过HE染色观察大鼠脑前额皮质、海马、下丘脑神经细胞损伤情况;②采用酶联免疫法和放射免疫法检测血清HPA、HPG轴激素水平;③采用免疫组化法测定脑前额皮质、海马、下丘脑ERα、β表达;④采用高效液相法测定脑前额皮质、海马单胺递质及其代谢产物含量。
     结果:
     1.一般情况观察
     1.1外观与活动状态:模型大鼠精神、活动状态较正常、假手术组差,表现为皮毛晦暗,毛发梳理、寻觅探查等动作明显减少,自由活动度降低,于造模后1、2w时显著,4、6w时虽有好转,但仍较正常大鼠状态差。经药物干预后,中、西药组上述抑郁征象较模型组改善,6w时可基本恢复正常状态。
     1.2体重:模型组各时点均较正常、假手术组降低(P<0.01,P<0.05)。中药组2、4、6w及西药组各时点均较模型组升高(P<0.01,P<0.05)。模型、中药、西药组体重均呈增加趋势,但模型组较中、西药组增长幅度明显缓慢。
     2.行为学观察
     2.1蔗糖水消耗:模型组各时点较正常、假手术组降低(P<0.01,P<0.05)。西药组2w及中、西药组4、6w较模型组升高(P<0.01)。模型组显示为逐渐下降规律,中、西药组则表现逐渐上升趋势。
     2.2 OFT:模型组各时点水平与垂直得分均较正常、假手术组降低(P<0.01,P<0.05);中、西药组除1w外余各时点水平得分与中药组1w及中、西药组2、4w垂直得分均较模型组升高(P<0.01,P<0.05)。模型、中药、西药组水平得分及西药组垂直得分均呈升高趋势,模型、中药组垂直得分显示降低后又逐渐升高规律。
     2.3 FST:模型组各时点不动时间较正常、假手术组延长(P<0.01,P<0.05),各时点挣扎时间与2、4、6w游泳时间均较以上两组缩短(P<0.01)。中、西药组各时点不动时间较模型组缩短(P<0.01,P<0.05),二者各时点挣扎时间及2、4、6w游泳时间较模型组延长(P<0.01,P<0.05)。模型组不动时间呈增加后又减少趋势,挣扎时间呈稍减少后逐渐增加,此后又迅速减少趋势,游泳时间呈降低后又逐渐升高趋势;中、西药组不动时间呈逐渐减少趋势,挣扎时间表现为逐渐增加后又降低,游泳时间则表现逐渐升高趋势。
     3.脑组织病理结构观察
     正常、假手术组前额皮质、海马细胞数量多,排列整齐,胞浆饱满,核仁清晰;下丘脑细胞排列规律,形态正常。模型组上述三个部位病理损伤1、2w尤为显著,4、6w无明显恢复。前额皮质、海马细胞数量明显减少或呈萎缩状,间隙增大,排列疏松紊乱,细胞淡染,着色不匀,海马部分细胞亦出现空泡化及核固缩;下丘脑细胞肿胀明显,着色不均,部分细胞出现核固缩。中、西药组病理损伤1w较模型组有所减轻,2w改善明显,4、6w状况恢复基本接近正常水平。
     4.神经内分泌系统相关激素测定
     4.1 HPA轴激素:模型组各时点CRH、ACTH、Cor均较正常、假手术组升高(P<0.01,P<0.05)。西药组4、6w的CRH,除中、西药组1w及西药组4w外二者余各时点ACTH,中、西药组2、4、6w的Cor均较模型组降低(P<0.01,P<0.05)。中、西药组ACTH呈逐渐减少趋势;模型、中药、西药组Cor呈升高后又逐渐降低趋势,而模型组升高显著减低缓慢。
     4.2 HPG轴激素:模型组各时点GnRH、FSH,1w的LH,2、4、6w的E2均较正常、假手术组降低(P<0.01,P<0.05);2、4、6w的LH,1w的E2,各时点P均较以上两组升高(P<0.01,P<0.05)。西药组各时点GnRH、E2及2、4、6w的FSH、1w的LH,中药组2、4、6w的GnRH、FSH及各时点E2均较模型组升高(P<0.01,P<0.05);中、西药组2、4、6w的LH及各时点P均较模型组降低(P<0.01,P<0.05)。模型、中药、西药组GnRH、FSH、LH均呈逐渐升高趋势,E2、P呈明显下降趋势,上述指标经中、西药物干预后可基本恢复正常水平。
     5.ER表达变化
     5.1 ERα:模型组2、4、6w前额皮质、海马、下丘脑表达较正常、假手术组减少(P<0.01,P<0.05),1w海马、下丘脑表达较以上两组增加(P<0.01,P<0.05)。中药组4、6w前额皮质,西药组2、4、6w前额皮质、下丘脑,中、西药组2、4、6w海马,中药组各时点下丘脑表达均较模型组增加(P<0.01,P<0.05)。模型、中药、西药组三个部位表达均呈下降趋势,且以模型组下降更为明显。
     5.2 ERβ:模型组1w前额皮质,1、2w海马、下丘脑表达均较正常、假手术组增加(P<0.01,P<0.05),4、6w前额皮质、下丘脑及6w海马表达均较以上两组明显减少(P<0.01)。中、西药组6w前额皮质及4、6w海马,中药组4、6w及西药组2、4、6w下丘脑表达均较模型组增加(P<0.01,P<0.05)。各组三个部位表达变化与ERα相似。
     6.单胺递质及其代谢产物检测
     6.1单胺递质:模型组各时点前额皮质、海马5-HT、NE、DA均较正常、假手术组减少(P<0.01,P<0.05)。中药组2、4、6w及西药组各时点前额皮质,中、西药组各时点海马5-HT、NE均较模型组增加(P<0.01,P<0.05),中药组4、6w及西药组2、4、6w前额皮质,中药组1、6w及西药组1w海马DA均较模型组增加(P<0.01,P<0.05)。模型组前额皮质、海马5-HT,前额皮质NE、DA均呈逐渐下降趋势,海马NE呈明显下降后又轻度升高趋势,海马DA则表现为升高后逐渐下降规律。中药组前额皮质及中、西药组海马5-HT,西药组前额皮质及中药组海马NE均呈逐渐升高趋势;中药组前额皮质NE表现为稍下降后又逐渐上升规律;中、西药组海马DA则表现为下降趋势。
     6.2单胺递质代谢产物:模型组1w前额皮质、海马5-HIAA较正常、假手术组增加(P<0.01,P<0.05),余各时点两部位5-HIAA及各时点两部位DOPAC含量均较以上两组减少(P<0.01,P<0.05)。中、西药组1w前额皮质、海马5-HIAA较模型组减少(P<0.01,P<0.05);二者4、6w前额皮质5-HIAA,2、4、6w海马5-HIAA及前额皮质DOPAC均较模型组增加(P<0.01,P<0.05)。模型组前额皮质、海马5-HIAA均呈下降趋势,前额叶皮质DOPAC呈逐渐下降后又升高趋势。中、西药组前额皮质、海马5-HIAA则呈明显减少后又逐渐增加趋势;中药组海马DOPAC表现为升高后又逐渐下降规律。
     结论:
     1.采用去势后连续激素注射并突然停撤方法建立PPD动物模型,模型大鼠行为学方面可出现活动能力减弱、探索能力降低、面对绝望环境挣扎逃脱反应下降等改变,脑组织形态学方面亦有相应结构损伤发生。该模型在病因学上较好地模拟了PPD发病状态,且重复性好,可为深入探索PPD发病机制及新药研发等提供良好的研究平台。
     2.具有补益心脾作用的参芪解郁方对PPD模型大鼠抑郁行为有明显调节作用,同时可促进脑组织病理损伤的恢复。与对照药物SSRIs氟西汀相比,二者在大鼠抑郁行为及脑组织病理损伤方面疗效相当,此为中医补益心脾法治疗PPD提供了理论依据,同时也为中药参芪解郁方的药效学研究奠定基础。
     3.建立的PPD模型大鼠血清HPA、HPG轴激素平衡紊乱,与E特异性结合ERα、β功能低下,脑内单胺递质及其代谢产物含量降低,上述系统的改变可能是PPD疾病发生发展的重要神经生物学物质基础。
     4.中药参芪解郁方对模型大鼠神经内分泌系统相关激素水平、脑内ER表达及单胺递质与代谢产物含量具有明显改善作用,对上述各独立系统的平衡调节以及对各系统间的整体稳态调控可能是其效应发挥的主要途径。
Objective:In this study, Shenqi Jieyu formula with the effect of tonifying heart and spleen was used to treat postpartum depression (PPD) model animals, and changes in behavior, pathomorphology of brain, related hormones and receptors in neuroendocrine system, monoamine neurotransmitters and their metabolites were tested. It was expected to explore the pathogenesis of neurobiology of PPD and intervening mechanism of Chinese medical therapeutic method of tonifying heart and spleen. And it was also looked forward to explicit the action pathway of Shenqi Jieyu formula and further improve the theory of tonifying heart and spleen treatment for PPD.
     Methods:Female SD rats were randomly divided into groups of normal (N), sham operation (SO), model (M), Chinese Medicine (CM), western medicine (WM). All the rats were observed at 1,2,4,6w respectively after preparation. M, CM and WM received continuous estrogen and progesterone injection after castration, and there was no intervention for N and sham operation for SO. Then rats were given intragastric administration of distilled water for N, SO and M, Shenqi Jieyu formula for CM, fluoxetine for WM. All of the rats were observed with behaviors tests containing sucrose water consumption (SWC), open-field test (OFT) and forced swimming test (FST) at 1,2,4,6w respectively. After such tests, correlated indexes were detected as follow:①observing nerve cell damages in prefrontal cortex, hippocampus, hypothalamus in rats by hematoxylin and eosin stain;②checking serum hormone levels of HPA and HPG axis by ELISA and RIA;③measuring expressions of ER alpha and beta in prefrontal cortex, hippocampus, hypothalamus in brain through immunohistochemistry;④surveying contents of monoamine neurotransmitters and their metabolites in prefrontal cortex, hippocampus with HPLC.
     Results:
     1. Observation of general conditions
     1.1 Appearance and active state:The spirit and active state of M were worse than N and SO. M manifested such symptoms as dull fur, significantly reduced action of hair combing, less explorement and decreased free movement. These symptoms above worst manifested at 1, 2w and partly improved at 4,6w. However, the main status of M was still worse than N at 6w. After drug intervention, the depressive signs above in CM and WM were improved and nearly returned to normal status at 6w.
     1.2 Weight:Weight of rats in M at each time point were lower than N and SO (P<0.01, P<0.05). Weight in CM at 2,4,6w and in WM at each time point were higher than M (P<0.01, P<0.05). The condition of rats' weight in M, CM and WM all showed an increasing trend, however, the growing speed of weight in M was obviously slower than CM and WM.
     2. Observation of praxiology
     2.1 SWC:SWC in M was lower than N and SO (P<0.01, P<0.05). SWC in WM at 2w and in CM, WM at 4,6w were higher than M (P<0.01). The volume of SWC in M displayed a gradually declined regularity, however, a gradual upward trend in CM and WM.
     2.2 OFT:Horizontal and vertical scores in M at each time point were lower than N and SO (P<0.01, P<0.05). Horizontal scores in CM, WM at 2,4,6w as well as vertical scores in CM at 1w and in CM, WM at 2,4w were higher than M (P<0.01, P<0.05). Horizontal scores in M, CM, WM and vertical scores in WM all showed a rising trend, while vertical scores in M and CM manifested a formerly declined and then gradually increased trend.
     2.3 FST:The immobility time in M at each time point were longer than N and SO (P<0.01, P<0.05), struggling time in M at each time point as well as swimming time at 2,4, 6w were shorter than two groups above (P<0.01). Compared with M, the immobility time in CM and WM at each time point reduced (P<0.01, P<0.05), both groups' struggling time at each time point as well as swimming time at 2,4,6w increased (P<0.01, P<0.05). There was a formerly increased and then reduced trend for immobility time in M, and a decreased tendency forward, by following, with gradually increased then rapidly grew downwards pattern for struggling time, meanwhile, a decreased and then gradually increased trend for swimming time. In CM and WM, the regularity manifested gradually decreased for immobility time, gradually increased and then decreased for struggling time, gradually increased for swimming time.
     3. Observation for pathological structure of brain
     Cell counts of prefrontal cortex and hippocampus in N and SO were abundant, with well-arranged order, well-stacked hyalomitome and distincted nucleolus. Cells in hypothalamus lined in regularity, with normal shape as well. The pathological changes at three places above in M damaged extremely at 1,2w, with unobvious recovery at 4,6w. Cell counts of prefrontal cortex and hippocampus reduced remarkably and some of these were atrophy, with large gap, arranged in loose disorder, cell lightly stained and asymmetrically colored, additionally, cells in hippocampus also partly appeared vacuolization and pyknosis. Cells in hypothalamus swelled obviously, with nonuniformly colored, some of cells also appeared pyknosis. Compared with M, the damaging status of CM and WM at 1w relieved slightly, ameliorated obviously at 2w, with closely recuperation to normal status at 4,6w.
     4. Tests for related hormones of neuroendocrine system
     4.1 Hormones of HPA axis:Compared with N and SO, CRH, ACTH and Cor in M at each time point were higher (P<0.01, P<0.05). CRH in WM at 4,6w as well as ACTH in CM at 2,4,6w and in WM at 2,6w, additionally, Cor in CM, WM at 2,4,6w were all lower than M (P<0.01, P<0.05). ACTH in CM and WM displayed a gradually decreased tendency. In addition, Cor in M, CM and WM showed a gradually raised and then downgraded trend, however, Cor in M manifested the regularity of rising obviously and decreasing slowly.
     4.2 Hormones of HPG axis:M's GnRH, FSH at each time point as well as LH at 1w, E2 at 2,4,6w were all lower than N and SO (P<0.01, P<0.05), while LH at 2,4,6w as well as E2 at 1w, P at each time point were higher than two groups above (P<0.01, P<0.05). Furthermore, WM's GnRH, E2 at each time point and FSH at 2,4,6w, LH at 1w as well as CM's GnRH, FSH at 2,4,6w, E2 at each time point were all higher than M (P<0.01, P<0.05), while LH at 2, 4.6w and P at each time point in CM and WM were totally lower than M (P<0.01, P<0.05). GnRH, FSH and LH in M, CM and WM all showed the gradually increased trend, while E2 and P appeared obviously decreased regularity. These hormones mentioned above could basically recover to normal level through drug intervention.
     5. Variation of ER expressions
     5.1 ER alpha:Expressions in prefrontal cortex, hippocampus and hypothalamus in M at 2,4,6w were less than N and SO (P<0.01, P<0.05), while more than the two groups above at 1w (P<0.01, P<0.05). Compared with M, expressions in prefrontal cortex in CM at 4,6w, prefrontal cortex and hypothalamus in WM at 2,4,6w, hippocampus in CM, WM at 2,4,6w, hypothalamus in CM at each time point all increased (P<0.01, P<0.05). Expressions of the three locations above in M, CM and WM all showed a downward tendency, furthermore, with a remarkable downtrend in M.
     5.2 ER beta:Both expressions in prefrontal cortex at 1w and in hippocampus, hypothalamus at 1,2w in M were all more than N and SO (P<0.01, P<0.05), however, there had a significant reduction in prefrontal cortex and hypothalamus at 4,6w as well as in hippocasmpus at 6w (P<0.01). Compared with M, expressions in prefrontal cortex at 6w and hippocampus at 4,6w in CM, WM as well as hypothalamus at 4,6w in CM and 2,4,6w in WM all increased (P<0.01, P<0.05). Changes for expressions of ER beta at three locations above in each group made a similar regularity with ER alpha.
     6. Survey of monoamine neurotransmitters and their metabolites
     6.1 Monoamine neurotransmitters:Contents of 5-HT, NE, DA in prefrontal cortex and hippocampus in M at each time point were all lower than N and SO (P<0.01, P<0.05). Compared with M, contents of 5-HT, NE in prefrontal cortex in CM at 2,4,6w and WM at each time point as well as in hippocampus in CM, WM at each time point all increased (P<0.01, P<0.05), with the same situation for contents of DA in prefrontal cortex in CM at 4, 6w, WM at 2,4,6w as well as in hippocampus in CM at 1,6w, WM at 1w (P<0.01, P<0.05). 5-HT in prefrontal cortex, hippocampus as well as NE, DA in prefrontal cortex in M all showed a downward trend, while NE in hippocampus displayed a significantly decreased and then slightly increased regularity, in addition, DA in hippocampus manifested the opposite tendency, making a status of increasing by degrees and then falling down.5-HT in prefrontal cortex in CM and in hippocampus in CM, WM as well as NE in prefrontal cortex in WM and in hippocampus in CM all manifested a gradually increased trend, while NE in prefrontal cortex in CM displayed a formerly slightly descended then increased situation, furthermore, DA in hippocampus in CM and WM showed a trend of decreasing.
     6.2 Metabolites of monoamine neurotransmitters:Contents of 5-HIAA in prefrontal cortex, hippocampus in M at 1w were more than N and SO (P<0.O1, P<0.05), while 5-HIAA for other time points and DOPAC at each time point in both two places were lower than the two groups above (P<0.01, P<0.05). Compared with M, contents of 5-HIAA in prefrontal cortex, hippocampus in CM and WM at 1w reduced (P<0.01, P<0.05), however, with a reversed condition for 5-HIAA in prefrontal cortex at 4,6w as well as both 5-HIAA in hippocampus and DOPAC in prefrontal cortex at 2,4,6w (P<0.01, P<0.05).5-HIAA in prefrontal cortex, hippocampus in M all displayed a decreased trend, while with a first gradually descended and then increased regularity for DOPAC in prefrontal cortex. Additionally,5-HIAA in prefrontal cortex and hippocampus in CM, WM showed an obviously grew downwards then gradually increased situation, whereas DOPAC in hippocampus in CM illustrated an opposite trend of formerly increasing and then descending.
     Conclusions:
     1. Through suddenly hormones withdraw after continuous injection of estrogen and progesterone to build PPD animal model, PPD rats manifested a series of behavioral changes: active and exploring movements attenuated, interests reduced, the response of struggle to escape out of the despair environment declined. Furthermore, the histomorphology of brain also had the corresponding structural damages. This model, which possesed a well repetitiveness, successfully simulated the status of PPD in etiology, meanwhile, it might also provide a good platform for further exploration for pathogenesis as well as new drug discovery in PPD.
     2. Shenqi Jieyu formula with the effect of tonifying heart and spleen could not only obviously improve depressive behaviors in PPD rats, but also promote the recovery of pathological injury of brain tissue. Compared with the control drug SSRIs fluoxetine, both interventions had coincidental curative effects for depressive behaviors and pathological harm of brain in model rats, which might provide a theoretical groundwork for tonifying heart and spleen treatment for PPD and also establish the basis for pharmacodynamics study with Shenqi Jieyu formula.
     3. There existed balanced disorders in serum hormones of HP A and HPG axises, as well as dysfunction in E-specific combinationed ER alpha and beta, furthermore, content reduction of monoamine neurotransmitters and their metabolites in brain in PPD model rats. These alteration mentioned above in each system might be the important neurobiological material base during the occurrence and development in PPD.
     4. Shenqi Jieyu formula could remarkably improve related hormones'level of the neuroendocrine system and promote ER expressions in brain, additionally, increase the contents of monoamine neurotransmitters and their metabolites. Adjusting each of these independent systems as well as regulating various systems as a whole steady state may the major route for therapeutic effects educing and also play a very important role in the whole process.
引文
[1]A. Lanes, J. L. Kuk, H. Tamim. Prevalence and characteristics of postpartum depression symptomatology among Canadian women:a cross-sectional study [J]. BMC Public Health,2011,11:302-310.
    [2]L. Baker, S. Cross, L. Greaver, et al. Prevalence of postpartum depression in a native American population[J]. Matern Child Health J,2005,9(1):21-25.
    [3]金燕志,彭涛.产后抑郁症的筛查标准及发病因素探讨[J].中国妇幼保健,1995,10(5):287-288.
    [4]张荣莲,陈起燕,李艳华.产后抑郁症发病因素的探讨[J].中华妇产科杂志,1999,34(4):231-233.
    [5]杨怡,何仲.产后抑郁症发生情况与分娩相关因素的调查分析[J].实用护理杂志,2003,19(3):63-64.
    [6]高俊平,韩莉君.产后抑郁的相关因素分析及护理干预[J].护理研究,2007,21(15):1363-1364.
    [7]谢日华,雷俊,廖顺平,等.产后抑郁症及其产科因素相关性探讨[J].实用预防医学,2005,12(6):1284-1286.
    [8]陈彩霞,李国芸,顾欣,等.80例初产妇分娩前后焦虑抑郁状况调查[J].临床心身疾病杂志,2005,11(3):251-252.
    [9]何萍,赵静波,白雅贤,等.广州市产褥期抑郁症的发生率及其影响因素[J].中国妇幼保健,2008,23(1):27-30.
    [10]王保莲.产后抑郁相关因素调查分析[J].中外医疗,2008,27(34):109.
    [11]周雅,徐济达.南京市产后抑郁的发生率及相关影响因素研究[J].江苏卫生保健,2009,11(4):41-42.
    [12]S. N. Kalantaridou, A. Makrigiannakis, E. Zoumakis, et al. Stress and the female reproductive system[J]. J Reprod Immunol,2004,62(1-2):61-68.
    [13]S. J. McCoy, J. M. Beal, G. H. Watson. Endocrine factors and postpartum depression. A selected review[J]. J Reprod Med,2003,48(6):402-408.
    [14]K. L. Wisner, Z. N. Stowe. Psychobiology of postpartum mood disorders[J]. Semin Reprod Endocrinol,1997,15(1):77-89.
    [15]V. Hendrick, L. L. Altshuler, R. Suri. Hormonal changes in the postpartum and implications for postpartum depression[J]. Psychosomatics,1998,39(2):93-101.
    [16]C. N. Soares, B. Zitek. Reproductive hormone sensitivity and risk for depression across the female life cycle:a continuum of vulnerability?[J]. J Psychiatry Neurosci,2008, 33(4):331-343.
    [17]S. L. Douma, C. Husband, M. E. O'Donnell, et al. Estrogen-related mood disorders: reproductive life cycle factors[J]. ANS Adv Nurs Sci,2005,28(4):364-375.
    [18]J. L. Payne. The role of estrogen in mood disorders in women[J]. Int Rev Psychiatry, 2003,15(3):280-290.
    [19]M. Bloch, P. J. Schmidt, M. Danaceau, et al. Effects of gonadal steroids in women with a history of postpartum depression[J]. Am J Psychiatry,2000,157(6):924-930.
    [20]Y. Okazaki. The epidemiology and pathogenesis of postpartum depression[J]. Nihon Rinsho,2001,59(8):1555-1559.
    [21]高鹏,曹爱国,张艳秋.产后抑郁症患者血清雌激素和孕激素水平的变化[J].华西医学,2010(5):971-972.
    [22]谌小卫,杨越波,范建辉,等.产后抑郁症患者雌二醇孕酮和催乳素水平研究[J].中山医科大学学报,2002,23(4):274-276.
    [23]罗阳,何国平.性激素及神经递质与产后抑郁症关系的Meta分析[J].中国妇幼保健,2007,22(8):1020-1023.
    [24]Y. Luo, G. P. He. Correlative analysis of postpartum depression[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2007,32(3):460-465.
    [25]A. Ahokas, J. Kaukoranta, K. Wahlbeck, et al. Estrogen deficiency in severe postpartum depression:successful treatment with sublingual physiologic 17beta-estradiol:a preliminary study [J]. J Clin Psychiatry,2001,62(5):332-336.
    [26]王瑛,付政,刘津予,等.产后抑郁症患者血清雌二醇、孕酮水平分析[J].临床医学,2003,23(12):58-59.
    [27]C. L. Dennis, L. E. Ross, A. Herxheimer. Oestrogens and progestins for preventing and treating postpartum depression[J]. Cochrane Database Syst Rev,2008, (4):CD001690.
    [28]S. Gentile. The role of estrogen therapy in postpartum psychiatric disorders:an update[J]. CNS Spectr,2005,10(12):944-952.
    [29]A. Ahokas, M. Aito, R. Rimon. Positive treatment effect of estradiol in postpartum psychosis:a pilot study[J]. J Clin Psychiatry,2000,61 (3):166-169.
    [30]E. L. Moses-Kolko, S. L. Berga, B. Kalro, et al. Transdermal estradiol for postpartum depression:a promising treatment option[J]. Clin Obstet Gynecol,2009,52(3):516-529.
    [31]A. J. Gregoire, R. Kumar, B. Everitt, et al. Transdermal oestrogen for treatment of severe postnatal depression[J]. Lancet,1996,347(9006):930-933.
    [32]吴仕萍,汤艳清.产后抑郁症患者血清中雌二醇与孕酮的变化[J].中国临床康复,2005,9(24):12-13.
    [33]陆竹梅,林文秀.产后抑郁症患者雌、孕激素及催乳素变化的研究[J].华夏医学,2006,19(2):188-189.
    [34]J. G. Buckwalter, F. Z. Stanczyk, C. A. McCleary, et al. Pregnancy, the postpartum, and steroid hormones:effects on cognition and mood[J]. Psychoneuroendocrinology,1999. 24(l):69-84.
    [35]刘红蕾,丁蓉,贺红云.产后抑郁患者血清催乳素、孕酮水平的变化[J].南华大学学报(医学版),2010,38(4):534-536.
    [36]张小勤.产后忧郁、产后抑郁患者雌二醇、孕酮和瘦素水平变化的研究[J].中国妇幼保健,2010,25(20):2787-2791.
    [37]张迁.产后抑郁患者血清催乳素、孕酮水平的变化观察与研究[J].医学信息(中旬刊),2011,24(3):872-873.
    [38]A. D. Green, L. A. Galea. Adult hippocampal cell proliferation is suppressed with estrogen withdrawal after a hormone-simulated pregnancy[J]. Horm Behav,2008, 54(1):203-211.
    [39]I. Jones, F. Middle, F. McCandless, et al. Molecular genetic studies of bipolar disorder and puerperal psychosis at two polymorphisms in the estrogen receptor alpha gene (ESR 1)[J]. Am J Med Genet,2000,96(6):850-853.
    [40]C. M. Leite, R. E. Szawka, J. A. Anselmo-Franci. Alpha-oestrogen and progestin receptor expression in the hypothalamus and preoptic area dopaminergic neurones during oestrous in cycling rats[J]. J Neuroendocrinol,2008,20(1):110-119.
    [41]W. R. Perlman, M. J. Webster, J. E. Kleinman, et al. Reduced glucocorticoid and estrogen receptor alpha messenger ribonucleic acid levels in the amygdala of patients with major mental illness[J]. Biol Psychiatry,2004,56(11):844-852.
    [42]李伟,唐晓伟,林圣彬,等.雌激素受体a在抑郁症模型大鼠海马中的分布[J].安徽师范大学学报(自然科学版),2010,33(1):62-66.
    [43]M. K. Osterlund, M. R. Witt, J. A. Gustafsson. Estrogen action in mood anc neurodegenerative disorders:estrogenic compounds with selective properties-the nex generation of therapeutics[J]. Endocrine,2005,28(3):235-242.
    [44]S. Brummelte, L. A. Galea. Depression during pregnancy and postpartum:contributior of stress and ovarian hormones[J]. Prog Neuropsychopharmacol Biol Psychiatry,2010, 34(5):766-776.
    [45]I. S. Yim, L. M. Glynn, C. Dunkel-Schetter, et al. Risk of postpartum depressive symptoms with elevated corticotropin-releasing hormone in human pregnancy [J]. Arch Gen Psychiatry,2009,66(2):162-169.
    [46]S. Meltzer-Brody, A. Stuebe, N. Dole, et al. Elevated corticotropin releasing hormone (CRH) during pregnancy and risk of postpartum depression (PPD)[J]. J Clin Endocrino Metab,2011,96(1):E40-47.
    [47]S. N. Jolley, S. Elmore, K. E. Barnard, et al. Dysregulation of the hypothalamic-pituitary-adrenal axis in postpartum depression[J]. Biol Res Nurs,2007,8(3):210-222.
    [48]V. O'Keane, S. Lightman, K. Patrick, et al. Changes in the maternal hypothalamic-pituitary-adrenal axis during the early puerperium may be related to the postpartum 'blues'[J]. J Neuroendocrinol,2011,23(11):1149-1155.
    [49]A. Taylor, V. Glover, M. Marks, et al. Diurnal pattern of cortisol output in postnatal depression[J]. Psychoneuroendocrinology,2009,34(8):1184-1188.
    [50]王长勇,姜志,王秀珍,等.产后抑郁症病人的血浆皮质激素水平的初步观察[J].中国民康医学(上半月),2008,20(3):227-228.
    [51]S. Brummelte, J. L. Pawluski, L. A. Galea. High post-partum levels of corticosterone given to dams influence postnatal hippocampal cell proliferation and behavior of offspring:A model of post-partum stress and possible depression[J]. Horm Behav,2006, 50(3):370-382.
    [52]Y. Zou, F. Fan, A. Ma, et al. Hormonal changes and somatopsychologic manifestations in the first trimester of pregnancy and post partum[J]. Int J Gynaecol Obstet,2009, 105(1):46-49.
    [53]G. P. Chrousos, D. J. Torpy, P. W. Gold. Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system:clinical implications[J]. Ann Intern Med,1998,129(3):229-240.
    [54]G. Mastorakos, I. Ilias. Maternal hypothalamic-pituitary-adrenal axis in pregnancy and the postpartum period. Postpartum-related disorders[J]. Ann N Y Acad Sci,2000, 900:95-106.
    [55]S. N. Kalantaridou, A. Makrigiannakis, G. Mastorakos, et al. Roles of reproductive corticotropin-releasing hormone[J]. Ann N Y Acad Sci,2003,997:129-135.
    [56]罗阳,郑乐知,莫朝辉,等.雌二醇、促甲状腺素变化与产后抑郁症相关性研究[J].中国医刊,2007,42(1):50-51.
    [57]姚凤梅,卫平祥,刘永梅,等.孕产妇抑郁的发生和体内甲状腺激素关系的研究[J].现代医学,2009,37(2):156-157.
    [58]M. Le Donne, S. Settineri, S. Benvenga. Early pospartum alexithymia and risk for depression:Relationship with serum thyrotropin, free thyroid hormones and thyroid autoantibodies[J]. Psychoneuroendocrinology,2012,37(4):519-533.
    [59]B. Doornbos, D. Fekkes, M. A. Tanke, et al. Sequential serotonin and noradrenalin associated processes involved in postpartum blues[J]. Prog Neuropsychopharmacol Biol Psychiatry,2008,32(5):1320-1325.
    [60]D. J. Newport, M. J. Owens, D. L. Knight, et al. Alterations in platelet serotonin transporter binding in women with postpartum onset major depression[J]. J Psychiatr Res,2004,38(5):467-473.
    [61]M. El Mansari, B. P. Guiard, O. Chernoloz, et al. Relevance of norepinephrine-dopamine interactions in the treatment of major depressive disorder [J]. CNS Neurosci Ther,2010,16(3):e1-17.
    [62]J. L. Scholl, K. J. Renner, G. L. Forster, et al. Central monoamine levels differ between rat strains used in studies of depressive behavior [J]. Brain Res,2010,1355:41-51.
    [63]胡电,古航,洪新如,等.产后抑郁症患者血孤啡肽水平初步测定[J].中国心理卫生杂志,2004,18(6):379-380.
    [64]陆亚文,吴怀安,闫小华,等.产后抑郁症血浆儿茶酚胺浓度对照研究[J].中国临床心理学杂志,2003,11(3):214-215.
    [65]彭忠英,李冬梅,苏水红.孕产妇抑郁情绪与神经递质(5-HT)关系的初步研究[J].中国初级卫生保健,2006,20(1):48-49.
    [66]E. Maurer-Spurej, C. Pittendreigh, S. Misri. Platelet serotonin levels support depression scores for women with postpartum depression[J]. J Psychiatry Neurosci,2007, 32(1):23-29.
    [67]J. Sanjuan, R. Martin-Santos, L. Garcia-Esteve, et al. Mood changes after delivery:role of the serotonin transporter gene[J]. Br J Psychiatry,2008,193(5):383-388.
    [68]E. Comasco, S. M. Sylven, F. C. Papadopoulos, et al. Postpartum depression symptoms: a case-control study on monoaminergic functional polymorphisms and environmental stressors[J]. Psychiatr Genet,2011,21(1):19-28.
    [69]T. Wang, F. Qin. Effects of Chinese herbal medicine Xiaoyao Powder on monoamine neurotransmitters in hippocampus of rats with postpartum depression[J]. Zhong Xi Yi Jie He Xue Bao,2010,8(11):1075-1079.
    [70]谢萍,黄志娟,冯俭,等.产舒颗粒调节产后抑郁大鼠单胺类神经递质的作用机理研究[J].中国中医急症,2008,17(2):218-220.
    [71]P. H. Desan, W. W. Woodmansee, S. M. Ryan, et al. Monoamine neurotransmitters and metabolites during the estrous cycle, pregnancy, and the postpartum period[J]. Pharmacol Biochem Behav,1988,30(3):563-568.
    [72]E. L. Moses-Kolko, K. L. Wisner, J. C. Price, et al. Serotonin 1A receptor reductions in postpartum depression:a positron emission tomography study[J]. Fertil Steril,2008, 89(3):685-692.
    [73]A. Vines, A. M. Delattre, M. M. Lima, et al. The role of 5-HTA receptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex:a possible antidepressant mechanism[J]. Neuropharmacology,2012,62(1):184-191.
    [74]L. F. Callado, J. J. Meana, B. Grijalba, et al. Selective increase of alpha2A-adrenoceptor agonist binding sites in brains of depressed suicide victims [J]. J Neurochem,1998,70(3):1114-1123.
    [75]W. J. Verbeeck, M. Berk, J. Paiker, et al. The prolactin response to sulpiride in major depression:the role of the D2 receptor in depression[J]. Eur Neuropsychopharmacol, 2001,11(3):215-220.
    [76]J. Maguire, I. Mody. Neurosteroid synthesis-mediated regulation of GABA(A) receptors:relevance to the ovarian cycle and stress [J]. J Neurosci,2007,27(9):2155-2162.
    [77]V. Kaura, C. D. Ingram, S. E. Gartside, et al. The progesterone metabolite allopregnanolone potentiates GABA(A) receptor-mediated inhibition of 5-HT neuronal activity [J]. Eur Neuropsychopharmacol,2007,17(2):108-115.
    [78]J. Maguire, I. Ferando, C. Simonsen, et al. Excitability changes related to GABAA receptor plasticity during pregnancy[J]. J Neurosci,2009,29(30):9592-9601.
    [79]M. C. Mostallino, E. Sanna, A. Concas, et al. Plasticity and function of extrasynaptic GABA(A) receptors during pregnancy and after delivery [J]. Psychoneuroendocrinology, 2009,34(Suppl 1):S74-83.
    [80]G. Biggio, M. Cristina Mostallino, P. Follesa, et al. GABA(A) receptor function and gene expression during pregnancy and postpartum[J]. Int Rev Neurobiol,2009,85:73-94.
    [81]J. Maguire, I. Mody. GABA(A)R plasticity during pregnancy:relevance to postpartum depression[J]. Neuron,2008,59(2):207-213.
    [82]A. Concas, P. Follesa, M. L. Barbaccia, et al. Physiological modulation of GABA(A) receptor plasticity by progesterone metabolites[J]. Eur J Pharmacol,1999,375(1-3):225-235.
    [83]K. Hashimoto, E. Shimizu, M. Iyo. Critical role of brain-derived neurotrophic factor in mood disorders[J]. Brain Res Brain Res Rev,2004,45(2):104-114.
    [84]E. Castren, V. Voikar, T. Rantamaki. Role of neurotrophic factors in depression [J]. Curr Opin Pharmacol,2007,7(1):18-21.
    [85]T. L. Huang, C. T. Lee, Y. L. Liu. Serum brain-derived neurotrophic factor levels in patients with major depression:effects of antidepressants[J]. J Psychiatr Res,2008, 42(7):521-525.
    [86]B. H. Lee, H. Kim, S. H. Park, et al. Decreased plasma BDNF level in depressive patients[J]. J Affect Disord,2007,101(1-3):239-244.
    [87]M. Gazal, L. S. Motta, C. D. Wiener, et al. Brain-derived neurotrophic factor in post-partum depressive mothers[J]. Neurochem Res,2012,37(3):583-587.
    [88]E. Comasco, S. M. Sylven, F. C. Papadopoulos, et al. Postpartum depressive symptoms and the BDNF Val66Met functional polymorphism:effect of season of delivery [J]. Arch Womens Ment Health,2011,14(6):453-463.
    [89]H. Gu, D. Hu, X. R. Hong, et al. Changes and significance of orphanin and serotonin in patients with postpartum depression[J]. Zhonghua Fu Chan Ke Za Zhi,2003, 38(12):727-728.
    [90]I. S. Yim, L. M. Glynn, C. D. Schetter, et al. Prenatal beta-endorphin as an early predictor of postpartum depressive symptoms in euthymic women[J]. J Affect Disord, 2010,125(1-3):128-133.
    [91]N. Gleicher. Postpartum depression, an autoimmune disease?[J]. Autoimmun Rev,2007, 6(8):572-576.
    [92]E. J. Corwin, K. Pajer. The psychoneuroimmunology of postpartum depression[J]. J Womens Health (Larchmt),2008,17(9):1529-1534.
    [93]M. W. Groer, K. Morgan. Immune, health and endocrine characteristics of depressed postpartum mothers[J]. Psychoneuroendocrinology,2007,32(2):133-139.
    [94]E. J. Corwin, N. Johnston, L. Pugh. Symptoms of postpartum depression associated with elevated levels of interleukin-1 beta during the first month postpartum [J]. Biol Res Nurs,2008,10(2):128-133.
    [95]B. A. Prairie, S. R. Wisniewski, J. F. Luther, et al. Postpartum lipid levels in women with major depression[J]. J Womens Health (Larchmt),2012,21(5):534-538.
    [96]C. M. da Rocha, G. Kac. High dietary ratio of omega-6 to omega-3 polyunsaturated acids during pregnancy and prevalence of post-partum depression[J]. Matern Child Nutr 2012,8(1):36-48.
    [97]U. Ramakrishnan. Fatty acid status and maternal mental health[J]. Matern Child Nutr. 2011,7(Suppl 2):99-111.
    [98]E. J. Corwin, L. E. Murray-Kolb, J. L. Beard. Low hemoglobin level is a risk factor foi postpartum depression[J]. J Nutr,2003,133(12):4139-4142.
    [99]J. Chang, Y. Zhang, L. Cui. Impact of placental hormone withdrawal on postpartum depression[J]. Zhonghua Fu Chan Ke Za Zhi,1995,30(6):342-344.
    [100]J. Sacher, A. A. Wilson, S. Houle, et al. Elevated brain monoamine oxidase A binding in the early postpartum period[J]. Arch Gen Psychiatry,2010,67(5):468-474.
    [101]P. A. Jimenez-Vasquez, A. A. Mathe, J. D. Thomas, et al. Early maternal separation alters neuropeptide Y concentrations in selected brain regions in adult rats[J]. Brain Res Dev Brain Res,2001,131 (1-2):149-152.
    [102]P. J. Selman, J. A. Mol, G. R. Rutteman, et al. Effects of progestin administration on the hypothalamic-pituitary-adrenal axis and glucose homeostasis in dogs[J]. J Reprod Fertil Suppl,1997,51:345-354.
    [103]M. J. Weiser, C. D. Foradori, R. J. Handa. Estrogen receptor beta activation prevents glucocorticoid receptor-dependent effects of the central nucleus of the amygdala on behavior and neuroendocrine function[J]. Brain Res,2010,1336:78-88.
    [104]M. J. Weiser, R. J. Handa. Estrogen impairs glucocorticoid dependent negative feedback on the hypothalamic-pituitary-adrenal axis via estrogen receptor alpha within the hypothalamus[J]. Neuroscience,2009,159(2):883-895.
    [105]S. P. Ghuman, R. Morris, D. G. Spiller, et al. Integration between different hypothalamic nuclei involved in stress and GnRH secretion in the ewe[J]. Reprod Domest Anim,2010,45(6):1065-1073.
    [106]M. A. Magiakou, G. Mastorakos, E. Webster, et al. The hypothalamic-pituitary-adrenal axis and the female reproductive system[J]. Ann N Y Acad Sci,1997,816:42-56.
    [107]A. T. Spijker, E. F. van Rossum. Glucocorticoid sensitivity in mood disorders[J]. Neuroendocrinology,2012,95(3):179-186.
    [108]F. D. Jeanneteau, W. M. Lambert, N. Ismaili, et al. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus[J]. Proc Natl Acad Sci U S A,2012,109(4):1305-1310.
    [109]N. Dedic, C. Touma, C. P. Romanowski, et al. Assessing Behavioural Effects of Chronic HPA Axis Activation Using Conditional CRH-Overexpressing Mice[J]. Cell Mol Neurobiol,2011, Epub ahead of print.
    [110]M. H. Andrews, S. A. Wood, R. J. Windle, et al. Acute glucocorticoid administration rapidly suppresses basal and stress-induced hypothalamo-pituitary-adrenal axis activity[J]. Endocrinology,2012,153(1):200-211.
    [111]K. Hao, P. Gong, S. Q. Sun, et al. Beneficial estrogen-like effects of ginsenoside Rbl, an active component of Panax ginseng, on neural 5-HT disposition and behavioral tasks in ovariectomized mice[J]. Eur J Pharmacol,2011, Epub ahead of print.
    [112]B. Meyers, A. D'Agostino, J. Walker, et al. Gonadectomy and hormone replacement exert region- and enzyme isoform-specific effects on monoamine oxidase and catechol-O-methyltransferase activity in prefrontal cortex and neostriatum of adult male rats[J]. Neuroscience,2010,165(3):850-862.
    [113]C. Frye, A. Seliga. Effects of olanzapine infusions to the ventral tegmental area on lordosis and midbrain 3alpha,5alpha-THP concentrations in rats[J]. Psychopharmacology (Berl),2003,170(2):132-139.
    [114]V. Birzniece, T. Backstrom, I. M. Johansson, et al. Neuroactive steroid effects on cognitive functions with a focus on the serotonin and GABA systems[J]. Brain Res Rev, 2006,51(2):212-239.
    [115]P. Zheng. Neuroactive steroid regulation of neurotransmitter release in the CNS:action, mechanism and possible significance[J]. Prog Neurobiol,2009,89(2):134-152.
    [116]J. F. Lopez, D. T. Chalmers, K. Y. Little, et al. A.E. Bennett Research Award. Regulation of serotoninl A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus:implications for the neurobiology of depression[J]. Biol Psychiatry,1998,43(8):547-573.
    [1]宋·严用和.济生方[M].北京:人民卫生出版社,1956年,第一版.
    [2]明·周慎斋.慎斋遗书[M].上海:上海科学技术出版社,1959年,第一版.
    [3]明·徐春甫.古今医统大全[M].北京:人民卫生出版社,1991年,第一版.
    [4]清·萧埙.女科经纶[M].上海:上海科技出版社,1959年,第一版.
    [5]清·周学霆.三指禅[M].北京:人民卫生出版社,1956年,第一版.
    [6]清·吴瑭.温病条辨[M].北京:人民卫生出版社,1955年,第一版.
    [7]清·单南山.胎产指南[M].北京:人民卫生出版社,1996年,第一版.
    [8]清·程杏轩.医述[M].合肥:安徽科学技术出版社,1983年,第一版.
    [9]清·罗国纲.罗氏会约医镜[M].北京:人民卫生出版社,1965年,第一版.
    [10]清·顾松园.顾松园医镜[M].郑州:河南人民出版社,1961年,第一版.
    [1]赵雪萍,林汉.氟西汀联用柴胡疏肝散加味治疗产后抑郁症[J].辽宁中医杂志,2006,33(5):586-587.
    [2]连华敏.小柴胡汤在妇科疾病中的应用[J].河南中医,2003,23(11):7-8.
    [3]邵爱琴,郭明霞,许学明.小柴胡汤辅助帕罗西汀治疗产后抑郁症效果观察[J].中国初级卫生保健,2011,25(9):81-82.
    [4]刘一辉,张润荣,王东明.中医辨证施治产后抑郁症84例疗效分析[J].中华实用中西医杂志,2003,16(11):1557-1558.
    [5]王春香,陈桂莲,龙梅.解郁汤治疗产后抑郁症27例[J].中国实验方剂学杂志,2011,17(9):292.
    [6]苏世鑫,黄益汉.祛郁汤治疗产后抑郁症33例[J].中国民间疗法,2011,19(12):32.
    [7]陈玉庆.养血柔肝法治疗产后抑郁症临床观察[J].卫生职业教育,2012,30(1):142.
    [8]罗幼锐.养血调肝汤治疗产后抑郁症32例[J].云南中医中药杂志,2006,27(2):62.
    [9]廖晓珊.产后抑郁治疗体会[J].中国医学工程,2011,19(9):165,168.
    [10]莫玉贤.养血清肝培脾安神法治疗产后郁病28例[J].中国医药导报,2007,4(25):85.
    [11]冯霞,史彬,张海燕,等.产褥期抑郁症与肝郁血虚病机的相关性探讨及心理与中药治疗的疗效观察[J].河北中医,2006,28(6):428-429.
    [12]雷福云.逍遥散合甘麦大枣汤加减治疗产后抑郁症56例[J].中国民族民间医药,2009,18(15):60.
    [13]朱临萍.养心解郁汤治疗产后抑郁效果观察[J].中国初级卫生保健,2008,22(2):86-87.
    [14]黄春蕾,周建惠.舍曲林联合补心汤治疗产后抑郁症30例疗效观察[J].云南中医中药杂志,2008,29(10):11.
    [15]郑小青.中西医结合治疗产后抑郁症52例临床观察[J].中医药导报,2007,13(6):50-51.
    [16]徐春芳,袁绿化,王巧艳.补心丸治疗产后抑郁症30例疗效观察[J].山东中医杂志,2006,25(1):28-29.
    [17]杨玉真.中药结合心理护理干预治疗产后抑郁症79例[J].中国民间疗法,2008,16(10):24.
    [18]王秋凤.茯神散治疗产后抑郁48例临床观察[J].光明中医,2010,25(9):1630-1631.
    [19]杨芳娥,乔秋飞,宫亚萍.甘麦大枣汤治疗产褥期抑郁症30例[J].陕西中医,2009,30(7):851,860.
    [20]郭建红,王顺顺,范荣.柴胡疏肝散合甘麦大枣汤加减治疗产后抑郁症的临床观察[J].北方药学,2011,8(2):18-20.
    [21]葛小社.养血安神法治疗产褥期抑郁症38例[J].河南中医学院学报,2006,21(5):56.
    [22]王佩.疏郁养心法治疗产后抑郁症临床应用分析[J].中国社区医师(医学专业),2010,12(10):82-83.
    [23]斯建新.滋水清肝饮在妇产科应用举例[J].浙江中医杂志,2008,43(5):293-294.
    [24]高洪生.毓麟珠汤加减治疗产后抑郁症疗效观察[J].湖北中医杂志,2010,32(4):42-43.
    [25]李艳萍.大定风珠治疗产后抑郁症38例疗效观察[J].中医药学刊,2005,23(8):1491.
    [26]李彩勤,李惠敏,王彤,等.舒利欣汤治疗产后抑郁症28例临床观察[J].河北中医,2008,30(11):1155-1156.
    [27]吕音.补益心脾法治疗产后抑郁症的临床研究[D].广州中医药大学硕士学位论文,2007.
    [28]陆晓红,林虹,陈东升.产后抑郁症的针刺干预治疗[J].针灸临床杂志,2008,24(7):13-14.
    [29]梁波,贺剑波,刘汉平,等.针刺水沟穴为主治疗产褥期抑郁症31例[J].陕西中医,2010,31(1):81-82.
    [30]陈杰,张捷,裴音.针刺治疗产后抑郁症的疗效评价[J].中国中医药信息杂志,2010,17(7):77-78.
    [31]赵蓉.针灸治疗产后抑郁症50例[J].河南中医,2011,31(4):405-406.
    [32]陈洪琳.俞募通经法治疗产后抑郁症的临床研究[D].黑龙江中医药大学硕士学位论文,2007.
    [33]王惠祯,成拴志,王华荣.电针配合米氮平治疗产后抑郁症30例[J].陕西中医,2010,31(6):728-729.
    [34]公丽萍,电针治疗产后抑郁症的增效作用[J].中国民康医学,2010,22(23):3045.
    [35]袁淑华.电针治疗产后抑郁症26例[J].针灸临床杂志,2008,24(11):17.
    [36]许淑娟.头皮针对产后抑郁症的影响[D].广州中医药大学硕士学位论文,2010.
    [37]黄丽燕,陈毓婵,罗震,等.产褥期香薰按摩减轻产后抑郁症状的效果观察[J].护理学杂志,2011,26(12):40-41.
    [38]康崇梅.推拿按摩对产妇身心康复的影响[J].中国当代医药,2010,17(14):71-73.
    [39]李黎.穴位按摩在产妇身心康复护理中的影响研究[J].齐鲁护理杂志,2010,16(21):68-70.
    [40]傅月珍.情志护理配合穴位按摩对产后抑郁患者康复的影响[J].护理与康复,2009,8(6):463-465.
    [41]任秋玲,黎彩云.开天门联合音乐疗法预防产后情绪低落疗效观察[J].新中医,2011,43(8):123-124.
    [1]灵枢经[M].北京:人民卫生出版社,1963年,第一版.
    [2]晋·皇普谧.针灸甲乙经[M].上海:商务印书馆,1955年,第一版.
    [3]隋.巢元方.诸病源候论[M].北京:人民卫生出版社,1955年,第一版.
    [4]唐·王冰补注.黄帝内经素问[M].北京:人民卫生出版社,1963年,第一版.
    [5]唐·孙思邈.备急千金要方[M].北京:人民卫生出版社,1982年,第一版.
    [6]宋·陈无择.三因极一病证方论[M].北京:人民卫生出版社,1957年,第一版.
    [7]宋·陈自明.妇人大全良方[M].北京:人民卫生出版社,1985年,第一版.
    [8]宋·郭稽中.产育宝庆集[M].上海:商务印书馆,1936年,第一版.
    [9]宋·王怀隐.太平圣惠方[M].北京:人民卫生出版社,1958年,第一版.
    [10]宋·薛立斋.校注妇人良方[M].上海:上海卫生出版社,1956年,第一版.
    [11]明·方以智.物理小识[M].上海:上海古籍出版社,1993年,第一版.
    [12]明·孙一奎.赤水玄珠[M].北京:中国中医药出版社,1996年,第一版.
    [13]明.杨继洲.针灸大成[M].北京:人民卫生出版社,1955年,第一版.
    [14]明·李梴.医学入门[M].北京:中国中医药出版社,1995年,第一版.
    [15]明·张介宾.类经[M].北京:人民卫生出版社,1965年,第一版.
    [16]明·李时珍.本草纲目[M].北京:人民卫生出版社,1982年,第一版.
    [17]清.程国彭.医学心悟[M].北京:中国中医药出版社,1996年,第一版.
    [18]清.冯兆张.冯氏锦囊秘录[M].北京:中国中医药出版社,1996年,第一版.
    [19]清·陈修园.女科要旨[M].北京:人民卫生出版社,1959年,第一版.
    [20]清·陈莲舫.女科秘诀大全[M].北京:中国妇女出版社,1991年,第一版.
    [21]清·萧埙.女科经纶[M].上海:上海科技出版社,1959年,第一版.
    [22]清·单南山.胎产指南[M].北京:人民卫生出版社,1996年,第一版.
    [23]清·汪昂.本草备要[M].北京:商务印书馆,1958年,第一版.
    [24]清·吴瑭.温病条辨[M].北京:人民卫生出版社,1955年,第一版.
    [25]清·王清任.医林改错[M].上海:上海卫生出版社,1956年,第一版.
    [26]清·张锡纯.医学衷中参西录[M].河北:河北人民出版社,1957年,第一版.
    [1]梁艳,邱二娟,李京枝.李京枝教授治疗产后抑郁经验[J].光明中医,2010,25(3):382.
    [2]葛小社.养血安神法治疗产褥期抑郁症38例[J].河南中医学院学报,2006,21(5):56.
    [3]廖晓珊.产后抑郁治疗体会[J].中国医学工程,2011,19(9):165,168.
    [4]黄春蕾,周建惠.舍曲林联合补心汤治疗产后抑郁症30例疗效观察[J].云南中医中药杂志,2008,29(10):11.
    [5]郑小青.中西医结合治疗产后抑郁症52例临床观察[J].中医药导报,2007,13(6):50-51
    [6]朱临萍.养心解郁汤治疗产后抑郁效果观察[J].中国初级卫生保健,2008,22(2):86-87.
    [7]E. L. Moses-Kolko, K. L. Wisner, J. C. Price, et al. Serotonin 1A receptor reductions in postpartum depression:a positron emission tomography study[J]. Fertil Steril,2008, 89(3):685-692.
    [8]J. Maguire, I. Mody. GABA(A)R plasticity during pregnancy:relevance to postpartum depression[J]. Neuron,2008,59(2):207-213.
    [9]S. Meltzer-Brody, A. Stuebe, N. Dole, et al. Elevated corticotropin releasing hormone (CRH) during pregnancy and risk of postpartum depression (PPD)[J]. J Clin Endocrinol Metab,2011,96(1):E40-47.
    [10]V. O'Keane, S. Lightman, K. Patrick, et al. Changes in the maternal hypothalamic-pituitary-adrenal axis during the early puerperium may be related to the postpartum 'blues'[J]. J Neuroendocrinol,2011,23(11):1149-1155.
    [11]罗阳,郑乐知,周建伟,等.产后抑郁症与雌激素及单胺递质水平的相关性研究[J].中华妇产科杂志,2007,42(11):745-748.
    [12]Y. Zou, F. Fan, A. Ma, et al. Hormonal changes and somatopsychologic manifestations in the first trimester of pregnancy and post partum[J]. Int J Gynaecol Obstet,2009, 105(1):46-49.
    [13]高鹏,曹爱国,张艳秋.产后抑郁症患者血清雌激素和孕激素水平的变化[J].华西医学,2010(5):971-972.
    [14]王长勇,姜志,王秀珍,等.产后抑郁症病人的血浆皮质激素水平的初步观察[J].中国民康医学(上半月),2008,20(3):227-228.
    [15]胡电,古航,洪新如,等.产后抑郁症患者血中孤啡肽水平与单胺类递质的相关性[J].中国组织工程研究与临床康复,2007,11(30):6103-6105.
    [16]刘红蕾,丁蓉,贺红云.产后抑郁患者血清催乳素、孕酮水平的变化[J].南华大学学报(医学版),2010,38(4):534-536.
    [17]罗阳,何国平.性激素及神经递质与产后抑郁症关系的Meta分析[J].中国妇幼保健,2007,22(8):1020-1023.
    [18]吕音.补益心脾法治疗产后抑郁症的临床研究[D].广州中医药大学硕士学位论文,2007.
    [19]王佩.疏郁养心法治疗产后抑郁症临床应用分析[J].中国社区医师(医学专业),2010,12(10):82-83.
    [20]T. Wang, F. Qin. Effects of Chinese herbal medicine Xiaoyao Powder on monoamine neurotransmitters in hippocampus of rats with postpartum depression [J]. Zhong Xi Yi Jie He Xue Bao,2010,8(11):1075-1079.
    [21]谢萍,黄志娟,冯俭,等.产舒颗粒调节产后抑郁大鼠单胺类神经递质的作用机理研究[J].中国中医急症,2008,17(2):218-220.
    [1]R. D. Porsolt, G. Anton, N. Blavet, et al. Behavioural despair in rats:a new model sensitive to antidepressant treatments[J]. Eur J Pharmacol,1978,47(4):379-391.
    [2]M. J. Detke, I. Lucki. Detection of serotonergic and noradrenergic antidepressants in the rat forced swimming test:the effects of water depth[J]. Behav Brain Res,1996, 73(1-2):43-46.
    [3]Z. Rogoz, M. Kabzinski. Enhancement of the anti-immobility action of antidepressants by risperidone in the forced swimming test in mice[J]. Pharmacol Rep,2011, 63(6):1533-1538.
    [4]L. A. Galea, J. K. Wide, A. M. Barr. Estradiol alleviates depressive-like symptoms in a novel animal model of post-partum depression[J]. Behav Brain Res,2001,122(1):1-9.
    [5]E. C. Stoffel, R. M. Craft. Ovarian hormone withdrawal-induced "depression" in female rats[J]. Physiol Behav,2004,83(3):505-513.
    [6]E. H. Beckley, D. A. Finn. Inhibition of progesterone metabolism mimics the effect of progesterone withdrawal on forced swim test immobility[J]. Pharmacol Biochem Behav, 2007,87(4):412-419.
    [7]A. D. Green, A. M. Barr, L. A. Galea. Role of estradiol withdrawal in 'anhedonic' sucrose consumption:a model of postpartum depression[J]. Physiol Behav,2009, 97(2):259-265.
    [8]B. M. Navarre, J. D. Laggart, R. M. Craft. Anhedonia in postpartum rats[J]. Physiol Behav,2010,99(1):59-66.
    [9]A. D. Green, L. A. Galea. Adult hippocampal cell proliferation is suppressed with estrogen withdrawal after a hormone-simulated pregnancy[J]. Horm Behav,2008, 54(1):203-211.
    [10]S. Suda, E. Segi-Nishida, S. S. Newton, et al. A postpartum model in rat:behavioral and gene expression changes induced by ovarian steroid deprivation[J]. Biol Psychiatry, 2008,64(4):311-319.
    [11]T. Wang, F. Qin. Effects of Chinese herbal medicine Xiaoyao Powder on monoamine neurotransmitters in hippocampus of rats with postpartum depression[J]. Zhong Xi Yi Jie He Xue Bao,2010,8(11):1075-1079.
    [12]万朋,王师,王军,等.黄芪多糖对小鼠学习记忆能力的影响[J].延边大学医学学报,2011,34(1):23-25.
    [13]张艳,明亮,李卫平,等.黄芪提取物对小鼠学习记忆及免疫功能的影响[J].中国临床药理学与治疗学,2000,5(2):124-126.
    [14]王海彬,王军舰,黄辉,等.黄芪注射液对雌激素受体的激活作用研究[J].时珍国医国药,2006,17(11):2113-2115.
    [15]刘心萍,陈方亮,程亚军.黄芪总黄酮防止大鼠骨质疏松的实验研究[J].浙江中西医结合杂志,2005,15(5):282-283.
    [16]张振东,吴兰芳,景永帅,等.党参多糖对小鼠学习记忆作用研究[J].山地农业生物学报,2010,29(3):242-245.
    [17]焦红军.党参的药理作用及其临床应用[J].临床医学,2005,25(4):89,92.
    [18]李丽,李艳红,王宁生,等.当归、红花与硫酸氢氯吡格雷抗血小板聚集的相互作用[J].中药新药与临床药理,2009,20(1):14-17.
    [19]侯海锋,包永占,李茜,等.血虚模型的建立及当归对其作用的研究[J].动物医学进展,2009,30(12):57-59.
    [20]黄美艳,李伟霞,唐于平,等.佛手散不同醇提液补血作用比较研究[J].中国临床药理学与治疗学,2011,16(8):841-846.
    [21]田发益,钟国辉,钟政昌,等.西藏土当归多糖的纯化及对兔血红蛋白的影响[J].华西药学杂志,2008,23(5):561-563.
    [22]钟小明,钟梅,刘跃梅,等.宫内缺氧对幼年大鼠大脑齿状回颗粒细胞及其记忆功能的影响及当归的干预作用[J].时珍国医国药,2009,20(6):1424-1425.
    [23]赵峰,马晶,余鸿.宫内缺氧及当归注射液干预对幼年大鼠海马齿状回神经元与学习记忆能力的影响[J].中国组织化学与细胞化学杂志,2009,18(4):487.
    [24]贺艳,赵峰,马晶,等.当归对宫内缺氧幼年大鼠海马CA3区神经元与学习能力的影响及机制[J].时珍国医国药,2010,21(3):646-649.
    [25]王红磊,汪芳安.酸枣仁安神酒中酸枣仁皂苷改善小鼠睡眠作用的研究[J].武汉工业学院学报,2011,30(2):29-31,36.
    [26]李廷利,刘立,孙加源,等.生、炒酸枣仁催眠作用的实验研究[J].中医药学报,2001,29(5):35-36.
    [27]吴玉兰,许惠琴,陈诜,等.酸枣仁不同炮制品及炒酸枣仁中总黄酮与总皂苷的镇静催眠作用比较[J].时珍国医国药,2005,16(9):868-869.
    [28]侯建平,张恩户,胡悦,等.酸枣仁对小鼠学习记忆能力的影响[J].广西中医学院学报,2002,5(3):11-13.
    [29]张玮,袁秉祥,于晓江.酸枣仁总皂苷对大鼠血液流变学及体外血栓的影响[J].陕西中医,2005,26(7):723-725.
    [30]赵启铎,舒乐新,王颖,等.酸枣仁油对行为绝望小鼠模型的影响[J].中国实验方剂学杂志,2011,17(18):200-202.
    [3]]白颖,王世全,张兰,等.山茱萸环烯醚萜苷对家兔、大鼠血小板聚集及出血时间的影响[J].中国临床药理学与治疗学,2010,15(12):1373-1377.
    [32]张丽,叶翠飞,张兰,等.山茱萸环烯醚萜苷对血栓形成和凝血功能的影响[J].中药新药与临床药理,2008,19(5):363-366.
    [33]李小黎,叶翠飞,张丽,等.山茱萸环烯醚萜苷对脑缺血沙土鼠学习记忆能力和脑内神经营养因子的影响[J].中华中医药学刊,2011,29(2):263-266.
    [34]丁月霞,张丽,叶翠飞,等.山茱萸环烯醚萜苷对穹隆海马伞切断大鼠学习记忆能力和突触生长素的影响[J].中国新药杂志,2010(2):133-138.
    [35]K. Y. Lee, S. H. Sung, S. H. Kim, et al. Cognitive-enhancing activity of loganin isolated from Cornus officinalis in scopolamine-induced amnesic mice[J]. Arch Pharm Res,2009,32(5):677-683.
    [36]韩珍,贺弋,杨艳,等.郁金抗抑郁作用的实验研究[J].宁夏医学院学报,2008,30(3):275-276,288.
    [37]周芳,杨秀芬,仇霞.桂郁金醇提物对小鼠出血及凝血时间的影响[J].中国实验方剂学杂志,2010,16(11):143-144.
    [38]杨秀芬,周芳,李丽花,等.桂郁金水提物对小鼠出血与凝血时间的影响[J].时珍国医国药,2010,21(9):封3-封4.
    [39]吉中强,宋鲁卿,牛其昌,等.15种理气中药体外对人血小板聚集的影响[J].中草药,2001,32(5):428-429.
    [40]徐丽珊,金晓玲.金华佛手醇提取液对小鼠学习记忆的影响[J].特产研究,2002,24(4):16-18.
    [41]徐晓虹,金晓玲,章子贵.金华佛手醇提液对小鼠记忆、耐力和免疫机能的影响[J].浙江师大学报(自然科学版),2000,23(2):180-182.
    [42]符文彬,刘健华,白艳甫,等.电针对抑郁症大鼠海马CREB-BDNF受体后信号转导通路的作用[J].中国老年学杂志,2009,29(23):3038-3042.
    [43]祝凌丽,徐维平,魏伟,等.黄精总皂苷对慢性应激模型大鼠的行为学以及对海马的BDNF和TrkB表达的影响[J].中国新药杂志,2010,19(6):517-525.
    [44]王涵,李娜,文威,等.慢性应激致大鼠抑郁行为涉及海马形态变化和BDNF表达降低[J].基础医学与临床,2011,31(5):565-569.
    [45]张华.保神汤对慢性应激抑郁模型大鼠海马神经元及BDNF的影响的实验研究[D].辽宁中医药大学博士学位论文,2005.
    [46]于千.归脾汤对抑郁模型大鼠雌激素水平及海马形态学的影响[D].辽宁中医药大学博士学位论文,2006.
    [47]邹艳萍.归脾汤对抑郁模型大鼠海马形态学及皮质醇水平的影响[D].辽宁中医药大学博士学位论文,2006.
    [48]肖爱娇,施旻,闵建新,等.抑郁症模型大鼠学习记忆力及海马形态结构的变化[J].江西医学院学报,2009,49(1):4-8.
    [1]J. L. Payne. The role of estrogen in mood disorders in women[J]. Int Rev Psychiatry, 2003,15(3):280-290.
    [2]M. Bloch, P. J. Schmidt, M. Danaceau, et al. Effects of gonadal steroids in women with a history of postpartum depression[J]. Am J Psychiatry,2000,157(6):924-930.
    [3]Y. Okazaki. The epidemiology and pathogenesis of postpartum depression[J]. Nihon Rinsho,2001,59(8):1555-1559.
    [4]S. Brummelte, L. A. Galea. Depression during pregnancy and postpartum:contribution of stress and ovarian hormones[J]. Prog Neuropsychopharmacol Biol Psychiatry,2010, 34(5):766-776.
    [5]罗阳,郑乐知,莫朝辉,等.雌二醇、促甲状腺素变化与产后抑郁症相关性研究[J].中国医刊,2007,42(1):50-51.
    [6]姚凤梅,卫平祥,刘永梅,等.孕产妇抑郁的发生和体内甲状腺激素关系的研究[J].现代医学,2009,37(2):156-157.
    [7]M. Le Donne, S. Settineri, S. Benvenga. Early pospartum alexithymia and risk for depression:Relationship with serum thyrotropin, free thyroid hormones and thyroid autoantibodies[J]. Psychoneuroendocrinology,2012,37(4):519-533.
    [8]高鹏,曹爱国,张艳秋.产后抑郁症患者血清雌激素和孕激素水平的变化[J].华西医学,2010(5):971-972.
    [9]谌小卫,杨越波,范建辉,等.产后抑郁症患者雌二醇孕酮和催乳素水平研究[J].中山医科大学学报,2002,23(4):274-276.
    [10]罗阳,何国平.性激素及神经递质与产后抑郁症关系的Meta分析[J].中国妇幼保健,2007,22(8):1020-1023.
    [11]Y. Luo, G. P. He. Correlative analysis of postpartum depression[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2007,32(3):460-465.
    [12]刘红蕾,丁蓉,贺红云.产后抑郁患者血清催乳素、孕酮水平的变化[J].南华大学学报(医学版),2010,,38(4):534-536.
    [13]张小勤.产后忧郁、产后抑郁患者雌二醇、孕酮和瘦素水平变化的研究[J].中国妇幼保健,2010,25(20):2787-2791.
    [14]张迁.产后抑郁患者血清催乳素、孕酮水平的变化观察与研究[J].医学信息(中旬刊),2011,24(3):872-873.
    [15]S. L. Douma, C. Husband, M. E. O'Donnell, et al. Estrogen-related mood disorders: reproductive life cycle factors[J]. ANS Adv Nurs Sci,2005,28(4):364-375.
    [16]A. Ahokas, J. Kaukoranta, K. Wahlbeck, et al. Estrogen deficiency in severe postpartum depression:successful treatment with sublingual physiologic 17beta-estradiol:a preliminary study [J]. J Clin Psychiatry,2001,62(5):332-336.
    [17]王瑛,付政,刘津予,等.产后抑郁症患者血清雌二醇、孕酮水平分析[J].临床医学,2003,23(12):58-59.
    [18]I. S. Yim, L. M. Glynn, C. Dunkel-Schetter, et al. Risk of postpartum depressive symptoms with elevated corticotropin-releasing hormone in human pregnancy [J]. Arch Gen Psychiatry,2009,66(2):162-169.
    [19]S. Meltzer-Brody, A. Stuebe, N. Dole, et al. Elevated corticotropin releasing hormone (CRH) during pregnancy and risk of postpartum depression (PPD)[J]. J Clin Endocrinol Metab,2011,96(1):E40-47.
    [20]S. N. Jolley, S. Elmore, K. E. Barnard, et al. Dysregulation of the hypothalamic-pituitary-adrenal axis in postpartum depression [J]. Biol Res Nurs,2007,8(3):210-222.
    [21]V. O'Keane, S. Lightman, K. Patrick, et al. Changes in the maternal hypothalamic-pituitary-adrenal axis during the early puerperium may be related to the postpartum 'blues'[J]. J Neuroendocrinol,2011,23(11):1149-1155.
    [22]A. Taylor, V. Glover, M. Marks, et al. Diurnal pattern of cortisol output in postnatal depression[J]. Psychoneuroendocrinology,2009,34(8):1184-1188.
    [23]S. Brummelte, J. L. Pawluski, L. A. Galea. High post-partum levels of corticosterone given to dams influence postnatal hippocampal cell proliferation and behavior of offspring:A model of post-partum stress and possible depression[J]. Horm Behav,2006, 50(3):370-382.
    [24]Y. Zou, F. Fan, A. Ma, et al. Hormonal changes and somatopsychologic manifestations in the first trimester of pregnancy and post partum[J]. Int J Gynaecol Obstet,2009, 105(1):46-49.
    [25]A. T. Spijker, E. F. van Rossum. Glucocorticoid sensitivity in mood disorders[J]. Neuroendocrinology,2012,95(3):179-186.
    [26]F. D. Jeanneteau, W. M. Lambert, N. Ismaili, et al. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus[J]. Proc Natl Acad Sci U S A,2012,109(4):1305-1310.
    [27]N. Dedic, C. Touma, C. P. Romanowski, et al. Assessing Behavioural Effects of Chronic HPA Axis Activation Using Conditional CRH-Overexpressing Mice[J]. Cell Mol Neurobiol,2011, Epub ahead of print.
    [28]M. H. Andrews, S. A. Wood, R. J. Windle, et al. Acute glucocorticoid administration rapidly suppresses basal and stress-induced hypothalamo-pituitary-adrenal axis activity[J]. Endocrinology,2012,153(1):200-211.
    [29]A. D. Green, L. A. Galea. Adult hippocampal cell proliferation is suppressed with estrogen withdrawal after a hormone-simulated pregnancy[J]. Horm Behav,2008, 54(1):203-211.
    [30]I. Jones, F. Middle, F. McCandless, et al. Molecular genetic studies of bipolar disorder and puerperal psychosis at two polymorphisms in the estrogen receptor alpha gene (ESR 1)[J]. Am J Med Genet,2000,96(6):850-853.
    [31]M. K. Osterlund, M. R. Witt, J. A. Gustafsson. Estrogen action in mood and neurodegenerative disorders:estrogenic compounds with selective properties-the next generation of therapeutics[J]. Endocrine,2005,28(3):235-242.
    [32]李庆娇,厉蔚,安书成,等.慢性束缚应激性抑郁与雌性小鼠雌激素和海马雌激素受体的关系[J].陕西师范大学学报:自然科学版,2009(4):82-87.
    [33]S. N. Kalantaridou, A. Makrigiannakis, E. Zoumakis, et al. Stress and the female reproductive system[J]. J Reprod Immunol,2004,62(1-2):61-68.
    [34]G. P. Chrousos, D. J. Torpy, P. W. Gold. Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system:clinical implications[J]. Ann Intern Med,1998,129(3):229-240.
    [35]S. P. Ghuman, R. Morris, D. G. Spiller, et al. Integration between different hypothalamic nuclei involved in stress and GnRH secretion in the ewe[J]. Reprod Domest Anim,2010,45(6):1065-1073.
    [36]M. A. Magiakou, G. Mastorakos, E. Webster, et al. The hypothalamic-pituitary-adrenal axis and the female reproductive system[J]. Ann N Y Acad Sci,1997,816:42-56.
    [37]P. J. Selman, J. A. Mol, G. R. Rutteman, et al. Effects of progestin administration on the hypothalamic-pituitary-adrenal axis and glucose homeostasis in dogs[J]. J Reprod Fertil Suppl,1997,51:345-354.
    [38]M. J. Weiser, C. D. Foradori, R. J. Handa. Estrogen receptor beta activation prevents glucocorticoid receptor-dependent effects of the central nucleus of the amygdala on behavior and neuroendocrine function[J]. Brain Res,2010,1336:78-88.
    [39]M. J. Weiser, R. J. Handa. Estrogen impairs glucocorticoid dependent negative feedback on the hypothalamic-pituitary-adrenal axis via estrogen receptor alpha within the hypothalamus[J]. Neuroscience,2009,159(2):883-895.
    [1]B. Doornbos, D. Fekkes, M. A. Tanke, et al. Sequential serotonin and noradrenalin associated processes involved in postpartum blues[J]. Prog Neuropsychopharmacol Biol Psychiatry,2008,32(5):1320-1325.
    [2]D. J. Newport, M. J. Owens, D. L. Knight, et al. Alterations in platelet serotonin transporter binding in women with postpartum onset major depression[J]. J Psychiatr Res,2004,38(5):467-473.
    [3]M. El Mansari, B. P. Guiard, O. Chernoloz, et al. Relevance of norepinephrine-dopamine interactions in the treatment of major depressive disorder[J]. CNS Neurosci Ther,2010,16(3):e1-17.
    [4]J. L. Scholl, K. J. Renner, G. L. Forster, et al. Central monoamine levels differ between rat strains used in studies of depressive behavior [J]. Brain Res,2010,1355:41-51.
    [5]胡电,古航,洪新如,等.产后抑郁症患者血孤啡肽水平初步测定[J].中国心理卫生杂志,2004,18(6):379-380.
    [6]E. Maurer-Spurej, C. Pittendreigh, S. Misri. Platelet serotonin levels support depression scores for women with postpartum depression[J]. J Psychiatry Neurosci,2007, 32(1):23-29.
    [7]罗阳,何国平.性激素及神经递质与产后抑郁症关系的Meta分析[J].中国妇幼保健,2007,22(8):1020-1023.
    [8]Y. Luo, G. P. He. Correlative analysis of postpartum depression[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2007,32(3):460-465.
    [9]T. Wang, F. Qin. Effects of Chinese herbal medicine Xiaoyao Powder on monoamine neurotransmitters in hippocampus of rats with postpartum depression[J]. Zhong Xi Yi Jie He Xue Bao,2010,8(11):1075-1079.
    [10]谢萍,黄志娟,冯俭,等.产舒颗粒调节产后抑郁大鼠单胺类神经递质的作用机理研究[J].中国中医急症,2008,17(2):218-220.
    [11]P. H. Desan, W. W. Woodmansee, S. M. Ryan, et al. Monoamine neurotransmitters and metabolites during the estrous cycle, pregnancy, and the postpartum period[J]. Pharmacol Biochem Behav,1988,30(3):563-568.
    [12]K. Hao, P. Gong, S. Q. Sun, et al. Beneficial estrogen-like effects of ginsenoside Rbl, an active component of Panax ginseng, on neural 5-HT disposition and behavioral tasks in ovariectomized mice[J]. Eur J Pharmacol,2011, Epub ahead of print.
    [13]B. Meyers, A. D'Agostino, J. Walker, et al. Gonadectomy and hormone replacement exert region- and enzyme isoform-specific effects on monoamine oxidase and catechol- O-methyltransferase activity in prefrontal cortex and neostriatum of adult male rats[J]. Neuroscience,2010,165(3):850-862.
    [14]V. Kaura, C. D. Ingram, S. E. Gartside, et al. The progesterone metabolite allopregnanolone potentiates GABA(A) receptor-mediated inhibition of 5-HT neuronal activity[J]. Eur Neuropsychopharmacol,2007,17(2):108-115.
    [15]C. Frye, A. Seliga. Effects of olanzapine infusions to the ventral tegmental area on lordosis and midbrain 3alpha,5alpha-THP concentrations in rats[J]. Psychopharmacology (Berl),2003,170(2):132-139.
    [16]V. Birzniece, T. Backstrom, I. M. Johansson, et al. Neuroactive steroid effects on cognitive functions with a focus on the serotonin and GAB A systems [J]. Brain Res Rev, 2006,51(2):212-239.
    [17]P. Zheng. Neuroactive steroid regulation of neurotransmitter release in the CNS:action, mechanism and possible significance[J]. Prog Neurobiol,2009,89(2):134-152.
    [18]J. F. Lopez, D. T. Chalmers, K. Y. Little, et al. A.E. Bennett Research Award. Regulation of serotoninl A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus:implications for the neurobiology of depression[J]. Biol Psychiatry,1998,43(8):547-573.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700