产品拆解概率评估方法及规划模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着产品生命周期的缩短及其更新速度的加速,大量的废弃产品不断涌现并呈现迅猛增长之势。为了保护环境,减小环境污染及促进资源的再生利用,作为循环经济的重要实现形式的产品的回收利用及再制造工作已引起了全社会的广泛关注。
     拆解被定义为在非破坏性条件下,将产品、总成或部件等装配体进行解体的作业或活动。它是实现产品高效回收利用的前提,也是再制造的一个重要环节。因而,高效拆解不仅节约自然资源及能源,还可有效地降低环境污染,同时也是促进循环经济健康发展及其实现工业可持续发展的重要保障。
     本文在广泛阅读国内外相关文献的基础上,介绍了拆解研究的历史背景及其概况,对产品拆解的影响因素及拆解原则、基于概率的产品可拆解性评价体系、产品拆解过程评估及规划等问题进行了系统而深入的讨论,现将主要研究内容概述如下:
     (1)简介了产品拆解研究的目的和意义,同时对当前的国内外的拆解技术现状进行了介绍。同时认为发展绿色拆解技术不仅可以有效地减小环境污染,实现资源及能源的节约,也可为区域经济发展注入新的经济增长点。另外,还对产品的可拆解性评估及设计、产品拆解建模与规划、拆解试验等拆解相关问题的国内外研究现状进行了系统的总结。
     (2)产品拆解过程的因素分析是正确认识拆解的前提,为了更好地理解产品的拆解问题的本质,本文将从产品的联接类型、结构特性、拆解工具及其拆解状态等不同因素全面论述其影响产品拆解的机理,从而得出产品拆解是一个错综复杂的系统的结论;同时对产品拆解的拆解原则和程序进行全面论述,最后以螺栓联接拆卸过程为例,进行拆卸过程的影响因素分析。
     (3)对产品拆解的典型评估参数,即拆解时间、拆解费用及其拆解能量进行了定义;同时对这三大参数的可拆解性评估指标进行全面定义并对它们之间的数学关系给予了推证。另外,基于可拆解性评价参数的全面定义可知,拆卸(时间)概率分布的确定是进行产品三大参数评价的基础之基础,为此,以某变速器螺栓联接拆卸时间的测试为基础,应用统计分析及其典型分布匹配的方法对其进行了拆卸概率分布的确定,上述研究为实现产品拆解的随机评估及优化提供了坚实的理论基础和理论支撑。
     (4)拆解规划是以效率最高、成本最低、拆解时间最短、能耗和污染最少等为目标而进行的拆解序列或拆解过程的优化。首先以拆解时间作为评价参数对压缩盘结构进行了其产品拆解过程的概率评估分析,另外,根据拆解决策的不同,以典型传动装置为例,结合设计的时域求解算法进行了其拆解过程的优化及拆解时间分析。
     (5)拆解成本涉及拆解过程的经济性,以拆解费用作为评价尺度参数结合定义的费用可拆解度概念对产品进行了拆解过程的评估分析及优化求解。求解结果表明应用所提出的方法及算法可以有效实现产品拆解费用的定量分析。
     (6)节能是当前人们关心和讨论的热点问题,为了实现产品拆解过程节能,以拆解能量作为评价参数进行拆解过程的能耗分析,求解结果表明应用所提出的方法及算法可以有效实现产品拆解能量的定量分析。
With the economic development, more and more new products need to update tosatisfy demand and lots of obsolete prdocuts are generatd fastly. In order to protectenvironment, reduce environmental pollution and promote resource, recycling andremanufacturing of products, as important forms of circular economy, have arousedwidespread concern in society.
     Product disassembly is defined as "the prcocess of systematic removal ofdesriable cosnstiute parts from an assembly whlile ensuring that there is noimpairment of the parts due to the process". Disassemble is the prerequisite forefficient recycling, it is also the important link of product remanufacruing. Therefore,efficient disassembly not only conserves natural resources and energy, but alsoeffectively reduces environmental pollution. In addition, it can promote the healthydevelopment of recycling economy and sustainable development of industry..
     In this paper, based on the inland and outland research on staus of productdisassembly, introduce and propose the systemic analysis of the principle and imparctfactors of product disassembly, dismantlbility evaluation system and disassemblyplanning and so on, the main contents of the study are summarized as follows:
     (1) Introduce the the purpose and significance on product disassembly anddescribe the current technology status on disassembly technology at home and abroad.It is said that the development of green disassembly technology not only caneffectively reduces environmental pollution and saves the resource and energy, butalso can promet the development of area ecnocmy. In addition, the status ondisassemblability evauation and design, modeling and planning of productdisassembly and experients of product disassembly are summarized.
     (2) Factor analysis of product disassembly process is the premise ofunderstanding disassembly. In order to understand the substance of productdisassembly, from perspective of connection types, structural features, disassemblytools and states, their factor influence are analysed and the conclution that the product disassemblyl is a complex system problem is obtained. In addition, the principle andprocedure of product disassembly are expounded. Finanly, taking the removl processof the bolts as an example, their influence factors are analyzed.
     (3) Typical evalution pramters are defined, such as disassembly time, cost andenergy and their index and relation are described in detail. In addition, based on thecomparative analysis of prameters, it can be seen that the determination of removalprobability distribution is the basis of all of works. Based on this conclusion, takingthe removal time of the bolt as an example, its removal probability distribution isobtained by the statistical analysis and matching method of typical distributions. Theabove study provides the solid theoretical foundation of product disassemblyevalution and optimzation.
     (4) Disassembly planning is considered as the optimization of disassemblyprocess or disassembly sequence with the target of the shortest disassembly time, thelowest disassembly cost and the minimum disassembly energy consumption. Fistly,taking the time as a typical parameter, time evaluation of compression plate structureis analysed. In addition, taking the typical transmission device for example, combinedwith the deisgined solving algorithm, its typical programming models are analysed.
     (5) Disassembly cost is closely to the economic problem of product disassembly,taking the cost as the evalution parameter and combined with combined with theconcept of the cost disassemblability degree, the cost assessment model of productdisassembly is established. In addition, their cost planning models and sovingalgorithm are presented. Finnaly, an example is provided to verify the rationality ofthe model and the effectiveness of the algorithm.
     (6) Saving energy is one of the hot topics in the society. Taking the disassemblyenergy as the evalution parameter and combined with combined with the concept ofthe energy disassemblability degree, the energy assessment model of productdisassembly is established. In addition, their energy planning models and sovingalgorithm are presented. Finnaly, an example is provided to verify the rationality ofthe model and the effectiveness of the algorithm.
引文
[1]储江伟.汽车再生工程[M].北京:人民交通出版社,2007.9
    [2]徐滨士等.再制造与循环经济[M].北京:科学出版社,2007.8:25-31.
    [3] KARLSSON B, JARRHED J. Recycling of electrical motors by automatic disassembly[J].Measurement Science and Technology,2000,11(4):350-357.
    [4] Kroll E, Carver B. Disassembly analysis through time estimation and other metrics[J].Robotics and Computer-Integrated Manufacturing,1999,15(3):191-200.
    [5] Kroll E., Hanft TA. Quantitative evaluation of product disassembly for recycling[J]. Researchin Engineering Design,1998,10,1–14.
    [6] Desai A, Mital A. Evaluation of disassemblability to enable design for disassembly in massproduction[J]. International Journal of Industrial Ergonomics,2003,32,265-281
    [7] Veerakamolmal P, Gupta SM. Analysis of design efficiency for the disassembly of modularelectronic products[J]. Journal of Electronics Manufacturing,1999,9:79–95.
    [8] Suga T, Sanashige K, Fujimoto J. Quantitative disassembly evaluation. In Proceedings ofIEEE International Symposium on Electronics and the Environment [C].,1996,19-24.
    [9] Mok, H. S., Kim, H. J. and Moon, K. S. Disassemblability of mechanical parts in automobilefor recycling[J]. Computer and Industrial Engineering,1997,33(3-4):621-624.
    [10] Gungor A. Evaluation of connection types in design for disassembly (DFD) using analyticnetwork process[J]. Computers&Industrial Engineering,2006,50:35–54.
    [11] KondoY, Deguchi K, Hayashi Y, Obata F. Reversibility and disassembly time of partconnection. Resources[J], Conservation and Recycling.2003,38(3):175-184.
    [12] Viswanathan S, Allada V. Configuration analysis to support product redesign for end-of-lifedisassembly[J]. International Journal of Production Research,2001,39:1733-1753.
    [13] Viswanathan S, Allada V. Product configuration optimization for disassembly planning: adifferential approach[J]. Omega,2006,34:599–616.
    [14] Chu C, Luh Y., Li T, Chen H. Economical green product design based on simplifiedcomputer-aided product structure variation[J]. Computers in Industry,2009,60:485-500.
    [15] Banda K, Zeid I. To disassemble or not: a computational methodology for decision making[J].Journal of Intelligent Manufacturing,200617:621–634.
    [16] Vinodh S. Environmental conscious product design using CAD and CAE[J]. Clean TechnEnviron Policy,2011,13:359–367.
    [17] Pigosso DCA, Zanette ET, Guelere A, et al. Ecodesign methods focused onremanufacturing[J]. Journal of Cleaner Production,2010,18:21-31.
    [18]林巨广,刘志峰,刘学平,刘光复.基于准则的绿色设计方法研究[J].机械设计,2001,9:4-6.
    [19]蒋丹东,刘光复.可拆卸性设计的系统构成[J].合肥工业大学(自然科学版),22(4):12-16.
    [20]刘学平.机电产品拆卸分析基础理论和及回收评估方法的研究[D].合肥:合肥工业大学,2000.
    [21]李方义.机电产品绿色设计若干关键技术的研究[D].北京:清华大学,2002.
    [22]孟鹏.产品拆卸回收建模与决策分析评估系统研究[D].北京:清华大学,2003.
    [23]江吉彬.绿色机电产品集成化开发系统建模技术与应用研究[D].合肥:合肥工业大学,2003.
    [24]赵树恩,李帼钰,张东生,李玉玲.废旧车辆可拆卸性技术研究[J].陕西工学院学报,19(4):29-32.
    [25]闫利军,李宗斌,高新勤,赵姗姗.一种基于多色集理论的产品拆卸模型研究[J].计算机集成制造系统,2007,13(2):251-256.
    [26]史佩京,徐滨士,刘世参,朱绍华.面向装备再制造工程的可拆卸性设计[J].装甲兵工程学院学报,2007,21(5):12-16.
    [27]于随然,陶暻,陈泓,尹凤福.基于拆卸时间的产品拆卸性评价及改进设计[J].上海交通大学学报,2007,41(9):1475-1478.
    [28]孙有朝,黄进永,王伟.基于零件故障率和拆卸时间的产品拆卸性定量评估方法[J].机械工程学报,2010,46(13):147-154.
    [29]储江伟,金晓红,,崔鹏飞,等.基于拆解时间概率的产品可拆解性评价方法[J].机械设计,2008,25(10):24-27.
    [30]金晓红.基于概率论的汽车产品可拆解性评价方法研究[D].长春:吉林大学交通学院,2009.
    [31]田广东,储江伟,金晓红,张铜柱,王虎.基于概率的产品可拆解性评价方法及数学描述[J].计算机集成制造系统,2011,17(6):1164-1170.
    [32]刘少秋,金刚.具有随机特性的拆卸时间研究[J].机械设计与研究,2008,24(4):87-89.
    [33] Homem de Mello LS, Sanderson AC. A correct and complete algorithm for the generation ofmechanical assembly sequences [J]. IEEE Transactions on Robotics and Automation,1991,7:228–240.
    [34] Tang Y, Zhou MC, Zussman E, Caudill R. Disassembly Modeling, Planning, andApplication[J]. Journal of Manufacturing Systems,2002,21:200-216.
    [35] Homem de Mello LS, Sanderson AC. AND/OR graph representation of assembly plans[J].IEEE Trans. on Robotics&Automation,1990,6(2):188-199.
    [36] Zhou MC, DiCesare F. Petri Net Synthesis for Discrete Event Control of ManufacturingSystems. Kluwer Academic Publishers, London,1993.
    [37] Zussman E, Zhou MC. A methodology for modeling and adaptive planning of disassemblyprocesses[J].IEEE Trans. Robot. Autom.,1999,15:190–194.
    [38] Moore KE, Gungor A, Gupta SM. A petri net approach to disassembly process planning[J].Computers&Industrial Engineering,1998,35(1–2):165–168.
    [39]赵树恩,李玉玲.模糊推理Petri网及其在产品拆卸序列决策中的应用[J].控制与决策,2005,20(10):1181-1184.
    [40] Li JR, Khoo LP, Tor SB. Generation of possible multiple components disassembly sequencefor maintenance using a disassembly constraint graph[J]. International Journal of ProductionEconomics,2006,102(1):51-65.
    [41]黄进永,孙有朝.基于拆卸约束图的产品可行拆卸序列生成算法[J].机械科学与技术,2007,26(10):1354-1357.
    [42]李方义,李剑峰,李建志,段广洪.面向目标拆卸的产品复合有向图建模[J].中国机械工程,2009,20(5):553-558.
    [43]田广东.基于拓扑图的产品拆解概率计算方法研究[D].长春:吉林大学,2009.
    [44]王虎.基于UG的汽车产品拆解模型构建及信息提取方法研究[D].长春:吉林大学.2009.
    [45] Zhang HC, Kuo TC, Lu H, Huang SH. Environmentally conscious design and manufacturing:a state-of-the-art survey, J [J]. Manuf. Syst.,1997,16:.352–371.
    [46] Zhang HC, Kuo TC. A Graph-Based Approach to Disassembly Model for End-of-LifeProduct Recycling[C]. Proc. of the19th International Electronics Manufacturing TechnologySymposium at Austin,1996:247-254.
    [47] Zussman E, Zhou MC. Design and implementation of an adaptive process planner fordisassembly processes[J]. IEEE Transactions on Robotics and Automation,2000,16:171-179.
    [48] Lambert AJD. Optimal disassembly of complex products[J]. International Journal ofProduction Research,1997,35:2509–2524.
    [49] Lambert AJD. Exact methods in optimum disassembly sequence search for problems subjectto sequence dependent costs[J]. Omega,200634:538–549.
    [50] Lambert AJD. Optimizing disassembly processes subjected to sequence dependent cost[J].Computers&Operations Research,2007,34:536–551.
    [51] Li JR, Khoo LP, Tor SB. An object-oriented intelligent disassembly sequence planner formaintenance. Computers in Industry,2005,56:699-718.
    [52] Kongar E, Gupta SM. Disassembly sequencing using genetic algorithm[J]. Int J Adv ManufTechnol,2006,30:497–506.
    [53] Huang HH, Wang MH, Johnson MR. Disassembly sequence generation using a neuralnetwork approach[J]. J Manuf Syst,2000,19(2):73-82.
    [54] Veerakamolmal P, Gupta, SM. Acase-based reasoning approach for automating disassemblyprocess planning[J]. Journal of Intelligent Manufacturing,2002,13:47-60.
    [55] Failli F, Dini G. Optimization of disassembly sequences for recycling of end-of-life productsby using a colony of antlikeagents[C]. Proceedings of the14th International Conference ofIndustrial and Engineering Applications of Artificial Intelligence and Expert SystemsIEA/AIE. Budapest,Hungary,2001:632-639.
    [56] Dong T, Zhang L, Tong R., Dong J. A hierarchical approach to disassembly sequenceplanning for mechanical product[J]. International Journal of Advanced ManufacturingTechnology,2006,30:507-520.
    [57] Torres F, Puente ST, Aracil R. Disassembly planning based on precedence relations amongassemblies[J]. International Journal of Advanced Manufacturing Technology,200321:317–327.
    [58] Adenso-Díaz B, García-Carbajal S, Lozano L. An efficient GRASP algorithm fordisassembly sequence planning[J]. OR Spectrum,2007,29:535–549.
    [59] Adenso-Diaz B, Garcia-Carbajal S, Gupta, SM. A path-relinking approach for a bi-criteriadisassembly sequencing problem. Computers&Operations Research,2008,35:3989-3997.
    [60] Sarin SC, Sherali HD, Bhootra A. A precedence-constrained asymmetric traveling salesmanmodel for disassembly optimization[J]. IIE Transactions,2006,38:223-237.
    [61] Gungor A, Gupta SM. Disassembly sequence plan generation using a branch-and-boundalgorithm[J]. International Journal of Production Research,2001,39:481–509.
    [62] Kuo TC. Disassembly sequence and cost analysis for electromechanical products[J].Robotics and Computer-Integrated Manufacturing,2000,16:43-54.
    [63] Gonzalez B, Adenso-Diaz B. A scatter search approach to the optimum disassembly sequenceproblem[J]. Computers&Operations Research,2006,33:1776–1793.
    [64] Shyamsundar N, Gadh R. Selective disassembly of virtual prototypes, systems[C]. In IEEEInternational Conference on Systems, man and cybernetics,1996,3159–3164.
    [65] Shyamsundar N, Gadh R. Geometric abstractions to support disassembly analysis. IIE Trans.,1999,31(10):935–946.
    [66] Chung, C. and Peng, Q. An integrated approach to selective-disassembly sequence planning.Robotics and Computer-Integrated Manufacturing,2005,21(4–5):475–485.
    [67] Lee DH, Xirouchakis P. A two-stage heuristic for disassembly scheduling with assemblyproduct structure. Journal of the Operational Research Society,2004,55:287-297.
    [68] Tiwari MK, Sinha N, Kumar S, Rai R., Mukhopadhyay SK.. A Petri net based approach todetermine the disassembly strategy of a product. International Journal of ProductionResearch,2001,40:1113-1129.
    [69] Tang Y., Zhou MC, Gao M. Fuzzy-Petri-net based disassembly planning considering humanfactors. IEEE Transactions on Systems, Man and Cybernetics,2006,36:718-726.
    [70])周亮,向东,段广洪.拆卸与或图模型中的稳定性拆卸规划方法[J].微计算机信息,2008,24(2-3):1-3.
    [71]谢云峰,黄美发,钟艳如,匡兵.基于模拟退火遗传算法的拆卸路径规划[J].机械工程师,2007,1:103-105.
    [72]张秀芬,张树.基于粒子群算法的产品拆卸序列规划方法[J].计算机集成制造系统,2009,15(3):508-514.
    [73]章小红,李世其,王峻峰,李勋.基于蚁群算法的单目标选择性拆卸序列规划研究[J].计算机集成制造系统,2007,13(6):1109-1114.
    [74]李玉玲,赵树恩.基于Petri网的产品拆卸过程规划[J].农业机械学报,2006,37(7):138-141.
    [75]李世停,朱波,蔡琦,陈力生.基于机械设备零件约束关系的Petri网拆卸过程模型研究[J].中国机械工程,2008,19(19):2302-2305.
    [76]刘振宇,谭建荣,张树有.虚拟环境中基于约束动态解除的产品拆卸技术研究[J].计算机辅助设计与图形学学报,2003,15(7):812-817.
    [77]吴昊,左洪福.基于改进遗传算法的选择性拆卸序列规划[J].航空学报,2009,30(5):952-958.
    [78]应保胜,彭海波.用遗传算法实现产品拆卸序列优化[J].机械与电子,2004,9:9-11.
    [79]王波,王宁生.基于遗传算法与Tabu搜索的拆卸序列优化算法[J].重庆大学学报(自然科学版),2006,29(3):23-27.
    [80]杨德军.基于模拟退火的粒子群优化算法在拆卸序列中的应用[D].合肥:合肥工业大学,2010.
    [81]刘志峰,李新宇,赵流现,魏俊杰,张洪潮. SMP主动拆卸结构激发效果影响因素的试验研究[J].中国机械工程,2010,21(18):2243-2246.
    [82]高建刚,姚丽英,段广洪,汪劲松.机电产品拆卸序列的生成与评价[J].机械科学与技术,2003,22(3):358-360.
    [83]姚丽英,高建刚,段广洪,薛俊芳.基于分层结构的拆卸序列规划研究[J].中国机械工程,2003,14(17):1516-1519.
    [84]申宏洲,黄平.利用Inventor二次开发研究拆卸约束自动生成方法[J].现代制造工程,2010,3:49-52.
    [85]徐鸿翔.基于最小费用拆卸路径的规划[J].轻工机械,2004,3:123-125.
    [86]薛俊芳,邱长华,向东.在Pro/E中自动生成零件拆卸优先约束矩阵[J].工程图学报,2007,3:24-29.
    [87] Villalba G., Segarra M., Chimenos J M, Espiell F. Using the recyclability index of materialsas a tool for design for disassembly, Ecological Economics,2004,50(34):195-200.
    [88] Kondo Y, Hirai K, Obata F. How do you manage the refrigerator at end-of-life stage[C].Proceedings of the Fourth International Conference on EcoBalance, Tsukuba, Japan,2000,663-666.
    [89] Kazmierczak K, Mathiassen SM, Forsman M, Winkel J. An integrated analysis ofergonomics and time consumption in Swedish ‘craft-type’ car disassembly[J]. AppliedErgonomics,2006,36:263-273.
    [90]刘伟国.电路板元器件拆卸方法及拆卸力研究[J].合肥:合肥工业大学,2009.
    [91] Yang JP, Xiang D, Wang JS, Duan G, Zhang HC. Removal force models for componentdisassembly from waste printed circuit board[J]. Resources, Conservation and Recycling,2009,53:448-454.
    [92] Pan L, Zeid I. A knowledge base for indexing and retrieving disassembly plans[J]. Journal ofIntelligent Manufacturing,2001,12:77-94.
    [93] Lambert, A.J.D., Gupta, S.M. Disassembly Modeling for Assembly, Maintenance, Reuse,and Recycling[M]. CRC Press, Boca Raton, FL,2005.
    [94] Brennan L, Gupta SM, Taleb KN. Operations planning issues in an assembly/disassemblyenvironment. Int Journal Oper Prod Manag,1994,14(9):57-67
    [95] http://www.bzxz8.com/Soft/GJBZ/201080.html.
    [96] Sonnenberg M. Force and effort analysis of unfastening actions in disassembly processes [D].New York: New Jersey Institute of Technology,2001.
    [97] M. Schmidt-kretschmer, S.Beitz. Demontagefreundliche Verbindungstechnik–ein Beitragzur Produckt recyclingVDI-Berichte Nr.906, VDI Verlag, Duesseldorf, Germany,1991.
    [98] Davis HE, Troxell GE, Hauck GFE. The Testing of Engineering Materials[M]. New York:McGraw-Hill,4th edtion,1982.
    [99]张铜柱.基于无向图的发动机可拆解性设计方法研究[D].长春:吉林大学,2008.
    [100]杨印生,李洪伟.管理科学与系统工程中的定量分析方法[M].长春:吉林科学技术出版社,2009.
    [101] Liu B. Uncertainty Theory: An Introduction to its Axiomatic Foundations[M]. Berlin:Springer-Verlag,2004.
    [102] S. M. McGovern and S. M. Gupta, The Disassembly Line: Balancing and Modeling[M].New York: McGraw Hill,2011.
    [103] Keshavarz E and Khorram E. A fuzzy shortest path with the highest reliability[J].Journal of Computational and Applied Mathematics,2009,230:204-212.
    [104] Yu G. and Yang J. On the robust shortest path problem[J]. Computers&OperationsResearch,1998,25(26):457-468.
    [105]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2000.
    [106] Widder DV. An introduction to transform theory[M].Academic Press, New York,1971.
    [107]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.
    [108]王伟.人工神经网络原理—入门与应用[M].北京:北京航空航天大学出版社,1995.
    [109]曲昭伟,姚荣涵,王殿海.基于最大信息熵原理的居民出行分布模型[J].吉林大学学报:工学版,2003,33(2)15-19.
    [110]田广东,刘玉梅,熊明烨,孙也,储江伟,徐观.基于最大熵原理的产品拆解费用定量分析[J].吉林大学学报:工学版,2011,41(6):1641-1645.
    [111]达庆东,张国伍,姜学峰.交通分布与熵[J].公路交通科技,1999,11:36--39.
    [112]俞礼军,严海,严宝杰.最大熵原理在交通流统计分布模型中的应用[J].交通运输工程学报,2001,9:91-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700