花脸蘑胞内多糖和海藻糖积累变化规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多糖是一类重要的生物活性物质,在人类及动植物医疗保健、动物养殖、病虫害防治、农作物栽培等领域有十分广阔的应用前景。现代医学研究发现,食用菌中能显著增强癌症患者抵抗力的生理活性物质即为食用菌多糖,并且其毒性很小,易与菌体分离。与植物多糖相比,食药用菌中的多糖生产周期短,产量及质量稳定,性价比较高,具有免疫调节、抗病毒、抗肿瘤、抗氧化、降低血脂、抗血栓等其它多糖不具备的特殊功效。
     花脸蘑作为一种还没有大规模人工栽培的食用菌,其子实体含有丰富的氨基酸和糖类等营养物质,而且矿质元素种类十分丰富。据报道,花脸蘑子实体中多糖含量为10.31%,海藻糖的含量为8.34%,其海藻糖含量高于常见的食用菌。本试验以花脸蘑为载体,研究了胞内多糖和海藻糖在花脸蘑中积累的规律及酶活性变化规律,为今后综合开发利用食用菌的多糖和海藻糖资源作了初步的探索,取得了有价值的结果。另外对花脸蘑胞内多糖的理化性质以及单糖组分进行了研究,这些都为工业化生产花脸蘑胞内多糖,以及开发花脸蘑多糖系列产品提供了一定的理论基础及帮助。试验结果如下:
     ①花脸蘑液体深层发酵产胞内多糖的优水平组合为:玉米粉20g,酵母膏4g,pH=7,CuS04的浓度为1.5×10-4g/100mL,1000 mL水,菌龄为12d。其干生物量可达到1.13g/100ml,湿菌丝体中胞内多糖含量达24.72%,高于其子实体中多糖的含量。
     ②当N含量高时,有利于花脸蘑菌丝的生长,菌丝体得率高;而随着C含量升高时,有利于胞内多糖的积累。但是,单糖并不利于花脸蘑菌丝生长,其菌丝利用玉米粉的效率较高。当玉米粉质量浓度增加到25g/L后,由于玉米粉溶解性差、粘度大,造成了培养基溶氧量的下降,使菌丝生长受到了阻碍,胞内多糖产量也开始下降。因此,碳源浓度是影响花脸蘑菌丝体胞内多糖产量的决定因子
     ③同灵芝、灰树花、姬松茸等其它食用菌一样,花脸蘑菌丝对有机氮源的利用优于无机氮源。pH值与微量元素对花脸蘑菌丝的生长及胞内多糖的积累影响较小。菌龄以8d与12d较好。
     ④花脸蘑菌丝体胞内多糖呈白色粉末状,无气味,溶于水,不溶于乙醚、丙酮、95%的乙醇等有机溶剂。且为非还原性多糖,不含有蛋白质成分。其单糖组分为葡萄糖、木糖、甘露糖,并且是以葡萄糖为主组成的多糖。
     ⑤花脸蘑菌丝体海藻糖液体发酵的优水平组合为:蔗糖20g,酵母膏4g,pH=7,CuSO4为1.5×10-4g/100mL,1000 mL水,菌龄为12d。湿菌丝体中海藻糖的含量为19.02%,明显高于子实体体中海藻糖的含量。
     ⑥单糖并不利于花脸蘑菌丝体海藻糖的液体发酵,以葡萄糖作为碳源进行液体发酵时,其海藻糖产量最低。菌丝体利用有机氮源中的酵母膏、蛋白胨来液体发酵时,其菌丝体内的海藻糖含量比利用无机氮源作为氮源时要高。微量元素对液体发酵产海藻糖的影响较小。影响花脸蘑菌丝体海藻糖产量的决定因子是菌龄。
     ⑦花脸蘑菌丝体胞内多糖和海藻糖得率最高均在第12天,即在稳定期同时达到了最高峰。据此,可以在稳定期提取胞内多糖的同时也提取海藻糖,从而实现对花脸蘑菌丝体的综合利用。
     ⑧不同碳源、氮源、菌龄对花脸蘑胞外酶活性的大小有一定的影响,但是并没有改变酶活性的变化规律。花脸蘑菌丝对有机碳源、有机氮源更容易吸收利用,相应的酶活性也会相应增加,这与菌丝体生物量及糖得率有一定的相关性。而pH值、微量元素对酶活性的影响比较小。
Polysaccharide is an important class of biologically active substances which has very broad application prospects in the field of human, animal and plant health care, animal breeding, pest control, crop cultivation. Modern medical researchs have found that mushroom polysaccharide, the physiologically active substances in edible fungi and easily separated from mushroom, can significantly enhance the patients' resistance to cancer and whose toxicity is very small. Compared with plant polysaccharides, the polysaccharides in edible and medicinal fungi has the features, such as short production cycle, the stable yield and quality, higher performance to price ratio and some special effects-immunomodulatory, antiviral, antitumor, antioxidant, reduce blood lipids, anti-thrombosis while other polysaccharides don't have.
     Lepista sordida is not large-scale artificially cultivated yet, whose fruiting body is rich in nutrients such as amino acids and carbohydrates, and the species of mineral composition.According to reports, the contents of trehalose in Lepista sordida fruiting body is 8.34%, more than other common edible mushrooms apparently. This test studied the law of accumulation of Lepista sordida's intracellular polysaccharide and trehalose and the change of enzyme activity, and made a preliminary exploration for the future comprehensive development and utilization of edible fungus polysaccharides and trehalose resources. In addition, this test studied the physicochemical properties and the monosaccharide composition of intracellular polysaccharide.These reseach provided a theoretical basis and help for industrial production Lepista sordida's intracellular polysaccharide and development of products of Lepista sordida's polysaccharide.
     The test result are as follows:
     ①The intracellular polysaccharide's deep fermentation liquid optimal level combination was Sucrose 20g, yeast extract 4g, pH=7, the concentration of CuSO4 1.5 ×10-4g/100mL, water 1000 mL, strain age 12d. The dry biomass can be achieved 1.13g/100ml and the content of intracellular polysaccharide in wet mycelium is 24.72%, wich is higher than the fruiting bodies.
     ②When the N content is high, It is conducive to the growth of the mycelium. With the rise of the C content, It is beneficial to the accumulation of intracellular polysaccharide. Monosaccharide is not conducive to the growth of mycelium, and Mycelium can be a good use of corn flour. When the mass concentration of corn flour increased to 25g/L, The intracellular polysaccharide production began to decline. It is because of Corn flour's low solubility and high viscosity resulting in a decline in dissolved oxygen in medium, mycelial growth has been hampered. The carbon source is the decisive factor of the intracellular polysaccharide production in Lepista sordida mycelium.
     ③As with other edible fungi, such as Ganoderma lucidum, Grifola frondosa, Agaricus blazei Murill, its mycelium can make better use of organic nitrogen than inorganic nitrogen. Trace element and pH value on mycelial growth and the Intracellular polysaccharide Accumulations have a smaller impact. It was better that the strain age was 8d to 12d.
     ④The pure Intracellular polysaccharide of Lepista sordida is White powdered, Odorless, Soluble in water but not in organic solvent, such as ether and acetone,95% ethanol etc. It's a kind of non-reducing polysaccharide and does not contain a protein component. The monosaccharides group is divided into glucose, xylose and mannose. And the main Composition is glucose.
     ⑤The Lepista sordida mycelium trehalose liquid fermentation excellent level combination was sucrose 20g, yeast extract 4g, pH=7, the final concentration of CUSO4 1.5×10-4g/100mL, water 1000mL, strain age 12d.Trehalose content in the wet mycelium was 19.02%, significantly higher than the content of trehalose in the body.
     ⑥Monosaccharide is not conducive to the Lepista sordida mycelium trehalose liquid fermentation. Using glucose as the carbon source for liquid fermentation resulted in that trehalose content was the lowest. The trehalose content of the mycelial body was higher when The Mycelium using organic nitrogen sources-yeast extract, peptone-to liquid fermentation than using inorganic nitrogen as a nitrogen source. trace elements had Less impact on liquid fermentation of trehalose. The strain age is the decisive factor of the trehalose production in Lepista sordida mycelium.
     ⑦The Maximum yield of intracellular trehalose and polysaccharide in Lepista sordida mycelia appeared in the 12d, that is to say in stationary phase, the yield be maximized. Accordingly, we can extract both trehalose and polysaccharide in stationary phase, so as to achieve the comprehensive utilization of Lepista sordida mycelia.
     ⑧Different carbon sources, nitrogen source, fungus age have certain effect on extracellular enzyme activity, but do not change the change rule of enzyme activity. Hyphae of Lepista sordida would be easier to absorb and utilize organic carbon sources, organic nitrogen source, the corresponding enzyme activity also can increase. It can be explained by that mycelia biomass and sugar yield have a certain correlation. But pH value, trace elements have little influence on enzyme activity.
引文
[1]谢福泉,野生优良食药用菌花脸蘑的研究进展[J].菌物研究,2005,3(004):52-56.
    [2]宋刚,孙丽华.红花尔基自然保护区食用及药用真菌资源研究[J].内蒙古农业大学学报:自然科学版,2007,28(003):345-347.
    [3]胡先运,李香莉,张勇民等.花脸蘑的研究进展[J].中国食用菌,2006,25(005):20-22.
    [4]卢成英,李鹄鸣.紫晶香蘑栽培生物学研究[J].生态学志,1994,13(004):37-41.
    [5]罗心毅,洪江等.栽培花脸蘑氨基酸研究[J].氨基酸与生物资源,2003,25(3):14-15.
    [6]王红庚.微量元素锗在灵芝体内的富集特性及其分布规律的研究[D].河北:河北农业大学,2001.
    [7]张京良,李蓉,孙炳竹等.花脸蘑功能饮料的研制[J].食用菌,2010,(2):61-62.
    [8]胡先运.花脸蘑田间栽培、营养评价及液体发酵特性研究[D].贵州:贵州师范大学,2007,4(10).
    [9]Borcher A T, Stem J S, Hackman R M. Mushroom, tumors, immunity [J]. Proc Soc Exp Biol Med,1999,221(4):281-293.
    [10]黄芳,蒙义文.活性多糖的研究进展[J].天然产物研究与开发,1999,11(5):90-98.
    [11]汪茂田,谢培山,王忠东等.天然有机化合物提取分离与结构鉴定[M].化学工业出版社.2004:36-37.
    [12]Zhang Wei, He Hongbo, Zhang Xudong. Determination of neutral sugars in soil by capillary gas chromatography after derivatization to aldononitrile acetates soil [J]. Biology & Biochemistry,2007,39:2665-2669.
    [13]Paul B, Filson, Benjamin E, Dawson Andoh. Characterization of sugars from model and enzyme-mediated pulp hydrolyzates using high-performance liquid chromatography coupled to evaporative light scattering detection [J]. Bioresource Technology,2009,100:6661-6664.
    [14]Cristiana Campa, Edi Baiutti, Anna Flamigni. Capillary Electrophoresis of Sugar Acids [J]. Methods in Molecular Biology,2008,384:307-355.
    [15]叶明立,施青红,王一琦.离子色谱样品预处理技术[J].现代科学仪器,2004,2:49-53.
    [16]刘婷.多糖类物质的离子色谱检测技术研究[D].重庆:西南大学,2009.
    [17]李艳辉,王琦.吉林农业大学学报,2002,24(2):70-74.
    [18]杨革.担子菌纲8种真菌的营养成分[J].无锡轻工大学学报,2000,19(2):27-29.
    [19]周日宝.湖南药用真菌的研究[J].湖南林业科技,1994,21(3):55-59.
    [20]胡顺珍,贾乐.食药用真菌多糖构效关系研究进展[J].生物技术通报, 2007,22(4):42-50.
    [21]郑典元,王春景,周雯等.香菇菌丝的液体发酵碳源与多糖产量研究[J].安徽农业科学,2008,36(2):499-500,531.
    [22]党建章,何宗智,郑雄敏.茶薪菇深层培养及营养成分分析[J].食用菌学报,1999,6(3):37-39.
    [23]江涓,陈少英,邱昌恩.杨树菇深层发酵工艺的研究[J].食用菌,2003(6):8-9.
    [24]戴肖东,张丕奇,马庆芳.发酵料栽培花脸蘑技术[J].食用菌,2005,(2):20-21.
    [25]Cho Y J, Park O J, Shin H J. Immobilization of thermostable trehalose synthesis for the production of trehalose[J]. Enzyme and Microbial Technology,2006,39:108-113.
    [26]Elbein A D. Metabolism of α,α-trehalose[J]. Adv Carbohyd Chem Biochem,1974, 30:227-256.
    [27]肖丽蓉,张友洪,周安莲,肖金树,肖文福.海藻糖的研究与应用[J].中国蚕业,2009,(3):8-1.
    [28]于彩虹,卢丹,林荣华,王晓军,姜辉,赵飞.海藻糖-昆虫的血糖[J].昆虫知识,2008,45(5):832-37.
    [29]张玉华,凌沛学,籍保平.海藻糖的研究现状及其应用前景[J].食品与药品,2005,7(3):8-4.
    [30]Cesaro A, De Giacomo, Sussich F. Water interplay in trehalose polymorphism[J]. Food Chemistry,2008,106:1318-1328.
    [31]彭亚锋,周耀斌,李勤,薛峰,冯俊.海藻糖的特性及其应用[J],中国食品添加剂(专论综述),2008:65-69.
    [32]徐曼,肖冬光,郭学武等.海藻糖对面包酵母高糖耐性的影响[J].食品与发酵工业,2008,34(10):63-66.
    [33]PhilipBall. Fresh and dry[N]. Nature News,2000,7-17.
    [34]孙彩玉,王娟,卢晓黎.海藻糖的性质、功能及应用[J].第十一届中国科协年会,2009.
    [35]Newman Y M, Ring S G, Colace C. The role of trehalose and other carbohydrates in biopreservation[J]. Biotechnology and Genetic Engineering Reviews,1993,11:263-294.
    [36]Carmen L A P, Anita D P. Biotechnological application of the disaccharide trehalose C. L. A. Paiva and A. D. Panek [J]. Biotechnology Annual Review,1996, (2): 293-314.
    [37]黄鸣,黎锡流.海藻糖独特的生物学功能及其广泛应用[J].食品研究与开发,2002,23(2):55-57.
    [38]程池.天然保存剂—海藻糖的特性和应用[J].食品与发酵工业,1996,(1):59-64.
    [39]Crow J H. Is virification involved in depression of the phase transiaton temperature in dryphospholipid[J]. Biochemica et Biophsica Acta,996,1280:187-196.
    [40]Yoshinaga K, Yoshioka H, Kurosaki H, Hirasawa M. Protection by trehalose of DNA from Radiation Damage[J]. Biochem,1997,84:157-540.
    [41]赵晓峰,吴荣书.海藻糖的功能特性及其应用[J].广州食品工业科技,2004,20(2):151-154.
    [42]任红,杨洋,孙潇.海藻糖的提取方法研究进展[J].中国甜菜糖业,2006,3:29-31.
    [43]李滢冰,冯梦醒,徐继祖.海藻糖在灰树花深层发酵中的积累及多糖的提取[J].食品与发酵工业,2000,26(2):11-15.
    [44]戴秀玉,程苹.海藻糖的生理功能、分子生物学研究及应用前景[J].微生物学通报,1995,22(2):102.
    [45]雷德柱,梁建华.液体培养灰树花菌丝生产海藻糖[J].食品科技,2007,1:13-16.
    [46]黄清荣,张丽,王艳华等.营养因子对大杯伞胞外多糖的影响[J].食品研究与开发,2008,29(2):59-62.
    [47]高梅莹,莫新迎,王宁,郭继强.响应面法优化酒精酵母产海藻糖发酵培养基[J].中国酿造,2009,10(211):117-120.
    [48]邓百万,陈文强.云芝液体培养及富集硒研究[J].氨基酸及生物资源,2000,22(4):21-24.
    [49]王家堂,胡准.竹荪子实体多糖的提取及化学组成[J].药物研究,2009,3(17):8-9.
    [50]王润玲,应荣多.人工栽培赤芝的总多糖含量测定[J].天津药学,1994,6(1):48-50.
    [51]张素霞.香菇多糖提取工艺的比较研究[J].长江蔬菜,2009,(14):52-55.
    [52]杨勇杰,瑞芝,陈英红等.苯酚-硫酸法测定杂多糖含量的研究[J].中成药,2005,27(6):706-708.
    [53]李艳玲,苗苗,王健美,史仁玖,李恒.泰山灰树花液体深层发酵培养基的优化及海藻糖的提取[J].现代食品科技,2008,24(11):1141-1144.
    [54]侯英雪,王美丽,李淑霞等.超声波法提取松茸液体发酵胞内多糖的工艺[J].食品科技,2009,34(8):163-166.
    [55]刘维,吴卫,李冠.超声波法提取猴头菌丝胞内多糖的研究[J].食品工业科技,2008,29(03):189-191.
    [56]卢日峰,王欣,郭丽.两种方法纯化香菇多糖的对比研究[J].中国实验诊断学,2008,12(4):488-490.
    [57]王旭,邸峰,周富荣.紫外分光光度法测定灵芝菌丝体发酵液中多糖的含量[J].中国实验方剂学杂志,1997,3(5):39-40.
    [58]张惟杰.复合多糖生化研究技术[M].上海:上海科技出版社,1987,6-7.
    [59]宋微,曹龙奎.海藻糖产生菌株发酵培养基的优化[J].农产品加工·学刊,2008,5(136):37-42.
    [60]Trevelyan W E, Harrison J S. Studies on yeast metabolism[J]. Biochem J,1956,62: 177-182.
    [61]刘洋,张红缨,张今.酵母菌中海藻糖的提取方法与糖代谢研究[J].吉林大学自然科学学报,1998,(4):85-88.
    [62]谭周进,谢达平,李立恒等.蜜环菌多糖分离纯化及性质的研究[J].食品机械2002,(4):13-15.
    [63]中山大学生物系生化微生物学教研室.生化技术导论[M].北京:人民教育出版社,1979,133-248.
    [64]杨娟,吴谋成,张声华.香菇子实体多糖Le-Ⅲ的提取、分离及纯度鉴定[J].食品工业科技,1999,20(3):16-17.
    [65]熊建飞,周光明,何强等.离子色谱法测定玄参中的单糖和低聚寡糖[J].食品工业科技,2011,08(22):13-15.
    [66]杨新美.食用菌研究法[M].北京:中国农业出版社,1998,52-58.
    [67]邓振旭.大型真菌多酚氧化酶活性的研究[J].中国食用菌,2000,4:13-14.
    [68]倪新江,潘迎捷,冯志勇等.香菇生长过程中几种胞外酶活性的变化[J].食用菌学报,1995,2(4):22-27.
    [69]黄清荣,钟旭生,梁建光等.大杯伞深层培养营养因子的研究[J].食用菌,2006(3):8-9.
    [70]王六生,谷文英.姬松茸深层发酵培养基的优化[J].无锡轻工大学学报,2002,21(4):389-392.
    [71]王剑峰,白涛,饶军.花脸蘑液态发酵条件研究[J].中国食用菌,2007,26(4):44-46.
    [72]周昌艳,郭倩,杨焱等.灰树花深层发酵的研究[J].食用菌,2001,(增刊):141-145.
    [73]Johan M T. Microbiol Review[J].1984,48(1):42-59.
    [74]Joao A J, Maria D L, Polizeli T Metal. FEMS Microbiology Letter,1997,154:165-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700