攀枝花钛铁矿微波辅助磨细试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿物的碎磨过程被认为是一个能耗高且能量利用效率低的过程,为了降低能耗并提高能量利用效率,研究人员做了大量的研究工作。攀枝花的钛铁矿资源是我国重要的钛铁矿石基地,其他伴生资源如钒、铬、镍、钻、铂族等多种可利用组分也具有重要利用价值,但复杂的矿物组成及结构特点给传统的碎矿和磨矿过程带来了较大的难度。因此,寻求一种新的技术方法对该矿进行预处理,对降低磨矿过程的能耗,提高磨矿产品质量,具有重要的研究和利用价值。
     本研究在广泛查阅国内外论文资料的前提下,针对攀枝花钛铁矿的组成和结构特点及资源利用现状,采用微波加热技术对矿石进行预处理,重点考察微波预处理对矿石磨矿效率及后续磁选回收磁铁矿过程的影响,初步探讨了矿石的微波辅助磨细机理,确定了影响微波辅助磨细效果的主要因素,为该地区矿产资源的综合利用提供了一种切实有效的预处理新技术。
     论文首先分析了所选矿物的化学成分,通过试验确定了该矿石的主要矿物磁铁矿和钛铁矿具有良好的微波吸收性能。试验研究中,采用了SEM(EDS)、XRD以及激光粒度分析等手段对试验结果进行分析;以磨矿产品中-200目含量和磁铁矿磁选精矿产率的变化作为预处理效果的评价指标;确定了影响矿石被加热温度及辅助磨矿效果的主要因素是微波功率、微波加热时间、矿样重量、矿样粒度等,这些因素对后续的磁选回收磁铁矿精矿产率和回收产品品位也具有显著影响。
     研究发现,攀枝花钛铁矿可以很好的吸收微波能量而被迅速加热。该矿样50g在微波功率1kW、加热30s后可以被加热至300℃以上,且温升速率随微波功率的增大和微波加热时间的延长而增大,但是在额定的微波功率1kW和微波加热时间30s条件下,矿样重量为40~60g、矿样粒度为20-30mm时可以达到最高的加热温度。
     微波预处理矿石后,可以在矿石内部有用矿物和脉石晶粒边界上造成磨细所需要的热应力裂纹,这些裂纹显著提高了矿石的磨矿效率,并且矿物成分在预处理后没有发生改变。本研究中发现,虽然微波功率越高,预处理矿石的助磨效果越好,但需要跟处理量相配合才能在达到磨矿要求的同时做到节能;延长微波加热时间虽然可以提高被加热矿石的温度,矿石的磨矿效率没有随着微波加热时间的延长而一直提高,超过一定时间磨矿效率出现下降趋势,本研究中确定了最佳的微波加热时间是30s;在额定的微波功率和微波加热时间条件下,矿样在重量为50g、粒度20-30mm时可以达到最高的加热温度,也就具有最佳的磨矿效果。当功率为1kW时,在最佳条件:粒度20-30mm、物料量50g、加热处理30s后可以使矿样的-200目含量达到94%,较未处理过的原矿提高了28%。
     在对磨矿产品进行磁铁矿磁选回收的试验中发现,微波预处理可以显著提高磁铁矿的精矿产率,其回收产品品位也得到了提高。当微波功率达到3kW时,磁铁矿的磁选精矿产率由未处理时的44%提高到了72%;在各个功率条件下,其回收产品的品位均较原矿(50.2%)提高了6-8%。
     综上所述,利用微波加热技术对攀枝花钛铁矿进行预处理,可以显著提高矿石的磨矿效率,并且有效提高后续磁选回收磁铁矿的精矿产率及回收产品品位,基本实现了本课题研究的主要目的和意义,也为攀枝花地区的矿产资源综合利用提供了一种切实有效的矿物预处理新技术。
It is generally believed that the size reduction of ores is an energy-intensive and highly inefficient process. The researchers have done many works in order to reduce the energy consumption and improve the energy efficiency. Panzhihua ilmenite resources are rich in Ti and Fe, which contain many associated minerals such as Vanadium, chromium, nickel, cobalt and platinum and so on. Both of them are important to use value. However, it has great difficulty for the traditional process of crushing and grinding because of the complex mineral composition and structural characteristics. Therefore, in order to reduce the energy consumption of grinding process and improve the quality of grinding products, it is great significance to search for a new technical approach for the pretreatment of the Panzhihua ilmenite.
     In this study, in connection of the composition and structural characteristics and resource utilization status of Panzhihua ilmenite and under the premise of a wide range access to paper information at home and abroad, microwave heating has been application in ore's pretreatment. The efficiency of ore grinding and subsequent recovery of magnetite magnetic effects by microwave pretreatment was inspected. To a certain extent, the mechanism of microwave-assisted grinding and the main factors that affect the effects of microwave pretreatment have been researched. The research provides a new effective pretreatment technical for the utilization of the mineral resources in the region.
     In the first place, the paper analyzes the chemical composition of the selected ore. According to the testing, the main ore minerals magnetite and ilmenite have good microwave absorption properties. In the experiment, the SEM (EDS), XRD and particle size analysis are used of analyzing the test results. And the change in the -200 Mesh of mineral grinding and the recovery rate of magnetite magnetic separation are regarded as pretreatment evaluation index. So, the main factors that affect the ore's heated temperature and the grinding effects are determined, which contains microwave power, microwave heating time, the weight of ore samples, mineral sample size, etc. These factors also have a significant impact on the magnetic separation of magnetite and the quality of recycling product.
     Research indicates that, the ore can be heated to above 300℃on condition that Mine-like is 50g, the microwave power is 1kW and the heating time is 30s. And the heating rate increases with the microwave power level and heating time increased. However, in the rated microwave power 1kW and heating time 30s, the ore can achieve the maximum heating temperature when the mass load is arrange from 40g to 60g and particle size of sample is 20-30mm.
     By the microwave heating pretreatment, the mineral liberation efficiency is improved by creating intergranular fracture on the ore and gangue grain boundaries, and the composition of ore has not been changed in the pretreatment. This study found that, although the higher power level, the better pretreatment efficiency, the handling capacity should couple with the power level so as to satisfying the grinding requirements without increasing the energy consumption. Although the extension of microwave heating time can raise the ore's temperature, its grinding effect shows a declining trend. So this study identified the optimum heating time is 30s. On the conditions of rated microwave power level and heating time, when the mineral samples in the weight of 50g and particle size is 20-30mm, the highest heating temperature and the best grinding results would be achieved. Thus, on the optimum conditions that particle size is 20-30mm, mass load is 50g and heating time is 30s, the content of-200 Mesh can ascend to 94% when the power level is 1kW, compared with untreated ore increased 28%.
     According to the magnetic separation of magnetite, it is found that microwave pretreatment can significantly improve the recovery rate of magnetite. And the quality of recovery products also enhanced. When the microwave power level is 3kW, the recovery rate raise to 72%, compared with the untreated ore is 44%. On the conditions of the various power, the quality of recycling magnetite enhanced 6-8% than the untreated one (which quality is 50.2%).
     The result of this paper shows that, the efficiency of ore grinding can be significantly improved by utilizing microwave treated the Panzhihua ilmenite. And improve the magnetite recovery rate and the quality of recovery product effectively. To conclude, the main purpose of this research project and meaning is achieved. But also provides an effective new technique for the comprehensive utilization of mineral resources in Panzhihua region.
引文
[1]Walkiewicz, J.W.; Clark, A.E., McGill, S.L. Microwave-assisted grinding[J]. Industry Applications, IEEE Transactions on Volume 27, Issue 2,1991, Page:239-243.
    [2]金钦汉,微波化学[M].北京:中国科学技术出版社,1993.
    [3]刘全军,王喜良,王文潜,微波助磨的研究现状及进展[J].粉体技术,1998,4(3):31-36.
    [4]彭金辉,刘纯鹏,微波场中矿物及其化合物的升温特性[J].中国有色金属学报,1997,7(3):50-51.
    [5]Kingman, S.W., Rowson, N.A., Applications of microwave radiation to enhance performance of mineral separation processes[J]. Richard Mozley Memorial Symposium, Falmouth, England,1997.
    [6]刘全军,熊燕琴,微波在铁矿石选择性磨细中的应用机理研究[J].云南冶金,1997,26(3).
    [7]朱俊士主编,中国钛铁矿选矿[M].北京:冶金工业出版社,1995.
    [8]秦震,陆祖雄,攀枝花钛铁矿成矿特征.钛铁矿开发利用国际学术会议论文集,攀枝花钢铁公司编,1989.
    [9]傅文章,攀西钛铁矿资源特征及综合利用问题的基本分析[J].矿产综合利用,1996,1.
    [10]张云湘,骆耀南,杨崇喜,中华人民共和国地质矿产部地质专报(五)—构造地质.地质力学:攀西裂谷[R].北京:地质出版社,1988.
    [11]卢记仁,张承信,张光弟,攀西层状基性超基性岩体岩浆类型及成因[J].矿床地质,1987,6(2):1-15.
    [12]钟汉,姚风良,金属矿床[M].地质出版社,1987.
    [13]杨保祥,攀枝花矿产资源特征及循环经济发展策略探讨[J].四川有色金属,2006,30(4):1
    [14]朱俊士,攀枝花—西昌地区钛铁矿的选矿特征[J].矿冶工程,1997,17(1).
    [15]周建国,攀枝花钛资源的赋存状态与在采选过程中的走向规律[J].四川有色金属,1997年,1:29.
    [16]林潮,孙传尧,磁铁矿物的磁性及磁团聚对选矿过程的影响[J].矿冶,1997,6(3).
    [17]赵忠玉,在钛铁矿开发利用国际学术会议上的讲话.钛铁矿开发利用国际学术会议论文集,攀枝花钢铁公司编,1989.
    [18]胡克俊,、姚娟,席歆,攀枝花钛资源经济价值分析[J].世界有色金属:矿业与投资,2008,1.
    [19]王宇斌,微阶段化磨矿技术研究:[硕士学位论文],西安建筑科技大学,2005.
    [20]周祥辉,提高磨矿效率的途径综述[J].金川科技,2005,3:11-13.
    [21]W.T.亨尼斯,热力破碎的机理[J].国外金属矿选矿,1994.
    [22]吴明珠,第五界全国粉碎工程学术会议论文集,北京,1990:7-13.
    [23]S.W.kingman, W.Vorster, Rowson, The influence of mineralogy on microwave assisted grinding[J]. Minerals Engineering,2000,13(3):313-327.
    [24]赵昱东,金属矿山破碎和磨矿设备的进展[J].矿业快报,总第476期,2008.12.
    [25]J.克拉茨,助磨剂对细磨的影响[J].国外金属矿选矿,1999,36(1):6-10.
    [26]韩跃新等,磨机细磨介质优化研究[J].金属矿山,1997,(3):28-31.
    [27]E.福斯伯格,磨矿、矿浆化学与颗粒可浮性[J].国外金属矿选矿,1994:31-37.
    [28]谢应龙,国内外磨矿分级技术的新进展[J].四川有色金属,1994,1:27-36.
    [29]文书明,超临速磨机中钢球和矿石的运动规律[J].中国矿业,2003,12(6):60-63.
    [30]刘春明,助磨剂的试验研究[J].化工矿物与加工,1998,27(2):21-23.
    [31]曾冬铭,AS水泥助磨剂的研制[J].水泥,2001,5:8-10.
    [32]何发钰,孙传尧,宋磊,磨矿环境对硫化矿物浮选的影响[J].中国工程科学,2006,8(8):92-102.
    [33]G. Scott, S.M. Bradshaw, J.J. Eksteen, The effect of microwave pretreatment on the liberation of a copper carbonatite ore after milling, Int. J. Miner. Process,2008,85:121-128.
    [34]L·M-塔瓦列斯,R·P·金,热力辅助粉碎的微观研究[J].国外金属矿选矿,6,1997.6.
    [35]Fitzgibbon, K.E., Veasey, TJ., Thermally assisted liberation-A review[J]. Minerals Engin-eering,1990,3(1/2):747-752.
    [36]Clark D E, Folz D C, West J K. Processing Materials with Microwave Energy[J]. Mat. Sci. Eng. A-Struct.,2000,287(2):153-158.
    [37]Hua YX, Liu CP, Heating rate of minerals and compounds in microwave field[J]. Transactions of Non-Ferrous Metals Society of China,1996,6(1):35-40.
    [38]W. Vorster, N. A. Rowson, S. W. Kingman, The effect of microwave radiation upon the processing of Neves Corvo copper ore[J]. International Journal of Mineral Processing, June 2001,63(1):29-44.
    [39]范先锋,N.A.罗森,微波能在钛铁矿选矿中的应用[J].国外金属矿选矿,1999:2-7.
    [40]彭金辉,杨显万,微波能技术新应用[M].云南科技出版社,1997.
    [41]张兴仁,微波能在矿冶工程中的应用及其前景[J].矿产综合利用,5,1998年10月.
    [42]张兆镗,微波电子管原理[M].北京:国防工业出版社,1981.
    [43]张兆镗,钟若青,微波加热技术基础[M].北京:电子工业出版社,1988.
    [44]杨祥林,张兆镗,张祖舜,微波器件原理[M].北京:电子工业出版社,1995.
    [45]刘岐山,微波能应用[M].北京:电子工业出版社,1990.
    [46]K.E. Haque, Microwave energy for mineral treatment processes—a brief review[J]. Int. Miner. Process.1999,57, page:1-24.
    [47]姚德淼,毛均杰编,微波技术基础[M].电子工业出版社,第一版,1989年9月.
    [48]钱鸿森,微波加热技术及应用[M].黑龙江科学技术出版社,第一版,1985年.
    [49]沈致远,微波技术[M].国防工业出版社,第一版,1980年4月.
    [50]M. Al-Harahsheh, S.W. Kingmari, Microwave-assisted leaching—a review[J]. Hydrometall--urgy,2004,73, page:189-203.
    [51]K.E.哈克,矿物处理过程中的微波能量[J].国外金属矿选矿,2000.1.
    [52]陈为怀,李玉梅,微波振荡源[M].北京:人民邮电出版社,1984.
    [53]电子管设计手册编辑委员会,磁控管设计手册[M].北京:新华书店北京发行所,1979.
    [54]Oespchuck J.M, A history of microwave heating applications[J]. IEEE Transaction on Microwave Thry and Tcchniques,1984,32(9), page:1200-1224.
    [55]罗民华,曾令可,黄浪欢,微波加热技术应用于陶瓷行业需要解决的几个问题[J].陶瓷学报,2001,22(4),page:268-275.
    [56]谢志鹏,李健保,黄勇,工程陶瓷的徽波烧结研究与展望[J].高技术通讯,1996,5,page:56-59.
    [57]Katz J.D. and Blake R.D. Microwave sintering of multiple alumina and composite components[J]. Am. Ceram. Soc. Bull,1991,70(8), page:1304-1308.
    [58]Walkiewicz, J.W., Lindroth, D.P.& Clark, A.E., Grindability of taconite rod mill feed enhanced by microwave induced cracking[J]. SME Annual Meeting Reno, Nevada, Feb.1993, page:1-4.
    [59]S.W. Kingman, Rowson N.A. The Effect of Microwave Radiation on the Magnetic Properties of Minerals[J]. Microwave Power Electromagn Energy,2003,35(2), page:141-150.
    [60]J. W. Walkiewicz, G. Kazonich, S. L. McGill, Minerals and Metallurgical Processing[J].1988, 28 (2), page:39.
    [61]Standish N, Worner H.K, Gupta G, Temperature Distribution in Microwave Heated Iron Ore-Carbon Composites[J]. J. Microwave Power and Electromagnetic Energy,1990,25(2), page:75-80.
    [62]谷晋川,敖宁,矿物处理过程中微波技术的应用与发展方向[J].矿冶,第11卷增刊,2002.
    [63]Liu C.P., Xu Y.S. and Hua Y.X, Application of Microwave Radiation to Extractive Metallurgy [J]. Chin. J. Metall. Sci. Technol,1990,6(2), page:121-124.
    [64]Hua Y.X. Microwave-assisted carbothermic reduction of limonits[J]. Acts metallurgica sinica(English letters),1996,9(3), page:164-170.
    [65]R.M. Kelly, N.A. Rowson, Microwave Reduction Of Oxidised Ilmenite Concentrates[J]. Minerals Engineering,1995,8(11), page:1427-1438.
    [66]黄孟阳,彭金辉,张世敏,微波加热还原钛精矿制取富钛料新工艺[J].钢铁钒钛,2005,26(3):24-28.
    [67]黄孟阳,彭金辉,黄铭,微波加热还原钛精矿制取富钛料扩大试验[J].有色金属(冶炼部分),2007,6:31-34.
    [68]张世敏,彭金辉,黄孟阳,微波加热钛精矿含碳球团制取初级富钛料的研究[J].稀有金属,2006,30(2):78-81.
    [69]Standish N., Worner H.K., Obuchowski D.Y, Particle size effect in microwave heating of granular materials[J]. Powder Technology,1991,66(3), page:225-230.
    [70]陈津,刘浏,曾加庆等,微波加热还原含碳铁矿分粉试验研究[J].钢铁,2000,6:1-5.
    [71]Huang J H, Rowson N A, An Application of Microwave Pre-oxidation in Improving Gold Recovery of a Refractory Gold Ore[J]. Rare Metals,2000,19(3), page:161-171.
    [72]谷晋川,刘亚川,谢扩军等,难选冶金矿微波预处理研究[J].有色金属,2003年5月,55(2).
    [73]谷晋川,杨强,难选冶金矿微波预处理工艺研究[J].地球学报,1998,19:141.
    [74]魏明安,张锐敏,微波处理难浸微细粒包裹金的试验研究[J].矿冶,2001年3月,10(1).
    [75]Haque K.E.,难处理金精矿的微波加热预处理[A].北京:原子能出版社,1998:89-91.
    [76]Peng Jin-hui, Liu Chun-peng. Kinetics of leaching sphalerite with pyrolusite simultan--eously by microwave irradiation[J]. Trans. Nonferrous Met. Soc. China,1997,7(3), page: 152-154.
    [77]彭金辉,刘纯鹏,微波场中FeCl3溶液浸出闪锌矿动力学[J].中国有色金属学报,1992,2(1):47-49.
    [78]祝圣远,王国恒,微波干燥原理及其应用[J].工业炉,2003,25(3):42-45.
    [79]郑镇,微波能在加热干燥过程中的应用与研究[J].能源研究与信息,1990,6(4):21-26.
    [80]李新冬,赵玲,微波技术应用于褐铁矿于燥脱水的试验研究[J].中国资源综台利用,2006,24(6):9-10.
    [81]朱艳丽,彭金辉,张世敏等,闪锌矿的微波干燥规律研究[J].昆明理工大学学报(理工版),2006,31(2):29-33.
    [82]彭金辉,郭胜惠,张世敏,微波加热干燥钛精矿研究[J].昆明理工大学学报(理工版),2004,29(4).
    [83]武文华,唐惠庆.微波干燥和焙烧球团矿[J].北京科技大学学报,1994,16(2):118-121.
    [84]张世敏,彭金辉,范兴祥,微波加热法干燥锡酸钠新工艺[J].有色矿冶,2004,20(2):34-36.
    [85]张世敏,彭金辉,张利波,微波加热中试装置及硫酸铜的干燥[J].有色金属,2003,55(2):40-42.
    [86]赵俊蔚,郑晔,邢志军等,微波处理碳质金矿石技术研究[J].黄金,2008,3(29).
    [87]魏莉,贾微,难浸金矿石预处理新工艺-微波焙烧[J].黄金,2003,12(24):29-31.
    [88]肖六均,攀枝花钛铁矿资源及矿物磁性特征[J].金属矿山,2001,总第295期,1:28-30.
    [89]刘全军,陈景河,微波助磨与微波助浸技术[M].北京:冶金工业出版社,2005.
    [90]W. Vorster, N.A. Rowson, S.W. Kingman, The effect of microwave radiation upon the processing of Neves Corvo copper ore[J]. Int. J. Miner. Process,2001,63, page:29-44.
    [91]D.N. Whittles, S.W. Kingman, D.J. Reddish, Application of numerical modeling for prediction of the influence of power density on microwave-assisted breakage[J]. Int. J. Miner. Process,2003,68(1-4), page:71-91.
    [92]D.A. Jones, S.W. Kingman, D.N. Whittles, I.S. Lowndes, The influence of microwave energy delivery method on strength reduction in ore samples, Chemical Engineering and Processing, 2007,46(4), page:291-299.
    [93]张福根,粉体粒度测试技术,武汉会议专辑.
    [94]林忠,微波热处理对硅灰石粉碎性能的影响[J].中国材料科技与设备,2007年,6.
    [95]Tavares, L.M., King. R.P., Application of Thermal Treatment to Improve Comminution, SME Annual Meeting,1995, Denver, Preprint Number 95-238.
    [96]Middlemiss. S, King, R.P., Microscale Fracture Measurements with Application to Comminution Proceedings[J].8th European Symposium on Comminution, Stockholm, Sweden, Vol.1, page:57-69.
    [97]李启衡,碎矿与磨矿[M].北京:冶金工业出版社,1980:185-191.
    [98]A.F.塔加尔特主编,冶金部选矿研究院等译,东工选矿教研室校,《选矿手册》第二卷第二分册(湿式磨碎).北京:冶金工业出版社,1959,9.
    [99]段希祥编著,选择性磨矿及其应用[M].北京:冶金工业出版社,1991.
    [100]姚江城,程希翱,攀枝花、白马矿区钛磁铁矿磁性研究[J].矿冶工程,1991,11(4):37.
    [101]刘志雄,攀枝花钛铁矿的磁性特征及合理选别工艺的探讨,攀钢集团矿业公司设计研究院科研报告.
    [102]赵祖乔,白草钛铁矿选铁工艺流程研究[J].昆明理工大学学报,1999,24(3).
    [103]鲁勇,张文俊,杨之廉,响应表面法在工艺综合中的应用[J].半导体学报,2002, 23(10).
    [104]傅剑锋,武秋立,响应面法优化酸性玫瑰红B光催化氧化的影响参数[J].环境化学,2007,26(4).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700