氮素调控棉花(Gossypium hirsutum L.)纤维比强度形成的生理基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉纤维比强度是原棉的重要品质指标,其形成主要取决于次生壁的建成质量。氮素是棉花优质高产的主要调控因素之一,研究氮素调控棉纤维比强度形成的生理基础,可为探索改善纤维比强度的氮素营养调控提供理论依据。本研究以棉纤维比强度高(科棉1号,平均比强度为35 cN·tex-1)和中等(美棉33B,平均比强度为32 cN·tex-1)的2个基因型品种为材料,采用大田和盆栽方法,于2005-2006年在江苏南京(118°50'E,32°02'N,长江流域下游棉区)和江苏徐州(117°11 'E,34°15N,黄河流域黄淮棉区)进行氮素水平(零氮:0 kgN·ha-1,适氮:240 kgN.ha-1,高氮:480 kgN·ha-1)试验,研究了:(1)棉纤维中蔗糖代谢、棉纤维发育关键酶(蔗糖合成酶、p-1,3-葡聚糖酶)活性变化特征对氮素的响应及其与纤维比强度形成的关系;(2)不同开花期棉铃对位叶内源保护酶活性、棉铃干物质累积分配对氮素的响应及其与纤维品质性状的关系;(3)氮素调控不同开花期棉铃纤维比强度形成的生理机制;(4)棉铃对位叶氮浓度与纤维品质指标的关系。
     主要研究结果如下:
     1.棉纤维中蔗糖代谢、棉纤维发育关键酶活性变化特征对氮素的响应及其与纤维比强度形成的关系。
     (1)通过研究棉铃对位叶氮浓度、棉纤维加厚发育过程中蔗糖代谢、纤维素累积及纤维比强度形成对氮素的响应特征,分析了氮素调控棉纤维中蔗糖代谢及纤维比强度形成的生理机制。结果发现:棉铃对位叶氮浓度随铃龄变化的趋势符合幂函数曲线(YN=αt-β,YN:棉铃对位叶氮浓度(%),t:铃龄(d),α,β为参数)。高氮水平下的a值显著增加,是导致铃龄24 d前纤维中蔗糖代谢相关酶(蔗糖酶、蔗糖合成酶和磷酸蔗糖合成酶)活性和蔗糖转化量、纤维素最大累积速率以及铃龄24 d纤维比强度降低的重要原因;零氮水平下的β值显著增加,与铃龄24 d后纤维中蔗糖代谢相关酶活性和蔗糖含量峰值降低、纤维素快速累积持续期缩短以及铃龄24 d后纤维比强度增幅减小的关系密切。上述变化特征在品种间保持一致,是棉纤维发育对棉铃对位叶氮浓度做出的重要生理响应,进而导致高氮、零氮水平下的成熟纤维比强度显著降低。综合分析认为,对中部果枝而言,铃龄24 d可以作为棉铃对位叶氮浓度调控棉纤维中蔗糖代谢及纤维比强度形成的转折期。
     (2)基于两年的盆栽氮肥试验,研究了棉纤维发育关键酶(蔗糖合成酶和β-1,3-葡聚糖酶)活性变化特征对氮素的响应及其与纤维比强度形成的关系。结果表明:氮素通过调控纤维发育关键酶活性变化特征影响了纤维素的累积进程,进而影响了纤维比强度的形成。在生化水平上,适氮水平下棉纤维发育关键酶维持高活性的时间较长,高氮、零氮分别导致铃龄24 d前、铃龄24 d后纤维发育关键酶活性显著降低;在mRNA转录水平上,适氮水平下铃龄7-24 d内蔗糖合成酶基因表达量及铃龄18-24 d内β-1,3-葡聚糖酶基因表达量显著高于其余两个氮素处理。适氮水平下纤维发育关键酶维持高活性的时间较长,且其基因表达量高,促使纤维素在较长时间内快速累积,最终形成的纤维比强度较高。
     2.不同开花期棉铃对位叶内源保护酶活性、棉铃干物质累积分配对氮素的响应及其与纤维品质性状的关系。
     (1)基于大田氮肥试验,研究了研究棉花季节桃(伏前桃、伏桃、早秋桃和秋桃)对位叶保护酶活性及纤维品质性状对氮素的响应。结果表明:与适氮相比,零氮水平下伏桃、早秋桃和秋桃对位叶中可溶性蛋白含量、SOD和POD活性均降低,MDA含量升高,且影响程度随开花期推迟而增加,相应开花期棉铃中纤维所占比例显著降低,纤维长度、比强度和整齐度均降低,马克隆值升高;高氮水平除有利于延长秋桃对位叶的功能期外,对其他季节桃对位叶中可溶性蛋白含量和内源保护酶系统的作用较小,不利于伏前桃、伏桃中的光合产物向纤维运输,进而导致纤维比强度显著下降,但对早秋桃、秋桃纤维品质性状的影响程度较小。可见,零氮处理过早打破了棉花季节桃对位叶内源保护酶系统的平衡是导致棉铃发育、纤维品质形成受阻的重要生理原因,而高氮对棉花季节桃对位叶内源保护酶系统的影响程度与纤维品质性状的关系较小。
     (2)以伏桃、秋桃为对象,研究了棉铃干物质积累分配对氮素的响应及其与纤维品质指标的关系。结果表明:棉铃各组成部分中以纤维受氮素的影响最大,其次为棉籽、铃壳。棉籽与纤维之间存在同步异速生长关系,这种关系可用模型y=a+bx表示(x、y分别代表棉籽、纤维干重的自然对数,a为截距,b为线性回归系数)。零氮、高氮处理均降低了伏桃的b值,相应的纤维比强度显著降低,但对其他纤维品质性状的影响较小;秋桃的b值在适氮与高氮处理间差异较小,但显著高于零氮处理,纤维长度、比强度及整齐度对氮素的响应亦呈现出相似趋势。由此推断,对相同开花期的棉铃而言,棉籽、纤维异速生长方程的线性回归系数b越大越有利于高品质棉的形成。
     3.氮素调控不同开花期棉铃纤维比强度形成的生理机制。
     以伏前桃、伏桃和秋桃为研究对象,分析了氮素调控不同开花期棉铃纤维比强度形成的生理机制。结果表明:与适氮相比,零氮处理显著降低了棉铃对位叶氮浓度,增加了C/N值,且影响程度随开花期的推迟而加大,导致伏桃、秋桃对位叶制造和运输光合产物的能力在棉铃发育中后期大幅度下降,棉纤维的相对生长速率以及纤维发育关键酶活性降低,纤维素快速累积持续期缩短,相应的纤维比强度显著降低;高氮处理显著增加了棉铃对位叶氮浓度,降低了C/N值,但影响程度随开花期推迟而降低,降低了伏前桃、伏桃发育过程中光合产物向纤维分配的比例、棉铃发育前中期的纤维发育关键酶活性及纤维素累积速率,导致伏前桃、伏桃纤维比强度显著降低。综合分析认为,适宜施氮通过协调棉花的“源库”关系,促进了不同开花期棉铃高纤维比强度的形成。
     4.棉铃对位叶氮浓度与纤维品质指标的关系。
     通过分析棉铃对位叶比叶重(LMA)、氮浓度(NM:单位干重氮含量,NA:单位叶面积氮含量)对开花期及氮素的响应特征,初步探索了棉铃对位叶NA与纤维品质指标的关系。结果表明:①棉铃对位叶NA蕴含了NM和LMA的双重信息,具有对氮素水平及开花期均较为敏感的特性,在氮素处理间差异性达显著水平,随开花期的推迟呈现出逐步上升趋势;②随着棉铃对位叶NA平均值的增加,棉纤维品质关键指标(纤维长度、比强度、马克隆值、整齐度)的变化趋势均为开口向下的抛物线型;③零氮与适氮处理间棉铃对位叶NA平均值的差距随着开花期的推迟逐渐扩大,而高氮与适氮处理间的差距逐渐缩小,相应氮素处理间纤维比强度和马克隆值的差距亦呈现出同样的变化趋势。综合分析认为,棉铃对位叶NA与棉纤维品质指标的关系密切,可以作为今后从氮素营养角度实时监测预报棉纤维品质优劣的一个重要生理指标。
As an important criterion of cotton quality, fiber strength contributes highly to the yarn strength. The secondary wall thickening stage is a key period to fiber strength formation and many complex physiology mechanisms are involved in it. Nitrogen is one of the regulating factors to the production and fiber quality of cotton. Nowadays, darkly applying nitrogen fertilization significantly depressed fiber strength in production. For improving fiber strength by regulating nitrogen fertilizer application, the physiology basis of nitrogen regulating cotton fiber strength formation was studied in this research to provide theoretical basis. In 2005-2006, field or pot experiments were carried out in Nanjing (118°50'E, 32°02'N, middle lower reaches of Yangtze River Valley) and Xuzhou (117°11'E,34°15'N, Yellow River Valley), which stand for the different ecological conditions. Two cotton cultivars with difference fiber strength (KC-1, average fiber strength is 35 cN·tex-1. AC-33B, average fiber strength is 32 cN·tex-1.) were used, and three nitrogen rates (0 kgN·ha-1,240 kgN·ha-1,480 kgN·ha-1), standing for low, optimum and high nitrogen application level respectively were applied. The study focused on:(1) the response of sucrose metabolism and changing characteristics of key enzymes activities in developing cotton fiber to nitrogen rates and their relationships with fiber strength formation; (2) the response of antioxidant enzyme activities in the subtending leaf and dry matter accumulation and distribution of cotton bolls with different anthesis date to nitrogen rates and their relationships with fiber quality characteristics; (3) the physiological mechanism of nitrogen regulating fiber strength formation of cotton bolls with different blooming dates; (4) the relationship between nitrogen concentration in the subtending leaf of cotton boll and fiber quality indices. The main results were as follows:
     1. Response of sucrose metabolism and changing characteristics of key enzymes activities in developing cotton fiber to nitrogen rates and their relationships with fiber strength formation
     (1) By studying the response of change characteristics of nitrogen concentration in subtending leaf of cotton boll, sucrose metabolism during fiber thickening, cellulose accumulation and fiber strength formation to nitrogen rates, the physiological mechanism of nitrogen regulating sucrose metabolism in cotton fiber and fiber strength formation were investigated. The results showed that the changing trends of nitrogen concentration in the subtending leaf of cotton boll followed the equation:YN=αt-β(YN, nitrogen concentration in the subtending leaf of cotton boll (%).t, boll age (d).αandβare the parameters). "a" was significantly higher under high-nitrogen rates, which, to a great extent, lead to the decrease of sucrose translation and activity of the enzymes (invertase, sucrose synthetase, phosphate sucrose synthetase) before the 24th day post anthesis (DPA), the decline of maximal speed of cellulose accumulation in cotton fiber and fiber strength at the 24th DPA. "β" was significantly higher under low-nitrogen rates, which may made negative effects on sucrose metabolism after the 24th DPA, decline the duration for cellulose speedily accumulating in cotton fiber and the increment of fiber strength from the 24th DPA to boll opening. The changes under high or low-nitrogen rates, which described above were important physiological responses of cotton fiber development to nitrogen concentration in the subtending leaf of cotton boll, and ultimately resulted in lower final fiber strength, and the changes showed similar trends in KC-1 and AC-33B. All the results indicated that, as to the bolls located at the middle fruiting-branch position, in the subtending leaf of cotton boll, the 24th DPA was an inflexion in the time course of nitrogen concentration regulating sucrose metabolism in cotton fiber and fiber strength formation.
     (2) By setting the three nitrogen rates through potted experiments, the response of the key enzymes activities change to nitrogen rates and its relationship with fiber strength formation were studied. The results of two-year potted experiments showed that the activities and gene expression of key enzymes during cotton fiber development were affected by nitrogen rates, and the nitrogen effects influenced the characteristics of cellulose accumulation and fiber strength formation. At the biochemical level, sucrose synthetase andβ-1,3-glucanase showed higher activities throughout boll maturation period under optimum-nitrogen rate, while significantly declined under high-nitrogen rate before 24th day post anthesis (DPA) and low-nitrogen rate after 24th DPA. At the gene expression level, the expression of the sucrose synthetase gene during 7-24 DPA, andβ-1,3-glucanase gene expression suppressed during 18-24 DPA remarkably promoted under optimum-nitrogen rate. For fiber strength is determined by characteristics of cellulose deposition during cotton fiber thickening in a great extent, meanwhile, the key enzymes of sucrose synthetase and P-1,3-glucanase play important regulation function in cellulose accumulation. Sucrose synthetase is involved in cleaving sucrose and channeling UDP-Glu, andβ-1,3-glucanase in breaking down callose to cellulose synthase. From the results above, we suggested that the high activities and gene expression of sucrose synthetase andβ-1, 3-glucanase in cotton fiber contribute to longer period of speedy cellulose accumulation under optimum-nitrogen rate, and then promote higher fiber strength formation accordingly.
     2. Response of antioxidant enzymes activities in the subtending leaf and dry matter accumulation and distribution of cotton bolls with different anthesis date to nitrogen rates and their relationships with fiber quality characteristics
     (1) Based on the field experiment, the response of antioxidant enzymes activities in the subtending leaf, boll components and fiber quality characteristics of seasonal cotton bolls to nitrogen rates were analyzed in this research. Sympodial-branch position white blooms (flowers at anthesis) were tagged on the blooming date of Jul 15, Jul 25, Aug 25 and Sep 10, and the cotton boll samples were expressed as PSB (pre-summer boll), SB (summer boll), EAB (early autumn boll) and AB (autumn boll), respectively. Results showed that compared with optimum-nitrogen rates, under low-nitrogen rates, the soluble protein content, SOD activity and POD activity and MDA content in subtending leaves of SB, EAB and AB decreased, and the effect degree under low-nitrogen rate increased with blooming date postponing, correspondingly, fiber length, strength and uniformity index correspondingly decreased, but micronaire value increased; The effect of high-nitrogen rate on soluble protein content and antioxidant enzyme activities in the leaf subtending of PSB, SB and EAB was slight, but that is favorable to prolong the functional period of leaf subtending of AB. Fiber strength significantly decreased in PSB and SB, but EAB and AB traits and fiber quality indices changed a little under high-nitrogen rates. All the results suggested that the balance of antioxidant enzyme system in the subtending leaf of seasonal cotton bolls broken too early under low-nitrogen rates played a very important role in hindering fiber quality formation, but small effects of antioxidant enzyme activities in the subtending leaf of seasonal cotton bolls on fiber quality characteristics under high-nitrogen rates.
     (2) Take SB and AB as research objects, response of dry matter accumulation and distribution of cotton bolls to nitrogen and its relationship with fiber quality characteristics were studied. Results showed that the effect degree of nitrogen rates on fiber is higher than seed and fiber. The decrease in seed/fiber ratio came from an allometric growth between seed and fiber, which could be expressed by the following equation:y=a+bx (x is the natural logarithm of cottonseed while y is the natural logarithm of fiber dry weight per boll, and a is intercept while b is regression coefficient for the linear equation). "b" of SB was significantly lower under low-nitrogen or high-nitrogen treatment, correspondingly, fiber strength also decreased but other fiber quality characteristics changed little. "b" of AB has a little difference between high-nitrogen treatment and optimum-nitrogen treatment, which significantly higher than low-nitrogen treatment, and the indices of fiber length, strength and uniformity showed similar trends too. All the results indicated that, as to the cotton bolls bloomed on the same date, the larger "b" is, the more favorable to form high fiber quality.
     3. Physiological mechanism of nitrogen regulating fiber strength formation of cotton bolls with different blooming dates
     Through analysis of the effects of nitrogen rates on nitrogen concentration and C/N in the subtending leaf, allometric growth between seed and fiber, key enzymes (sucrose synthetase andβ-1,3-glucanase) activities, cellulose accumulation and fiber strength of PSB, SB and AB, the mechanism of nitrogen regulating fiber strength formation of cotton bolls bloomed in different dates were groped. The results showed that compared with optimum-nitrogen rates, under low-nitrogen rates, the nitrogen concentration significantly decreased and C/N significantly increased significantly in leaf subtending cotton boll. And the effect degree under low-nitrogen rate increased with blooming date postponing, which, to a great extent, lead to the reduction of capacity of photosynthetic product accumulation and transportation in the leaves subtending SB and AB, the decrease of relative fiber growth rate in cotton boll and the activity of key enzymes during the middle-later period of fiber development, and also the decline of cellulose speedily accumulating duration in cotton fiber and the fiber strength of SB and AB; On the contrary, the changes of nitrogen concentration and C/N under high-nitrogen rates were opposite to low-nitrogen rates, which may made negative effects on the distribution proportion of photosynthetic product to fiber, the key enzyme activities during the early-middle period of fiber development and the momentary rate of cellulose accumulation in PSB and SB fiber, resulted in significant fiber strength decreased in PSB and SB too. From above results, we suggested that source-sink relation could be optimized under the optimum-nitrogen rates, which promoted higher fiber strength formation in cotton bolls.
     4. Relationship between nitrogen concentration in the subtending leaf of cotton boll and fiber quality indices
     Based on the analysis of the response of LMA (leaf mass per unit leaf area) and nitrogen concentration (NM, nitrogen content per unit leaf mass; NA, nitrogen content per unit leaf area) in the subtending leaf of cotton bolls with different anthesis dates to nitrogen rates, the relationships between nitrogen concentration and fiber quality indices were firstly groped. The result showed that (1) NA in the subtending leaf of cotton boll contained both the information of LMA and NM, possessed the special sensitive characteristic in response to nitrogen rates and anthesis dates. It can reflect the increasing trends with anthesis date postponing and significant difference in nitrogen treatments; (2) With the average values of NA increasing, the changing trends of pivotal quality indices (length, strength, micronaire and uniformity) of cotton fiber according with the curve of parabola with peak value; (3) With anthesis date postponing, the difference of NA between low-nitrogen and optimum-nitrogen treatments enlarged gradually, on the contrary, the difference between high-nitrogen and optimum-nitrogen treatments diminished gradually, fiber strength and micronaire also showed similar trends between corresponding nitrogen treatments. NA in the subtending leaf of cotton boll was tightly related to fiber quality indices formation. As the corresponding relationships between NA and fiber indices were not affected by cotton varieties and ecological sites, we proposed that NA in the subtending leaf of cotton boll could be used as a practical physiologic index for timely monitoring nitrogen status for fiber quality in the future.
引文
[1]郭香墨,刘正德,罗云佳.我国面向21世纪棉花纤维品质改良[J].棉花学报,1999,11(6):321-325
    [2]张志刚,曾昭云,杨芳荃,等.对我国棉花纤维品质的探讨[J].作物研究,2002,5:258-261
    [3]Mackenzin A J, Van Schaik P H. Effects of nitrogen on yield, boll, and fiber properties of four varieties of irrigated cotton [J]. Agronomy,1963,55:345-347
    [4]Reddy K R, Koti S, Davidonis G H, et al. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield, and fiber quality [J]. Agroclimatology,2004,96:1148-1157
    [5]张文静,胡宏标,陈兵林,等.棉纤维加厚发育生理特性的基因型差异及对纤维比强度的影响[J].作物学报,2007,33(4):531-538
    [6]蒋光华,孟亚利,陈兵林,等.低温对棉纤维比强度形成的生理机制影响[J].植物生态学报,2006,30(2):335-343
    [7]蒋光华,周治国,陈兵林,等.棉株生理年龄对纤维加厚发育及纤维比强度形成的影响[J].中国农业科学,2006,39(2):265-273
    [8]王友华,陈兵林,卞海云,等.温度与棉株生理年龄的协同效应对棉纤维发育的影响[J].作物学报,2006,32(11):1671-1677
    [9]Ramsey J C, Berlin J D. Ultrastructural spects of early stages in cotton fiber elongation [J]. American Journal of Botany,1976,63(6):868-876
    [10]张天真,孙敬,潘家驹.陆地棉无絮棉突变体纤维初始发育的体外诱导[J].棉花学报,1992,(增刊):122-128
    [11]Joshi P C, Wadhwani A M, Johri B M. Morphological and embryological studies of Gossypium [J]. Proceedings of the National Institute of Science-India,1967,33:37-93
    [12]Beasley C A. Ovule culture:fundamental and pragmatic research for the cotton industry [M]. New York:Springer-Verlag,1977:160-178
    [13]杨佑明,徐楚年.棉纤维发育的分子生理机制[J].植物学通报,2003,20(1):1-9
    [14]董合忠,徐楚年,余炳生.陆地棉与海岛棉纤维发育的比较研究:Ⅱ.棉纤的伸长、加厚与纤维品质[J].北京农业大学学报,1990,16(2):137-141
    [15]柏长青.棉花胚珠培养的研究[D].北京农业大学硕士研究生毕业论文,1993
    [16]Ramsey J C, Berlin J D. Ultrastructure of early stages of cotton fiber differentiation [J]. Botanical Gazette,1976,137(1):11-19
    [17]Ferguson D L, Turley R B. Comparison of protein during cotton(Gossypium hirsutuml L.) fiber cell development with partial sequences of two proteins [J]. Agricultural Food Chemistry,1996,44: 4022-4027
    [18]Schuber A M, Benedict C R. Cotton fiber development kinetics of cell elongation and secondary wall thickening [J]. Crop Science,1973,13:704-709
    [19]Saxena I M, Brown R M, Dandekar T. Structure-function characterization of cellulose synthase: relationship to other glycosyltransferases [J]. Phytochemistry,2001,7(57):135-148
    [20]丁振乾.棉纤维发育的超微结构研究[D].南京农业大学硕士学位论文,2004
    [21]杜雄明,潘家驹,汪若海.棉纤维细胞分化和发育[J].棉花学报,2000,12(4):212-217
    [22]Basra A S, Malik C P. Development of the cotton fiber [J]. International Review of Cytology,1984, 89:65-112
    [23]Ruan Y L, Chourey P S, Delmer D P, et al. The differential expression of sucrose synthase in relation to diverse patterns of carbon partitioning in developing cotton seed [J]. Plant Physiology, 1997,115:375-385
    [24]Haigler C H, Ivanova-Datcheva M, Hogan P S, et al. Carbon partitioning to cellulose synthesis [J]. Plant Molecular Biology,2001,47:29-51
    [25]Benedict C R. In corporation of 14 C-Photosynthate into developing cotton bolls [J]. Crop Science, 1973,3:88-91
    [26]Deborah P, Delmer C H. The Regulation of Metabolic Flux to Cellulose, a Major Sink for Carbon in Plants [J]. Metabolic Engineering,2002,4:22-28
    [27]Susan M, Carnachan P J. Polysaccharide compositions of primary cell walls of the palms Phoenix canariensis and Rhopalostylis sapida [J]. Plant Physiology Biochemistry,2000,38:699-708
    [28]Ryser U. Cell wall biosynthesis in differentiating cotton fibers [J]. Europe Journal Cell Biology, 1985,39:236-256
    [29]Maureen M C, Delemer D P. Change in biochemical composition of the cell wall of the cotton fiber during development [J]. Plant Physiology,1977,59:1088-1097
    [30]Hsieh Y L, Hu X P, Wang A J. Single fiber strength variations of development cotton fiber strength and structure of G-hirsutum and G-barbedense [J]. Textile Research Journal,2000,70(8):682-690
    [31]刘继华,尹承佾,孙清荣,等.棉花纤维素累积与高强纤维的形成[J].核农学报,1991,5(4):205-209
    [32]刘继华,尹承佾,于凤英,等.棉花纤维强度的形成机理与改良途径[J].中国农业科学,1994,27(5):10-16
    [33]束红梅,陈兵林,王友华,等.棉花纤维素累积特性的基因型差异及与纤维比强度形成的关系[J]_作物学报,2007,33(6):921-926
    [34]Kimura S, Kondo T. Recent progress in cellulose biosynthesis [J]. Journal of Plant Research,2002, 115:297-302
    [35]朱乾浩,汪若海.高等植物纤维素合成的最新研究进展[J].生命科学,2000,12(5):210-213
    [36]Brown R M, Saxena I M, Kudlicka K. Cellulose biosynthesis in higher plants [J]. Trends in Plant Science,1996,1(5):149-156
    [37]Doblin M S, Kurek I, Jacok-wilk D, et al. Drought effects on the water relations of cotton fruits, bracts, and leaves during ontogeny [J]. Plant and Cell Physiology,2002,43(12):1407-1420
    [38]Ruan Y L, Chourey P S. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds [J]. Plant Physiology,1998,118:399-406
    [39]Inouhe M, Nevins D. Regulation of cell wall glucanase activities by non-enzymic proteins in maize coleoptiles [J]. International Journal of Biological Macromolecules,1997,21(1):15-20
    [40]Maltby D, Carpita N C, Montezinos D, et al. β-1,3-Glucan in developing cotton fibers [J]. Plant Physiology,1979,63:1158-1164
    [41]Ruan Y L, Xu S M, White R, et al. Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover [J]. Plant Physiology,2004,136(4):4104-4113
    [42]Salnikov V V, Grimson M J, Seagull R W, et al. Localization of sucrose synthase and callose in freeze-substituted secondary secondary-wall-stage cotton fibers [J]. Protoplasma,2003,221(3-4): 175-184
    [43]Shimizu Y, Aotsuka S, Hasegawa O, et al. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells [J]. Plant Cell Physiology,1997,38:375-378
    [44]Tucker M R, Paech N A, Willemse M T, et al. Dynamics of callose deposition and P-1,3-glucanase expression during reproductive events in sexual and apomictic Hieracium [J]. Planta,2001,212(4): 487-498
    [45]Stasinopoulos S J, Fisher P R, Stone B A, et al. Detection of two loci involved in (1→3)-β-glucan (curdlan) biosynthesis by Agrobacterium sp. ATCC31749, and comparative equence analysis of the putative curdlan synthase gene [J]. Glycobiology,1999,9(1):31-41
    [46]Salnikov V V, Grimson M J, Delmer D, et al. Sucrose synthase localize to cellulose synthesis sites in tracheary elements [J]. Phytochemistry,2001,57:823-833
    [47]Elling L. Effects of metal ions on sucrose synthase from rice grains-a study on enzyme inhibition and enzyme topography [J]. Glycobiology,1995,5(2):201-206
    [48]Amor Y, Haigler C H, Johnson S. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants [J]. Plant Biology,1995,92(2): 9353-9357
    [49]Ruan Y L, Lewellyn D J, Furbank R T. Suppression of Sucrose Synthase Gene expression Represses Cotton Fiber Cell Initiation, Elongation, and Seed Development [J]. The Plant Cell,2003, 15:952-964
    [50]Tang G Q, Luscher M, Sturm A. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning [J]. Plant Cell,1999,11: 177-189
    [51]Konishi T, Ohmiyal Y, Hayashi T. Evidence that sucrose loaded into the phloem of a poplar leaf is used directly by sucrose synthase associated with various-glucan synthases in the stem [J]. Plant Physiology,2004,134:1146-1152
    [52]Winter H, Huber J L, Huber S C. Membrane association of sucrose synthase:changes during the graviresponse and possible control by protein phosphorylation [J]. Federation of European Biochemical Societies,1997,420:151-155
    [53]Huber S C, Huber J L. Role and regulation sucrose phosphate in higher plants [J]. Annual Review Plant Molecular Biology,1996,47:431-445
    [54]Martin L K. Cool temperature induced changes in metabolism related to cellulose in cotton fibers [M]. Lubbock, T X:Texas Tech University Press,1999:228
    [55]Delmer D P. Cellulose biosynthesis in developing cotton fibers [M]. New York:Food Products Press,1999:85-112
    [56]蒋建雄,张天真,王志成,等.棉纤维细胞次生壁纤维素合成的分子生物学研究进展[J].高技术通讯,2004,4:103-106
    [57]Michelle B V, Haigler C H. Sucrose phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems [J]. Plant Physiology,2001,127(3):1234-1242
    [58]Haigler C H, Holady A S, Wu C, et al. Transgenic cotton over-expressing sucrose phosphate synthase produces higher quality fibers with increase cellulose content and has enhanced seed-cotton yield [C]. Proceedings Beltwide Cotton Conferences,2000
    [59]刘凌霄,沈法富,范作晓,等.棉花不同品种叶片和纤维中蔗糖磷酸合成酶活性变化及其与糖含量的关系[J].中国农学通报,2006,22(4):252-254
    [60]司丽珍,储成才.植物中蔗糖酶的研究进展[J].高技术通讯,2002,8:101-105
    [61]Klann E M, Hall B, Bennett A B. Antisense acid invertase (INV1) gene alters soluble sugar composition and size in transgenic tomato fruit [J]. Plant Physiology,1996,112:1321-1330
    [62]Sturm A, Tang G Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning [J]. Trends in Plant Science (Reviews),1999,4:401-407
    [63]Bachelier C, Granam J, Machray G, et al. Integration of an invertase gene to control sucrose metabolism in strawberry cultivars [J]. Acta Horticul,1997,439:161-163
    [64]Gao Z, Petreikov M, Zamski E, et al. Carbohydrate metabolism during early fruit development of sweet melon (Cucumis melo) [J]. Physiology Plant,1999,106:1-8
    [65]Hedly P E, Machray G C, Davies H V, et al. Potato (Solanum tuberosum) invertase-encoding cDNA and their differential expression [J]. Gene,1994,145:211-214
    [66]Xu J, Avigne W T, Mccarty D R. Asimilar dichotomy of sugar modulation and development expression affects both paths of sucrose metabolism [J]. Plant Cell,1996,8:1202-1220
    [67]刘慧英,朱祝军.转化酶在高等植物蔗糖代谢中的作用研究进展[J].植物学通报,2002,19(6):666-674
    [68]Quoc B N, Foyer C H. A role for 'futile cycles'involving invertase and sucrose synthase in sucrose metabolism of tomato fruit [J]. Journal of Experimental Botany,2001,52:881-889
    [69]Pillonel C H, Buchala A J, Meier H. Glucan synthesis by intact cotton fibers fed with different precursors at the stages of primary and secondary wall formation [J]. Planta,1980,149:306-312
    [70]Masahiro I, Donald N. Regulation of cell wall glucanase activities by non-enzymic Proteins in maize coleoptiles [J]. International Journal of Biological Macromolecules,1997,21:15-20
    [71]李春秀,齐力旺,王建华,等.植物纤维素合成酶基因和纤维素的生物合成[J].生物技术通报,2005,4:5-11
    [72]Saxena I M, Lin F C, Brown R M, et al. Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum [J]. Plant Molecular Biology,1990,15(5):673-683
    [73]Wong H C, Fear A L, Calhoon R D, et al. Geneticorganization and regulation of the cellulose synthase operon in Acetobacter xylinum [J]. Proceedings of the National Academy of Science of the United States of America,1990,87(20):8130-8134
    [74]Saxena I M, Brown R M. Cellulose synthases and related enzymes [J]. Current Opinion in Plant Biology,2000,3(6):523-531
    [75]Cutler S, Somerville C. Cellulose synthesis:Cloning in silico [J]. Current Biology,1997,7(2): 108-111
    [76]Pear J R, Kawagoe Y, Schreckengost W E. Higher plants contain horn clogs of the bacterial CelA genes encoding the catalytic subunit of cellulose synthase [J]. Proceedings of the National Academy of Science of the United States of America,1996,93(22):12637-12642
    [77]Ferguson C, Teeri T T, Siika-aho M, et al. Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum [J]. Planta,1998,206(3):452-460
    [78]Delmer D P. Cellulose biosynthesis:exciting times for a difficult field of study [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1999,50(1):245-276
    [79]Douglas C M, Foor F, Marrinan J A, et al. The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-β-D-glucan synthase [J]. Proceedings of the National Academy of Science of the United States of America,1994,91(26): 12907-12911
    [80]高玉龙,郭旺珍,王磊,等.一个棉花β-1,3-葡聚糖酶基因全长cDNA的克隆与特征分析[J].作物学报,2007,33(8):1310-1315
    [81]蓝海燕,田颖川,王长海,等.表达β-1,3-葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌病的研究[J].遗传学报,2000,27(1):70-77
    [82]Jongeijk E, Tigelaar H, Roekel J S C. Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants [J]. Euphytica,1995,85(1-3):173-180
    [83]黄鲲,刘曼西,程明愚.病原真菌细胞壁对棉花β-1,3-葡聚糖酶的诱导[J].华中理工大学学报,1996,26(7):103-106
    [84]Daniel J. Expansive growth of plant cell walls [J]. Plant Physiology and Biochemistry,2000, 38(1-2):109-124
    [85]Hega K, Iino M. The short-term growth stimulation induced by external supply of IAA in internodes of intact pea seedlings [J]. Australian Journal of Plant Physiology,1997,24(6):215-226
    [86]单世华,施培,孙学振,等.温度影响棉纤维发育研究进展[J].山东农业大学学报(自然科学版),2002,33(3):395-398
    [87]Walti M, Roulin S, Feller U. Effects of pH, light and temperature on (1-3,1-4)-β-glucanase stability in wheat leaves [J]. Plant Physiology and Biochemistry,2002,40(4):363-371
    [88]张文静,胡宏标,王友华,等.棉纤维发育相关酶活性的基因型差异与纤维比强度的关系[J].中国农业科学,2007,40(10):2177-2184
    [89]胡宏标,张文静,王友华,等.棉纤维加厚发育相关物质对纤维比强度的影响[J].西北植物学报,2007,27(4):726-733
    [90]朱绍琳,李大庆,华国雄,等.江苏不同生态棉区与棉花纤维品质的研究[J].棉花学报,1991,3(1):53-62
    [91]Pettigrew W T. Environmental effects on cotton fiber carbohydrate concentration and quality [J]. Crop Science,2001,41:1108-1113
    [92]单世华,孙学振,周治国,等.温度对棉纤维品质性状的影响[J].华北农学报,2000,15(4):120-125
    [93]Chris A B, Smith C W. Fiber Length Development in Near-Long Staple Upland Cotton [J]. Crop Science,2004,44(5):1553-1559
    [94]徐楚年.温度对棉纤维发育效应的研究[c].中国棉花学会第十次学术研讨会论文集,1992
    [95]赵都利,许玉璋.大田条件下发育棉铃纤维中的纤维素累积及其与温度关系的研究[J].棉花学报,1985,1:55-61
    [96]马富裕,曹卫星,李少昆,等.棉花纤维品质与气象因子的定量分析[J].应用生态学报,2005,16(11):2102-2107
    [97]Johnson R M, Sassenrath-cole G F, Bradow J M. Prediction of cotton fiber maturity from environmental parameters [C]. Process of Beltwide Cotton Conference,1997
    [98]韩迎春,毛树春,王香河,等.温光和种植制度对棉花早熟性和纤维品质的影响[J]_棉花学报,2004,16(5):301-306
    [99]蒋光华.低温和棉株生理年龄对棉纤维加厚发育及纤维比强度的影响[D].南京农业大学硕士学位论文,2005
    [100]王庆材,王振林,宋宪亮,等.花铃期遮荫对棉纤维品质的影响[J].应用生态学报,2005,16(8):1465-1468
    [101]韩慧君.气候生态因素对棉花产量与纤维品质的影响[J].中国农业科学,1991,24(5):23-29
    [102]Pettigrew W T. Low light condition compromise the quality of fiber produced [C]. Process Beltwide Cotton Conference,1996
    [103]Zhao D, Oosterhuis D M. Cotton responses to shade at different growth stages:growth, lint yield and fibre quality [J]. Experimental Agriculture,2000,36:27-39
    [104]周治国,孟亚利,施培,等.日照时数时间分布对麦套棉铃主要品质性状的影响[J].中国农业科学,1999,32(1):40-45
    [105]Kasperbauer M J. Cotton fiber length is affected by far-red light impinging on developing bolls [J]. Crop Science,2000,40:1673-1678
    [106]王庆材,孙学振,宋宪亮,等.不同棉铃发育时期遮荫对棉纤维品质性状的影响[J].作物学报,2006,32(5):671-675
    [107]Hearn A B. OZCOT:A simulation model for cotton crop management [J]. Agricultural Systems, 1994,44:257-299
    [108]Rabadia V S, Thaker V S, Singh Y D. Relationship between water content and growth of seed and fibre of three cotton genotypes [J]. Agronomy & Crop Science,1999,183:255-261
    [109]Hulugalle N R, Nehl D B, Weaver T B. Soil properties, and cotton growth, yield and fibre quality in three cotton-based cropping systems [J]. Soil & Tillage Research,2004,75:131-141
    [110]杨子荣,徐楚年,寿元,等.水分胁迫对棉花纤维细胞分化的超微结构及品质的影响[J].华南农业大学学报(增刊),1992:54-56
    [111]Stewart J M. Integrated developmental events and their response to environment in cotton bolls [C]. Proceedings Beltwide Cotton Conferences,1980
    [112]邓天宏,朱自玺,方文松,等.土壤水分对棉花蕾铃脱落和纤维品质的影响[J]_中国农业气象,1998,19(3):8-13
    [113]李乐农,彭克勤,孙福增,等.洪涝对棉花产量及其品质的影响[J].作物学报,1999,25(1):109-115
    [114]Sadras V O, Bange M P, Milroy S P. Reproductive allocation of cotton in response to plant and environmental factors [J]. Annals of Botany,1997,80:75-81
    [115]Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition [J]. European Journal Agronomy,2006,24:282-290
    [116]Tewolde H, Fernandez C J. Fiber quality response of Pima cotton to nitrogen and phosphorus deficiency [J]. Plant Nutrition,2003,26:223-235
    [117]Ebelhar M W, Welch R A. Nitrogen rates and mepiquat chloride effects on cotton lint yield and quality [C]. Proceedings of Beltwide Cotton Conferences,1996
    [118]张旺锋,王振林,余松烈,等.氮肥对新疆高产棉花群体光合性能和产量形成的影响[J].作物学报,2002,28(6):789-796
    [119]Girma K, Teal R K, Freeman K W, et al. Cotton lint yield and quality as affected by applications of N, P, and K Fertilizers [J]. The Journal of Cotton Science,2007,11:12-19
    [120]Boquet D J, Breitenbeck G A, Coco A B, et al. Fertilizer nitrogen rates to optimize cotton yield and fibre quality [J]. Louisiana Agriculture,1991,35:10-11
    [121]Rochester I J, Peoples M B, Constable G A. Estimation of the N fertilizer requirement of cotton grown after legume crops [J]. Field Crops Research,2001,70:43-53
    [122]周青,周桂生,封超年,等.氮磷钾配比对转基因抗虫棉生育特性、产量及品质的影响[J].棉花学报,2005,17(4):253-255
    [123]Bassett D M, Andorson W D, Werkhoven C H E. Dry matter production and nutrient uptake in irrigated cotton [J]. Agronomy Journal,1970,62:299-303
    [124]郭英,孙学振,宋宪亮,等.钾素对棉花生长发育和纤维品质形成影响的研究[J].山东农业 大学学报(自然科学版),2006,37(1):141-144
    [125]Cassman K G, Kerby T A, Roberts B A, et al. Potassium nutrition effects on lint yield and fiber quality of Acala cotton [J]. Crop Science,1990,30:672-676
    [126]Pettigrew W T. Relationships between insufficient potassium and crop maturity in cotton [J]. Agronomy Journal,2003,95(5):1323-1331
    [127]姜存仓,高祥照,王运华,等.不同钾效率棉花基因型对低钾胁迫的反应[J].棉花学报,2006,18(2):109-114
    [128]王学德,俞碧霞,黄秀国,等.影响棉花纤维品质的土壤养成分[J].棉花学报,1993,5(2):45-48
    [129]张炎,王讲利,李磐,等.新疆棉田土壤养分限制因子的系统研究[J].水土保持学报,2005,19(6):57-60
    [130]Constable G A, Hearn A B. Irrigation for crops in a subhumid environment. VI. Effect of irrigation and nitrogen fertilizer on growth, yield and quality of cotton [J]. Irrigation Science,1981,3:17-28
    [131]Jambunathan L R, Mehta N P, Sanandia C J, et al. Study of the effects of the application of nitrogen, phosphorus and potash on the economic and quality characteristics of the cotton-Hybrid [J]. Journal of Indian Society Cotton Improvement,1986,11:26-29
    [132]Singh V, Nagwekar S N. Effect of weed control and nitrogen levels on quality characters in cotton [J]. Indian Society Cotton Improvement,1989,14:60-64
    [133]Sawan Z M, Mahmoud M H, El-guibali A H. Response of Yield, Yield Components, and Fiber Properties of Egyptian Cotton (Gossypium barbadense L.) to Nitrogen Fertilization and Foliar-applied Potassium and Mepiquat Chloride [J]. The Journal of Cotton Science,2006,10: 224-234
    [134]孙红春,李存东,周彦珍.不同氮素水平对棉花功能叶生理特性、植株性状及产量构成的影响[J].河北农业大学学报,2005,28(6):9-14
    [135]Gerik T J, Oosterhuis D M, Torbert H A. Managing cotton nitrogen supply [J]. Advance in Agronomy,1998,64:115-147
    [136]Boquet D J, Breitenbeck G A. Nitrogen rate effect on partitioning of nitrogen and dry matter by cotton [J]. Crop Science,2000,40:1685-1693
    [137]Blaise D, Singh J V, Bonde A N, et al. Effects of farmyard manure and fertilzers on yield, fiber quality and nutrient balance of rainfed cotton(Gossypium hirsutum) [J]. Bioresource Technology, 2005,96:345-349
    [138]Bauer P J, Roof M E. Nitrogen, aldicarb, and cover crop effects on cotton yield and fiber properties [J]. Agronomy Journal,2004,96:369-376
    [139]秦晓东,戴廷波,荆奇,等.冬小麦叶片氮含量时空分布及其与植株氮营养状况的关系[J].作物学报,2006,32(11):1717-1722
    [140]张亚杰,冯玉龙.不同光强下生长的两种榕树叶片光合能力与比叶重、氮含量及分配的关系[J].植物生理与分子生物学学报,2004,30(3):269-276
    [141]郑淑霞,上官周平.不同功能型植物光合特性及其与叶氮含量、比叶重的关系[J].生态学报,2007,27(1):171-181
    [142]Evans J R. Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy I. Canopy characteristics [J]. Australian Journal of Plant Physiology,1990,20:55-67
    [143]Bondada B R, Osterhuis D M, Norman R J. Canopy photosynthesis growth yield and boll accumulation under nitrogen stress in cotton [J]. Crop Science,1996,36(1):127-133
    [144]王绍华,刘胜环,王强盛,等.水稻产量形成与叶片含氮量及叶色的关系[J].南京农业大学学报,2002,25(4):1-5
    [145]Shiratsuchi H, Yamagishi T, Ishii R. Leaf nitrogen distribution to maximize the canopy photosynthesis in rice [J]. Field Crop Research,2006,95:291-304
    [146]王纪华,黄文江,赵春江,等.利用光谱反射率估算叶片生化组分和籽粒品质指标研究[J].遥感学报,2003,7(4):277-284
    [147]薛晓萍,王建国,郭文琦,等.棉花花后果枝叶生物量和氮累积特征及临界氮浓度稀释模型的研究[J].作物学报,2007,33(4):669-676
    [148]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000:307
    [149]卞海云,陈兵林,周治国,等.低温条件下外源生理活性物质对棉铃发育的影响[J].西北植物学报,2005,25(9):1785-1790
    [150]范术丽,许玉璋,张朝军.氮磷钾对棉花伏桃发育的影响[J].棉花学报,1999,11(1):24-30
    [151]Tewolde H, Fernandez C J, Foss D C. Maturity and lint yield of nitrogen and phosphorus deficient Pima cotton [J]. Agronomy Journal,1994,86:303-309
    [152]Sonal J G, Vrinda S T. Physiological and biochemical changes associated with cotton fiber development. K.Role of IAA and PAA [J]. Field Crops Research,2002,77(2-3):127-136
    [153]Kuchner O, Arnold F H. Directed evolution of enzyme catalyst [J]. Trends in Biotechnology,1997, 15(12):523-530
    [154]杜雄明,潘家驹.影响棉纤维分化和发育的因素[J].生命科学,2000,12(4):176-180
    [155]Gokani S J, Thaker V S. Physiological and biochemical changes associated with cotton fiber development IX:Role of IAA and PAA [J]. Field Crops Research,2002,77(2-3):127-136
    [156]卞海云,张文静,陈兵林,等.低温条件下外源物质对棉纤维比强度的影响[J].棉花学报,2006,18(3):145-149
    [157]孟兆江,卞新民,刘安能,等.调亏灌溉对棉花生长发育及其产量和品质的影响[J].棉花学报,2008,20(1):39-44
    [158]黄骏麒.中国棉作学[M].北京:中国农业科技出版社,1998
    [159]薛晓萍,王以琳,郭文琦,等.基于临界氮浓度稀释模型的棉花开花后氮动态需求定量诊断研究[J].作物学报,2006,32(10):1579-1585
    [160]孙红春,冯丽肖,谢志霞,等.不同氮素水平对棉花不同部位-铃叶系统生理特性及铃重空间分布的影响[J].中国农业科学,2007,40(8):1638-1645
    [161]薛晓萍,周治国,张丽娟,等.棉花花后临界氮浓度稀释模型的建立及在施氮量调控中的应用[J].生态学报,2006,26(6):1781-1791
    [1]Singh V, Nagwekar S N. Effect of weed control and nitrogen levels on quality characters in cotton [J]. Indian Society Cotton Improvement,1989,14:60-64
    [2]Bauer P J, Roof M E. Nitrogen, aldicarb, and cover crop effects on cotton yield and fiber properties [J]. Agronomy Journal,2004,96:369-376
    [3]Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition [J]. European Journal Agronomy,2006,24:282-290
    [4]Bauer B J, Camberato J J, Roach S H. Cotton yield and fiber quality response to green manures and nitrogen [J]. Agronomy Journal,1993,85:1019-1023
    [5]Sawan Z M, Mahmoud M H, Momtaz O A. Influence of nitrogen fertilization and foliar application of plant growth retardants and zinc on quantitative and qualitative properties of Egyptian cotton(Gossypium barbadense L. var. Giza 75) [J]. Journal of Agriculture Food Chemistry,1997,45: 3331-3336
    [6]王绍华,刘胜环,王强盛,等.水稻产量形成与叶片含氮量及叶色的关系[J].南京农业大学学报,2002,25(4):1-5
    [7]王纪华,黄文江,赵春江,等.利用光谱反射率估算叶片生化组分和籽粒品质指标研[J].遥感学报,2003,7(4):277-284
    [8]Shiratsuchi H, Yamagishi T, Ishii R. Leaf nitrogen distribution to maximize the canopy photosynthesis in rice [J]. Field Crop Research,2006,95:291-304
    [9]秦晓东,戴廷波,荆奇,等.冬小麦叶片氮含量时空分布及其与植株氮营养状况的关系[J].作物学报,2006,32(11):1717-1722
    [10]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000
    [11]孙红春,冯丽肖,谢志霞,等.不同氮素水平对棉花不同部位—铃叶系统生理特性及铃重空间分布的影响[J].中国农业科学,2007,40(8):1638-1645
    [12]薛晓萍,王建国,郭文琦,等.棉花花后果枝叶生物量和氮累积特征及临界氮浓度稀释模型的研究[J].作物学报,2007,33(4):669-676
    [13]Williamson R E, Burn J E, Hocart C H. Towards the mechanism of cellulose synthesis [J]. Trends Plant Science,2002,7 (10):461-467
    [14]束红梅,陈兵林,王友华,等.棉花纤维素累积特性的基因型差异及与纤维比强度形成的关系[J].作物学报.2007,33(6):921-926
    [15]Delmer D P, Haigler C H. The regulation of metabolic flux to cellulose, a major sink for carbon in plants [J]. Metabolism Engineer,2002,4(1):22-28
    [16]Haigler C H, Datcheva M I, Hogan P S, et al. Carbon partitioning to cellulose synthesis [J]. Plant Molecule Biology,2001,47:29-51
    [17]Amor Y, Haigler C H, Johnson S. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plant [J]. Plant Biology,1995,92:9353-9357
    [18]Koch K. Sucrose metabolism:regulatory mechanisms and pivotal roles in sugar sensing and plant development [J]. Current Opinion Plant Biology,2004,7:235-246
    [19]Winter H, Huber S C. Regulation of sucrose metabolism in higher plants:localization and regulation of activity of key enzymes. Critical reviews in plant sciences,2000,19(1):31-67
    [20]Michelle Babb V, Haigler C H. Sucrose-phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems [J]. Plant Physiology,2001,127 (3):1234-1242
    [21]张智猛,戴良香,胡昌浩,等.氮素对玉米淀粉累积及相关酶活性的影响[J].作物学报,2005,31(7):956-962
    [22]Faleiros R R S, Seebauer J R, Below F E. Nutritionally induced changes in endosperm of shrunken21 and brittle22 maize kernels grown in vitrol [J]. Crop Science,1996,36(4):947-954
    [23]姜东,于振文,李永庚,等.施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积累的影响[J].中国农业科学,2002,35(2):157-162
    [24]胡宏标,张文静,王友华,等.棉纤维加厚发育相关物质对纤维比强度的影响[J].西北植物学报,2007,27(4):726-733
    [25]李酉开.土壤农业化学常规分析方法[M].北京:科学出版社,1983
    [26]上海植物生理研究所.现代植物生理学实验指南[M].上海:科学出版社,1999
    [27]Konishi T, Nakai T, Sakai F, et al. Formation of callose from sucrose in cotton fiber microsomal membranes [J]. Japan Wood Research Society,2001,47:331-335
    [28]Hikosaka K. Leaf canopy as a dynamic system:ecophysiology and optimality in leaf turnover [J]. Annual Botany,2005,95:521-533
    [29]刘继华,尹承佾,孙清荣,等.棉花纤维素累积与高强纤维的形成[J].核农学报,1991,5(4):205-209
    [30]张文静,胡宏标,陈兵林,等.棉纤维加厚发育生理特性的基因型差异及对纤维比强度的影响[J].作物学报,2007,33(4):531-538
    [1]薛晓萍,周治国,张丽娟,等.棉花花后临界氮浓度稀释模型的建立及在施氮量调控中的应用[J].生态学报,2006,26(6):1781-1791
    [2]Bauer P J, Roof M E. Nitrogen, aldicarb, and cover crop effects on cotton yield and fiber properties [J]. Agronomy Journal,2004,96:369-376
    [3]Singh V, Nagwekar S N. Effect of weed control and nitrogen levels on quality characters in cotton [J]. Indian Society Cotton Improvement,1989,14:60-64
    [4]Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition [J]. European Journal Agronomy,2006,24:282-290
    [5]束红梅,陈兵林,王友华,等.棉花纤维素累积特性的基因型差异及与纤维比强度形成的关系[J].作物学报,2007,33(6):921-926
    [6]张文静,胡宏标,王友华,等.棉纤维发育相关酶活性的基因型差异与纤维比强度的关系[J].中国农业科学,2007,40(10):2177-2184
    [7]Haigler C H, Datcheva M I, Hogan P S, et al. Carbon partitioning to cellulose synthesis [J]. Plant Molecule Biology,2001,47:29-51
    [8]Amor Y, Haigler C H, Johnson S. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plant [J]. Plant Biology,1995,92:9353-9357
    [9]Shimizu Y, Aotsuka S, Hasegawa O, et al. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells [J]. Plant Cell Physiology,1997,38:375-378
    [10]Salnikov V V, Grimson M J, Seagull R W, et al. Localization of sucrose synthase and callose in freeze-substituted secondary secondary-wall-stage cotton fibers [J]. Protoplasma,2003,221(3-4): 175-184
    [11]Ruan Y L, Chourey P S. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds [J]. Plant Physiology,1998,118:399-406
    [12]蒋光华,周治国,陈兵林,等.棉株生理年龄对纤维加厚发育及纤维比强度形成的影响[J].中国农业科学,2006,39(2):265-273
    [13]蒋光华,孟亚利,陈兵林,等.低温对棉纤维比强度形成的生理机制影响[J].植物生态学报,2006,30(2):335-343
    [14]卞海云,王友华,陈兵林,等.低温条件下相关关键酶活性对棉纤维比强度形成的影响[J].中国农业科学,2008,41(4):1235-1241
    [15]Cazetta J O, Seebauer J R, Below F E. Sucrose and nitrogen supplies regulate growth of maize kernels [J]. Annals of Botany,1999,84:747-754
    [16]姜东,于振文,李永庚,等.施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积累的影响[J].中国农业科学,2002,35(2):157-162
    [17]Yang J C, Zhang J H, Wang Z Q, et al. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling [J]. Field Corps Research,2003,81: 69-81
    [18]张智猛,戴良香,胡昌浩,等.氮素对玉米淀粉累积及相关酶活性的影响[J].作物学报,2005,31(7):956-962
    [19]Meier H, Buchs L, Buchala A J, et al. (1→3)-β-D-Glucan (callose) is a probable intermediate in biosynthesis of cellulose of cotton fibres [J]. Nature,1981,289(5800):821-822
    [20]Tucker M R, Paech N A, Willemse M T M, et al. Dynamics of callose deposition and β-1, 3-glucanase expression during reproductive events in sexual and apomictic Hieracium [J]. Planta, 2001,212:487-498
    [21]Foyer C H, Noctor G, Lelandais M. Short-term effects of nitrate, nitrate and ammonium phosphrylation, net CO2 assimilation and amino acid biosynthesis in maize [J]. Planta,1994,192: 211-220
    [22]Deng M D, Moureaux T, Cherel I, et al. Effects of nitrogen metabolites on the regulation and circadian expression of tobacco nitrate reductase [J]. Plant Physiology and Biochemistry,1991,29: 239-247
    [23]熊君,王海斌,方长旬,等.不同氮素供应下水稻酚类物质代谢关键酶基因差异表达[J].植物生理与分子生物学学报,2007,33(5):387-394
    [24]王海斌,熊君,方长旬,等.氮素胁迫下强、弱化感水稻萜类代谢途径中关键酶基因差异表达的FQ-PCR分析[J].作物学报,2007,33(8):1329-1334
    [25]武耀廷,刘进元.一种高效提取棉花不同组织总RNA的热硼酸改良法[J].棉花学报,2004,16(2):67-7]
    [26]朱一超,张天真,贺亚军,等.棉花纤维伸长发育期的基因表达分析[J].作物学报,2006,32(11):1649-1655
    [27]李合生.植物生理生长实验原理和技术[M].高等教育出版社,2000
    [28]Konishi T, Nakai T, Saka F, et al. Formation of callose from sucrose in cotton fiber microsomal membranes [J]. Japan Wood Research Society,2001,47:331-335
    [29]张文静,胡宏标,陈兵林,等.棉纤维加厚发育生理特性的基因型差异及对纤维比强度的影响[J].作物学报,2007,33(4):531-538
    [30]王友华,陈兵林,卞海云,等.温度与棉株生理年龄的协同效应对棉纤维发育的影响[J].作物学报,2006,32(11):1671-1677
    [31]Saikia R, Singh B P, Kumar R, et al. Detection of pathogenesis-related proteins-chitinase and β-1, 3-glucanase in induced chickpea [J]. Current Science,2005,89(4):659-663
    [32]Bokshi A I, Morrisa S C, Deverall B J. Effects of benzothiadiazole and acetylsalicylic acid on β-1,3-glucanase activity and disease resistance in potato [J]. Plant Pathology,2003,52(1):22-27
    [1]孙红春,冯丽肖,谢志霞,等.不同氮素水平对棉花不同部位-铃叶系统生理特性及铃重空间分布的影响[J].中国农业科学,2007,40(8):1638-1645
    [2]刘连涛,李存东,孙红春,等.氮素营养水平对棉花不同部位叶片衰老的生理效应[J].植物营养与肥料学报,2007,13(5):910-914
    [3]张祥,张丽,王书红,等.棉花源库调节对铃叶光合产物运输分配的影响[J].作物学报,2007,33(5):843-848
    [4]张文静,胡宏标,陈兵林,等.棉铃对位叶生理特性的基因型差异及其与铃重形成的关系[J].棉花学报,2007,19(4):296-303
    [5]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000:307
    [6]周桂生,陈德华,吴云康.施肥和化控对高产棉田叶源活性和棉铃发育的调节[J].棉花学报,2001,13(6):356-360
    [7]屈卫群,王绍华,陈兵林,等.棉花主茎叶SPAD值与氮素营养诊断研究[J].作物学报,2007,33(6):1010-1017
    [8]Bondada B R, Osterhuis D M, Norman R J. Canopy photosynthesis growth yield and boll accumulation under nitrogen stress in cotton [J]. Crop Science,1996,36(1):127-133
    [9]Evans J R. Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy I. Canopy characteristics [J]. Australian Journal of Plant Physiology,1990,20:55-67
    [10]张旺锋,勾玲,王振林,等.氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响[J].中国农业科学,2003,36(8):893-898
    [11]王本宣,陈布圣.不同氮肥水平和密度下的棉花群体光合速率的探讨[J].华中农业大学学报,1989,8(3):213-217
    [12]孙红春,李存东,周彦珍.不同氮素水平对棉花功能叶生理特性、植株性状及产量构成的影响 [J].河北农业大学学报,2005,28(6):9-14
    [13]Zhao D L, Oosterhuis D M. Nitrogen application effect on leaf photosynthesis, nonstructural carbohydrate concentrations and yield of field-growth cotton [C]. Proceedings of the Cotton Research Meeting,2000
    [14]邬飞波,成灿土,许馥华.氮素营养对短季棉生理代谢和产量的影响[J].浙江农业大学学报,1998,24(3):241-247
    [15]李文才,林振武,汤玉玮.硝酸还原酶的研究-V.棉花硝酸还原酶活力与硝态氮含量的关系[J].作物学报,1983,9:93-97
    [16]Fridovich I. The biology of oxygen radicals [J]. Science,1978,201:875-880
    [17]阎成士,李德全,张建华.植物叶片衰老与氧化胁迫[J].植物学通报,1999,16(4):398-404
    [18]王宝山.生物自由基与植物膜伤害[J].植物生理学通讯,1988,2:12-16
    [19]Huang Z A, Jiang D A, Yang Y, et al. Effects of nitrogen deficiency on gas exchange, chlorophy Ⅱ fluorescence, and antioxidant enzymes in leaves of rice plants [J]. Photosynthetica,2004,42(3): 357-364
    [20]张立新,李生秀.氮、钾、甜菜碱对水分胁迫下夏玉米叶片膜脂过氧化和保护酶活性的影响[J].作物学报,2007,33(3):482-490
    [21]何萍,金继运.氮钾营养对春玉米叶片衰老过程中激素变化与活性氧化谢的影响[J].植物营养与肥料学报,1999,5(4):289-296
    [22]曹翠玲,李生秀,张占平.氮素形态对小麦生长中后期保护酶等生理特性的影响[J].土壤通报,2003,34(4):295-298
    [23]莫亿伟,王忠,梁国斌,等.施氮处理对水稻子代乳苗素质的影响[J].作物学报,2004,30(3):227-231
    [24]刘祖琪,张石诚.植物抗逆生理学[M].北京:中国农业出版社,1994:101-111
    [25]薛晓萍,周治国,张丽娟,等.棉花花后临界氮浓度稀释模型的建立及在施氮量调控中的应用[J].生态学报,2006,26(6):1781-1791
    [26]李合生.植物生理生长实验原理和技术[M].北京:高等教育出版社,2000:195-197
    [27]Osaki M, Shinano T. Plant growth based on interrelation between carbon and nitrogen translocation from leaves [J]. Photosynthetica,2001,39(2):197-203
    [28]彭长连,林植芳,林桂珠,等.人为干扰对亚热带森林木本植物叶片抗氧化能力的影响[J].生态学报,1998,18(1):101-106
    [29]何萍,金继运,林葆.氮肥用量对春玉米叶片衰老的影响及其机理研究[J].中国农业科学,1998,31(3):66-71
    [30]Yamazak M, Watanabe A, Sugiyama T. Nitrogen-Regulated accumulation of mRNA and protein for photosynthetic carbon assimilating enzymes in maize [J]. Plant Cell Physiology,1986,27(3): 343-352
    [31]Davies K J A. Protein damage and degradation by oxygen radicals [J]. Journal of Biology Chemistry,1987,262(20):9895-9901
    [32]Hikosaka K. Leaf canopy as a dynamic system:ecophysiology and optimality in leaf turnover [J]. Annals of Botany,2005,95:521-533
    [1]薛晓萍,陈兵林,郭文琦,等.棉花临界需氮量动态定量模型[J].应用生态学报,2006,17(12):2363-2370
    [2]Reddy K R, Koti S, Davidonis G H, et al. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield, and fiber quality [J]. Agronomy Climatology,2004,96: 1148-1157
    [3]黄骏麒.中国棉作学[M].北京:中国农业科技出版社,1998
    [4]卞海云,陈兵林,周治国,等.低温条件下外源生理活性物质对棉铃发育的影响[J].西北植物学报,2005,25(9):1785-1790
    [5]周治国,许玉璋,许萱.温度对棉籽发育的影响[J].西北农业大学学报,1992,20(2):73-78
    [6]Grismer M E. Regional cotton lint yield, Etc and water value in arizona and California [J]. Agricultural Water Management,2002,54:227-242
    [7]单世华,孙学振,周治国,等.温度对棉纤维干物质积累动态变化的影响[J].山东农业大学学报(自然科学版),2001,32(1):6-10
    [8]Sawan Z M, Mahmoud M H, El-guibali A H. Response of Yield, Yield Components, and Fiber Properties of Egyptian Cotton (Gossypium barbadense L.) to Nitrogen Fertilization and Foliar-applied Potassium and Mepiquat Chloride [J]. The Journal of Cotton Science,2006,10: 224-234
    [9]孙红春,冯丽肖,谢志霞,等.不同氮素水平对棉花不同部位-铃叶系统生理特性及铃重空间分布的影响[J].中国农业科学,2007,40(8):1638-1645
    [10]勾玲,闫洁,韩春丽,等.氮肥对新疆棉花产量形成期叶片光合特性的调节效应[J].植物营养与肥料学报,2004,10(5):488-493
    [11]邬飞波,成灿土,许馥华.氮素营养对短季棉生理代谢和产量的影响[J].浙江农业大学学报,1998,24(3):241-247
    [12]周可金,江厚旺,吴宁,等.不同开花期棉铃干物质积累规律研究[J].棉花学报,1996,8(3):145-150
    [13]Leffler H R. Development of cotton fruit accumulation and distribution of dry matter [J]. Agronomy Journal,1976,68:855-857
    [14]高英,高璆,金桂红,等.麦后移栽棉不同品种棉铃干物质积累与分配研究[J]_棉花学报,1993,5(2):55-61
    [15]朱绍琳,陈旭升,易福华,等.棉铃物生学[M].北京:中国农业科学出版社,1994
    [16]陈兵林,曹卫星,周治国.棉花单铃干物质积累分配的分期动态模拟及检验[J].中国农业科学,2006,39(3):487-493
    [17]海江波,王方成,范术丽,等.氮磷钾配合对棉铃干物质积累及纤维品质的影响[J].西北农业学报,1998,7(4):49-52
    [18]Bondada B R, Osterhuis D M, Norman R J. Canopy photosynthesis growth yield and boll accumulation under nitrogen stress in cotton [J]. Crop Science,1996,36(1):127-133
    [19]韩慧君.气候生态因素对棉花产量与纤维品质的影响[J].中国农业科学,1991,24(5):23-29
    [20]马富裕,曹卫星,李少昆,等.棉花纤维品质与气象因子的定量分析[J].应用生态学报,2005,16(11):2102-2107
    [21]Campbell B T, Jones M A. Assessment of genotype×environment interactions for yield and fiber quality in cotton performance trials [J]. Euphytica,2005,144:69-78
    [22]Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition [J]. European Journal Agronomy,2006,24:282-290
    [23]马富裕,曹卫星,周治国,等.田间条件下遮光对棉花棉铃发育及纤维品质的影响[J].棉花学报,2004,16(5):270-274
    [24]范君华,刘明,陈志林.零型海岛棉发育棉铃物质积累分配与铃壳生理生长动态变化初探[J].棉花学报,2008,20(2):154-157
    [25]胡宏标,张文静,陈兵林,等.棉铃对位叶C/N的变化及其与棉铃干物质积累与分配的关系[J].作物学报,2008,34(2):254-260
    [26]赵都利,许萱,王汉文,等.棉铃各组成部分的干物质积累及其与温度关系的研究[J].陕西农业科学,1985,6:26-30
    [27]中国农业科学院棉花研究所.棉花生理译丛[M].北京:中国农业出版社,1982
    [28]Egelkraut T M, Kissel D E, Cabrera M L, et al. Nitrogen concentration in cottonseed as an indicator of N availability [J]. Nutrient Cycling in Agroecosystems,2004,68:235-242
    [1]薛晓萍,陈兵林,郭文琦,等.棉花临界需氮量动态定量模型[J].应用生态学报,2006,17(12):2363-2370
    [2]Bauer P J, Roof M E. Nitrogen, aldicarb, and cover crop effects on cotton yield and fiber properties [J]. Agronomy Journal,2004,96:369-376
    [3]Blaise D, Singh J V, Bonde A N, et al. Effects of farmyard manure and fertilzers on yield, fiber quality and nutrient balance of rainfed cotton(Gossypium hirsutum L.) [J]. Bioresource Technology, 2005,96:345-349
    [4]Brown M, Saxena I M. Cellulose biosynthesis:A model for understanding the assembly of biopolymers [J]. Plant Physiology and Biochemistry,2000,38(1-2):57-67
    [5]张文静,胡宏标,陈兵林,等.棉纤维加厚发育生理特性的基因型差异及对纤维比强度的影响[J].作物学报,2007,33(4):531-538
    [6]束红梅,陈兵林,王友华,等.棉花纤维素累积特性的基因型差异及与纤维比强度形成的关系[J].作物学报.2007,33(6):921-926
    [7]Haigler C H, Datcheva M I, Hogan P S, et al. Carbon partitioning to cellulose synthesis [J]. Plant Molecule Biology,2001,47:29-51
    [8]Brown M, Saxena I M, Kudlicka K. Cellulose biosynthesis in higher plants [J]. Trends in Plant Science,1996,5(1):149-155
    [9]Ruan Y L, Chourey P S, Delmer D P, et al. The differential expression of sucrose synthetase in relation to diverse patterns of carbon portioning in developing cotton seed [J]. Plant Physiology,1997, 115(2):375-385
    [10]张文静,胡宏标,王友华,等.棉纤维发育相关酶活性的基因型差异与纤维比强度的关系[J].中国农业科学,2007,40(10):2177-2184
    [11]Scheible W R, Pauly M. Glycosyltransferases and cell wall biosynthesis:novel players and insights [J]. Current Opinion Plant Biology,2004,7(3):285-295
    [12]Reddy K R, Koti S, Davidonis G H, et al. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield, and fiber quality [J]. Agroclimatology,2004,96: 1148-1157
    [13]Singh V, Nagwekar S N. Effect of weed control and nitrogen levels on quality characters in cotton [J]. Indian Society Cotton Improvement,1989,14:60-64
    [14]Sawan Z M, Mahmoud M H, El-guibali A H. Response of Yield, Yield Components, and Fiber Properties of Egyptian Cotton (Gossypium barbadense L.) to Nitrogen Fertilization and Foliar-applied Potassium and Mepiquat Chloride [J]. The Journal of Cotton Science,2006,10: 224-234
    [15]Jambunathan L R, Mehta N P, Sanandia C J, et al. Study of the effects of the application of nitrogen, phosphorusand potash on the economic and quality characteristicsof the cotton-Hybrid 4 [J]. Indian Society Cotton Improvement,1986,11:26-29
    [16]张旺锋,王振林,余松烈,等.氮肥对新疆高产棉花群体光合性能和产量形成的影响[J].作物学报,2002,28(6):789-796
    [17]孙红春,冯丽肖,谢志霞,等.不同氮素水平对棉花不同部位-铃叶系统生理特性及铃重空间分布的影响[J].中国农业科学,2007,40(8):1638-1645
    [18]胡宏标,张文静,陈兵林,等.棉铃对位叶C/N的变化及其与棉铃干物质积累与分配的关系[J].作物学报,2008,34(2):254-260
    [19]Hikosaka K. Leaf canopy as a dynamic system:ecophysiology and optimality in leaf turnover [J]. Annals of Botany,2005,95:521-533
    [20]卞海云,陈兵林,周治国,等.低温条件下外源生理活性物质对棉铃发育的影响[J].西北植物学报,2005,25(9):1785-1790
    [21]马富裕,曹卫星,李少昆,等.棉花纤维品质与气象因子的定量分析[J].应用生态学报,2005,16(11):2102-2107
    [22]单世华;施培,孙学振,等.开花期和果枝部位对短季棉纤维品质及超分子结构的影响[J]. 中国农业科学,2002,35(2):163-168
    [23]李酉开.土壤农业化学常规分析方法[M].北京:科学出版社,1983:272
    [24]Konishi T, Nakai T, Saka F, et al. Formation of callose from sucrose in cotton fiber microsomal membranes [J]. Japan Wood Research Society,2001,47:331-335
    [25]汤章城.现代植物生理学实验指南[M].上海:科学出版社,1999:126,128
    [26]Huxley J S. Constant differential growth-ratios and their significance [J]. Nature,1924,114: 895-896
    [27]陈兵林,曹卫星,周治国.棉花单铃干物质积累分配的分期动态模拟及检验[J].中国农业科学,2006,39(3):487-493
    [28]Tewolde H, Fernandez C J. Fiber quality response of Pima cotton to nitrogen and phosphorus deficiency [J]. Plant Nutrition,2003,26:223-235
    [29]Foyer C H, Noctor G, Lelandais M. Short-term effects of nitrate, nitrate and ammonium phosphrylation, net CO2 assimilation and amino acid biosynthesis in maize [J]. Planta,1994,192: 211-220
    [30]单世华,孙学振,周治国,等.温度对棉纤维干物质积累动态变化的影响[J].山东农业大学学报(自然科学版),2001,32(1):6-10
    [31]刘连涛,李存东,孙红春,等.氮素营养水平对棉花不同部位叶片衰老的生理效应[J].植物营养与肥料学报,2007,13(5):910-914
    [32]王友华,陈兵林,卞海云,等.温度与棉株生理年龄的协同效应对棉纤维发育的影响[J]_作物学报,2006,32(11):1671-1677
    [1]Boquet D J, Breitenbeck G A. Nitrogen rate effect on partitioning of nitrogen and dry matter by cotton [J]. Crop Science,2000,40:1685-1693
    [2]Blaise D, Singh J V, Bonde A N, Tekale K U, Mayee C D. Effects of farmyard manure and fertilzers on yield, fiber quality and nutrient balance of rainfed cotton(Gossypium hirsutum) [J]. Bioresource Technology,2005,96:345-349
    [3]Rochester I J, Peoples M B, Constable G A. Estimation of the N fertilizer requirement of cotton grown after legume crops [J]. Field Crops Research,2001,70:43-53
    [4]Bauer P J, Roof M E. Nitrogen, aldicarb, and cover crop effects on cotton yield and fiber properties [J]. Agronomy Journal,2004,96:369-376
    [5]Sawan Z M, Mahmoud M H, El-Guibali A H. Response of Yield, Yield Components, and Fiber Properties of Egyptian Cotton (Gossypium barbadense L.) to Nitrogen Fertilization and Foliar-applied Potassium and Mepiquat Chloride [J]. The Journal of Cotton Science,2006, 10:224-234
    [6]Girma K, Teal R K, Freeman K W, et al. Cotton lint yield and quality as affected by applications of N, P, and K Fertilizers [J]. The Journal of Cotton Science,2007,11:12-19
    [7]Reddy K R, Koti S, Davidonis G H, et al. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield, and fiber quality [J]. Agronomy Climatology,2004,96: 1148-1157
    [8]Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition [J]. European Journal Agronomy,2006,24:282-290
    [9]薛晓萍,王建国,郭文琦,等.棉花花后果枝叶生物量和氮累积特征及临界氮浓度稀释模型的研究[J].作物学报,2007,33(4):669-676
    [10]王绍华,刘胜环,王强盛,等.水稻产量形成与叶片含氮量及叶色的关系[J].南京农业大学学报,2002,25(4):1-5
    [11]秦晓东,戴廷波,荆奇,等.冬小麦叶片氮含量时空分布及其与植株氮营养状况的关系[J].作物学报,2006,32(11):1717-1722
    [12]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000
    [13]孙红春,冯丽肖,谢志霞,等.不同氮素水平对棉花不同部位—铃叶系统生理特性及铃重空间分布的影响[J].中国农业科学,2007,40(8):1638-1645
    [14]Meziane D, Shipley B. Direct and indirect relationships between specific leaf area, leaf nitrogen and leaf gas exchange-Effects of irradiance and nutrient supply [J]. Annual Botany,2001,88:915-927
    [15]Takashima T, Hidosake K, Hirose T. Photosynthesis or persistence:nitrogen allocation in leaves of evergreen and deciduous Quercus species [J]. Plant Cell Environment,2004,27:1047-1054
    [16]郑淑霞,上官周平.不同功能型植物光合特性及其与叶氮含量、比叶重的关系[J].生态学报,2007,27(1):171-181
    [17]张亚杰,冯玉龙.不同光强下生长的两种榕树叶片光合能力与比叶重、氮含量及分配的关系[J].植物生理与分子生物学学报,2004,30(3):269-276
    [18]单世华,施培,孙学振,等.开花期和果枝部位对短季棉纤维品质及超分子结构的影响[J].中国农业科学,2002,35(2):163-168
    [19]蒋光华,孟亚利,陈兵林,等.低温对棉纤维比强度形成的生理机制影响[J].植物生态学报,2006,30(2):335-343
    [20]蒋光华,周治国,陈兵林,等.棉株生理年龄对纤维加厚发育及纤维比强度形成的影响[J]. 中国农业科学,2006,39(2):265-273
    [21]王友华,陈兵林,卞海云,等.温度与棉株生理年龄的协同效应对棉纤维发育的影响[J].作物学报,2006,32(11):1671-1677
    [22]Lambers H, Poorter H. Inherent variation in growth rate between higher plants:a search for physiological causes and ecological consequences [J]. Advances in Ecological Research,1992,23: 187-261
    [23]张丽娟,孟亚利,薛晓萍,等.棉纤维综合品质指数模型构建[J].中国农业科学,2006,39(6):1130-1137
    [24]Rosati A, Esparza G, Dejong T M, et al. Influence of canopy light environment and nitrogen availability on leaf photosynthetic characteristics and photosynthetic nitrogen-use efficiency of field-grown nectarine trees [J]. Tree Physiology,1999,19:173-180
    [25]邬飞波,成灿土,许馥华.氮素营养对短季棉生理代谢和产量的影响[J].浙江农业大学学报,1998,24(3):241-247
    [26]张文静,胡宏标,陈兵林,等.棉花季节桃加厚发育生理特性的差异及与纤维比强度的关系[J].作物学报,2008,34(5):859-869
    [27]Bondada B R, Osterhuis D M, Norman R J. Canopy photosynthesis growth yield and boll accumulation under nitrogen stress in cotton [J]. Crop Science,1996,36(1):127-133
    [28]巨晓棠,刘学军,邹国元,等.冬小麦/夏玉米轮作体系中氮素的损失途径分析[J].中国农业科学,2002,35(12):1493-1499
    [29]边秀举,王维进,杨福存.冀北高源草甸栗钙土春小麦中化肥氮去向的研究[J].土壤学报,1997,34(1):60-65
    [30]张文静,胡宏标,陈兵林,等.棉纤维加厚发育生理特性的基因型差异及对纤维比强度的影响[J].作物学报,2007,33(4):531-538
    [1]朱根海,张荣铣.叶片含氮量与光合作用[J].植物生理学通讯,1985,2:9-12
    [2]孙红春,李存东,周彦珍.不同氮素水平对棉花功能叶生理特性、植株性状及产量构成的影响[J].河北农业大学学报,2005,28(6):9-14
    [3]孙红春,冯丽肖,谢志霞,等.不同氮素水平对棉花不同部位-铃叶系统生理特性及铃重空间分布的影响[J].中国农业科学,2007,40(8):1638-1645
    [4]Osaki M, Shinano T. Plant growth based on interrelation between carbon and nitrogen translocation from leaves [J]. Photosynthetica,2001,39(2):197-203
    [5]冯福生,陈文龙,李洁,等.不同供氮水平下冬小麦叶片中RuBPC羧化酶和NRA活性的变化[J]. 植物生理学通讯,1986,6:20-22
    [6]Fridovich I. The biology of oxygen radicals [J]. Science,1978,201:875-880
    [7]刘祖琪,张石诚.植物抗逆生理学[M].北京:中国农业出版社,1994:101-111
    [8]何萍,金继运.氮钾营养对春玉米叶片衰老过程中激素变化与活性氧化谢的影响[J].植物营养与肥料学报,1999,5(4):289-296
    [9]刘连涛,李存东,孙红春,等.氮素营养水平对棉花不同部位叶片衰老的生理效应[J].植物营养与肥料学报,2007,13(5):910-914
    [10]张祥,张丽,王书红,等.棉花源库调节对铃叶光合产物运输分配的影响[J].作物学报,2007,33(5):843-848
    [11]Pettigrew W T. Source-to-sink manipulation effects on cotton lint yield and yield components [J]. Agronomy Journal,1994,86:731-735
    [12]朱绍琳,陈旭升,易福华,等.棉铃物生学[M].北京:中国农业科学出版社,1994
    [13]马富裕,曹卫星,周治国,等.田间条件下遮光对棉花棉铃发育及纤维品质的影响[J].棉花学报,2004,16(5):270-274
    [14]范君华,刘明,陈志林.零型海岛棉发育棉铃物质积累分配与铃壳生理生长动态变化初探[J].棉花学报,2008,20(2):154-157
    [15]单世华,孙学振,周治国,等.温度对棉纤维干物质积累动态变化的影响[J].山东农业大学学报(自然科学版),2001,32(1):6-10
    [16]胡宏标,张文静,陈兵林,等.棉铃对位叶C/N的变化及其与棉铃干物质积累与分配的关系[J].作物学报,2008,34(2):254-260
    [17]Boquet D J, Breitenbeck G A. Nitrogen rate effect on partitioning of nitrogen and dry matter by cotton [J]. Crop Science,2000,40:1685-1693
    [18]Egelkraut T M, Kissel D E, Cabrera M L, et al. Nitrogen concentration in cottonseed as an indicator of N availability [J]. Nutrient Cycling in Agroecosystems,2004,68:235-242
    [19]Leffler H R. Development of cotton fruit accumulation and distribution of dry matter [J]. Agronomy Journal,1976,68:855-857
    [20]束红梅,陈兵林,王友华,等.棉花纤维素累积特性的基因型差异及与纤维比强度形成的关系[J].作物学报,2007,33(6):921-926
    [21]Haigler C H, Datcheva M I, Hogan P S, et al. Carbon partitioning to cellulose synthesis [J]. Plant Molecule Biology,2001,47:29-51
    [22]Amor Y, Haigler C H, Johnson S. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plant [J]. Plant Biology,1995,92:9353-9357
    [23]Shimizu Y, Aotsuka S, Hasegawa O, et al. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells [J]. Plant Cell Physiology,1997,38:375-378
    [24]Brown J R M, Saxena I M, Kudlicka K. Cellulose biosynthesis in higher plants [J]. Trends in Plant Science,1996,5(1):149-155
    [25]Salnikov V V, Grimson M J, Seagull R W, et al. Localization of sucrose synthase and callose in freeze-substituted secondary secondary-wall-stage cotton fibers [J]. Protoplasma,2003,221(3-4): 175-184
    [26]Winter H, Huber J L, Huber S C. Membrane association of sucrose synthase:changes during the graviresponse and possible control by protein phosphorylation [J]. Federation of European Biochemical Societies,1997,420:151-155
    [27]王镜岩.生物化学[M].北京:高等教育出版社,2004
    [28]Koch K. Sucrose metabolism:regulatory mechanisms and pivotal roles in sugar sensing and plant development [J]. Current Opinion of Plant Biology,2004,7:235-246
    [29]Delmer D P, Haigler C H. The regulation of metabolic flux to cellulose, a major sink for carbon in plants [J]. Metabolic Engineer,2002,4:22-28
    [30]张文静,胡宏标,王友华,等.棉纤维发育相关酶活性的基因型差异与纤维比强度的关系[J]_中国农业科学,2007,40(10):2177-2184
    [31]Michelle B V, Haigler C H. Sucrose-phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems [J]. Plant Physiology,2001,127(3):1234-1242
    [32]Hikosaka K. Leaf canopy as a dynamic system:ecophysiology and optimality in leaf turnover [J]. Annals of Botany,2005,95:521-533
    [33]Reddy K R, Koti S, Davidonis G H, et al. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield, and fiber quality [J]. Agroclimatology,2004,96: 1148-1157
    [34]薛晓萍,陈兵林,郭文琦,等.棉花临界需氮量动态定量模型[J].应用生态学报,2006,17(12):2363-2370
    [35]Bauer P J, Roof M E. Nitrogen, aldicarb, and cover crop effects on cotton yield and fiber properties [J]. Agronomy Journal,2004,96:369-376
    [36]Blaise D, Singh J V, Bonde A N, et al. Effects of farmyard manure and fertilzers on yield, fiber quality and nutrient balance of rainfed cotton (Gossypium hirsutum) [J]. Bioresource Technology, 2005,96:345-349
    [37]张文静,胡宏标,陈兵林,等.棉花季节桃加厚发育生理特性的差异及与纤维比强度的关系[J].作物学报,2008,34(5):859-869
    [38]单世华,施培,孙学振,等.开花期和果枝部位对短季棉纤维品质及超分子结构的影响[J]. 中国农业科学,2002,35(2):163-168
    [39]蒋光华,孟亚利,陈兵林,等.低温对棉纤维比强度形成的生理机制影响[J].植物生态学报,2006,30(2):335-343
    [40]蒋光华,周治国,陈兵林,等.棉株生理年龄对纤维加厚发育及纤维比强度形成的影响[J].中国农业科学,2006,39(2):265-273
    [41]王友华,陈兵林,卞海云,等.温度与棉株生理年龄的协同效应对棉纤维发育的影响[J].作物学报,2006,32(11):1671-1677
    [42]王绍华,刘胜环,王强盛,等.水稻产量形成与叶片含氮量及叶色的关系[J].南京农业大学学报,2002,25(4):1-5
    [43]秦晓东,戴廷波,荆奇,等.冬小麦叶片氮含量时空分布及其与植株氮营养状况的关系[J].作物学报,2006,32(11):1717-1722
    [44]薛晓萍,王建国,郭文琦,等.棉花花后果枝叶生物量和氮累积特征及临界氮浓度稀释模型的研究[J].作物学报,2007,33(4):669-676
    [45]Shiratsuchi H, Yamagishi T, Ishii R. Leaf nitrogen distribution to maximize the canopy photosynthesis in rice [J]. Field Crop Research,2006,95:291-304
    [46]王纪华,黄文江,赵春江,等.利用光谱反射率估算叶片生化组分和籽粒品质指标研究[J].遥感学报,2003,7(4):277-284
    [47]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000:307
    [48]Le R X, Walcroft A S, Daudet F A, et al. Photosynthetic light acclimation in peach leaves: importance of changes in mass:area ratio, nitrogen concentration, and leaf nitrogen partitioning [J]. Tree Physiology,2001,21:377-386
    [49]张亚杰,冯玉龙.不同光强下生长的两种榕树叶片光合能力与比叶重、氮含量及分配的关系[J].植物生理与分子生物学学报,2004,30(3):269-276
    [50]Meziane D, Shipley B. Direct and indirect relationships between specific leaf area, leaf nitrogen and leaf gas exchange-Effects of irradiance and nutrient supply [J]. Annual Botany,2001,88:915-927
    [51]Lambers H, Poorter H. Inherent variation in growth rate between higher plants:a search for physiological causes and ecological consequences [J]. Advances in Ecological Research,1992,23: 187-261
    [52]王之杰,王纪华,黄文江,等.冬小麦冠层不同叶层和茎鞘氮素与籽粒品质关系的研究[J].中国农业科学,2003,36(12):1462-1468
    [53]Markus L, Katharina S, Hans S. Vertical leaf nitrogen distribution in relation to nitrogen status in grassland plants [J]. Annals of Botany,2003,92:679-688
    [54]Sadras V O, Hall A J, Connor D J. Light-associated nitrogen distribution profile in flowering canopies of sunflower altered during grain growth [J]. Oecologia,1993,95:488-494
    [55]Dreccer M F, Van O M, Schapeendonk H C M, et al. Dynamics of vertical leaf nitrogen distribution in a vegetative wheat canopy [J]. Annals of Botany,2000,86:821-831
    [56]Wullschleger S D, Osterhuis D M. Canopy leaf area development and age-class dynamics in cotton [J]. Crop Science,1992,32:451-456
    [57]Milroy S P, Bange M P, Sadras V O. Profiles of leaf nitrogen and light in reproductive canopies of cotton (Gossypium hirsutum.L) [J]. Annals of Botany,2001,87:325-333

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700