空心球/环氧多孔材料的材料阻尼及管结构阻尼研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速运动飞行器、运载器在运行过程中会遭受严重的振动和噪声困扰,为了解决上述问题,本文试图设计一种轻质、廉价的阻尼灌封材料,灌注到钢管中提高构件的阻尼减振特性,而不改变构件的原有结构。本文从材料设计的角度出发,设计和制备了廉价、轻质和高阻尼的空心球(粉煤灰空心微珠和Al_2O_3空心球)/环氧(EP)多孔材料。利用扫描电镜(SEM)、热重分析(TG)和动态力学分析(DMA)等手段系统研究了多孔材料的微观组织、热性能和阻尼性能,并分析了相关影响因素。通过敲击法和振动台法研究了空心球/环氧灌封钢管的阻尼减振规律。
     本文所用的粉煤灰空心微珠球径为74~206μm,主要成分为SiO_2和Al_2O_3;Al_2O_3空心球球径为0.5~4mm。基体为90%环氧树脂和10%聚氨酯(90EP-10PU)。研究表明,随着空心球体积分数(V_f)和平均球径的增大,多孔材料密度下降。当空心微珠V_f为50~70vol.%时,材料的密度为0.80~0.93g/cm~3;当Al_2O_3空心球V_f为88vol.%时,多孔材料的密度可低至0.58~0.62g/cm~3。
     研究发现,经过偶联剂表面改性以后,空心微珠与基体界面结合良好,材料的破坏源于空心微珠自身断裂。当V_f为30~50vol.%时,空心微珠在基体中的分散性较好;当V_f>50vol.%后,空心微珠互相堆积造成了基体不连续,产生少量缺陷。
     随着空心微珠V_f和球径的增大,多孔材料的初始热分解温度和10%热失重对应的温度都升高。根据Arrhenius公式算得的氧化分解活化能也是逐渐增加,表明添加空心微珠后,多孔材料的耐热性得到改善。
     空心微珠/(90EP-10PU)多孔材料在变温(-40~150℃)和变频(10~800Hz)条件下的阻尼性能研究表明,多孔材料的tanδ峰值介于0.628~0.892之间,都高于基体(0.536),且玻璃化转变温度(T_g)向低温偏移,高阻尼温域(ΔT_(0.5))拓宽。在tanδ~f图中,随着频率的升高,tanδ衰减较慢,阻尼性能保持稳定,说明频率对多孔材料损耗因子的影响要小于温度对其的影响。
     tanδ与空心微珠V_f、球径和种类的相关规律研究表明:tanδ对于V_f存在一个峰值,当V_f为30vol.%时,tanδ峰值为0.892;随着空心微珠球径和种类的变化,tanδ峰值之间的变化值小于10%,说明空心微珠V_f对于多孔材料阻尼性能的影响要比球径和种类对其影响更明显。
     空心球/(90EP-10PU)灌封钢管结构阻尼因子(η)达到(5~9)×10~(-2),比钢管自身(7×10-3)提高了6~12倍。随着阻尼层厚度增加,灌封钢管的η增大;随空心微珠Vf的增大,η先增大后减小,当空心微珠Vf为30~50vol.%时,灌封钢管的η达到峰值(8~9)×10-2;模态阻尼与空心球球径和种类的相关性不明显(Δη<1%)。根据所建立的壳单元-体单元模型、选择固定-自由边界条件,采用模态应变能(MSE)法计算得到空心球/(90EP-10PU)灌封钢管的结构阻尼因子与测试值比较接近。
     空心球/(90EP-10PU)阻尼材料灌封Q235钢管后使钢管的一阶固有频率(f1)降低10~32Hz。f1随着空心球Vf的增加而增加,而与球径的相关性较小;f1随着阻尼层厚度的增加而降低。灌封钢管的阻尼特性与振动频率相关规律表明,在小于2 f1低频条件下,灌封钢管的减振传递率(T)大于1,不具有阻尼减振效果;在> 2 f1,250~2000Hz范围内,T为0.15~0.64,随着振动频率的增加缓慢升高,振动传递较钢管降低4.5~0.5倍。
     灌封钢管阻尼特性取决于灌封阻尼材料的阻尼性能。当空心微珠Vf为30vol.%,球径为120μm时,多孔材料和灌封钢管的阻尼性能都达到最佳,此时灌封钢管的结构阻尼因子为8.82×10-2。
To solve the severe vibration and noise problem of high-speed moving aircraft and vehicle in their running process, my research attempts to design a lightweight and cheap damping encapsulating material, which can be poured into the steel pipes to enhance the structural damping characteristics but do not change the pipes' original structure. In this dissertation, two types of hollow spheres (fly ash (FA) and Al_2O_3 hollow sphere(HS)) are filled into the modified epoxy to prepare the low cost, low density (0.58~0.93g/cm3) and high damping porous composites. By means of scanning electron microscope(SEM), thermogravimetric analysis(TG), and dynamic mechanical analyzer(DMA), the microstructure, thermal properties as well as damping properties of porous composites are investigated systematically. The modal damping characteristics and vibration damping characteristics of encapsulating pipes are measured by using the strike method and shaking table method for the first time.
     The particles size of the fly ash and Al_2O_3 hollow sphere used in my paper are 74~206μm and 0.5~4mm. The matrix is 90% epoxy resin-10% polyurethane (90EP-10PU). Research shows that the densities of the porous composites decrease linearly with the increasing Vf and particles size of cenosphere FA. When Vf is 50~70vol.%, the density of fly ash/(90EP-10PU) can reduce to 0.80~0.93g/cm3. For the Al_2O_3 hollow spheres/(90EP-10PU) porous composites, their densities are 0.58~0.62g/cm3 with the Vf of 88vol.%.
     The interface behavior between FA and the matrix is not a“free interface”, but a“weak bonding interface”when the FA is surface-modified by the silane coupling agent. When Vf is 30~50vol.%, the FA spheres are dispersed homogeneously in the matrix with farthing holes, and the fracture of the porous composites is caused by the rupture of FA spheres. When Vf>50vol.%, the defects are brought by the discontinuity of the matrix and the accumulation of FA spheres.
     Thermogravimetric (TG) test shows that the initial decompositions temperatures and the temperatures of 10% thermal weight loss for porous composites both enhance with increasing Vf and particles size of FA. The oxidative decomposition activation energies increase gradually, which indicates the heat resistance of the FA/(90EP-10PU) porous composites is improved.
     The damping properties of the FA/(90EP-10PU) porous composites in the temperature range from -40 to 150oC and in the frequency range from 10 to 800Hz are studied systematically. The peak values of loss factor(tanδ) are 0.628~0.892, the glass transition temperatures(Tg) shift to low temperature, and the high damping temperature region(ΔT0.5) widen. In tanδ~f curves, the attenuation of tanδis more slowly with the increase of frequency, which indicate that the damping properties of porous composites can keep stable.
     The research on the change of tanδwith the volume fraction (Vf), particles size and kinds of FA microspheres shows that there is a peak in the tanδ~Vf curves. When the Vf is 30vol.%, the peak values of tanδare 0.892. The variation of peak values of tanδis less than 0.1 with the change of particles size and kinds of FA microspheres. This indicates that the effect of fly ash Vf on the damping properties of porous composites is more important.
     The studies on modal damping characteristics of hollow spheres/(90EP-10PU) encapsulating Q235 pipes show that the structural damping factor(η) of the encapsulating pipes are (5~9)×10-2, which is (6~12) times higher than that of Q235 pipe. The effect of impulsive force on the modal damping characteristics is not significant. The thicker of the composites damping layers, the better of the modal damping characteristics. In addition, the effects of Vf, particles size and types of hollow spheres on modal damping characteristics are analyzed. Results reveal that theηincreases at first then decreases with increasing Vf of FA. When the Vf is 30~50vol.%, theηis (8~9)×10-2.ηhas no obvious change(Δη<0.01) with the variation of particles size and types. The Modal Strain Energy(MSE) method belonging to the finite element software is applied to calculate the structural damping factors of the hollow spheres/(90EP-10PU) encapsulation pipes firstly. The results show that the calculation values are basically consistent with the experimental data by the establishment of shell-solid element model and selection of fixed-free boundary conditions.
     The studies on vibration damping characteristics of hollow spheres/(90EP-10PU) encapsulating Q235 pipes indicate that the first order natural frequency (f1) of Q235 pipe decreases by 10~32Hz with the addition of fly ash and Al_2O_3 hollow spheres. The natural frequencies of hollow spheres/(90EP-10PU) encapsulation pipes enhance with the increase of the Vf of hollow spheres, but which is changed little with the variation of the particles size; the natural frequencies of hollow spheres/(90EP-10PU) encapsulation pipes decrease with the increasing thickness of damping composites. The studies on the relationship between the vibration damping characteristics and the vibration frequency show that the vibration transmissibilities (T) of each encapsulating pipes are more than 1 when the frequency is less than 2~(1/2) f1, which indicates that the encapsulating pipes have no damping effect in this frequency region. At the frequency of 250~2000Hz, the T of each encapsulating pipes are 0.15~0.64, which reveals that the T of each encapsulating pipes increase slowly, and the vibration transmission decrease 4.5~0.5 times.
     The structural damping characteristics of encapsulating pipes depend on the damping properties of hollow spheres/(90EP-10PU) porous composites. Researches show that the fly ash/(90EP-10PU) porous composites and their encapsulating pipes both have the superior damping properties when the fly ash volume fraction is 30vol.% and particles size is 120μm.
引文
1邱庆文,李树材.互穿聚合物网络阻尼材料.合成树脂及塑料. 1999, 16(5): 52~54
    2张忠明,刘宏昭,王锦程,杨根仓.材料阻尼及阻尼材料的研究进展.功能材料. 2001, 32(3): 227~230
    3李强,黄光速.互穿聚合物网络阻尼材料研究进展.合成橡胶工业. 2002, 25(1): 1~5
    4戴沛德.阻尼技术的工程应用.清华大学出版社. 1991: 1~5
    5 E. E. Unger. Noise and Vibration Control. McGraw Hill Book Company, 1979: 14~15
    6 L. M. Sergeeva, S. I. Skiba. Filler Effect on the Formation and Properties of Interpenetrating Polymer Networks Based on Polyurethane and Polyesteracrylate. Polym. Inter.. 1996, 39: 317~325
    7徐晓虹,邸永江,张韬.工业废渣陶粒的研究现状在环境治理中的应用现状.佛山陶瓷. 2003, 13(7): 12~15
    8王栋知.超细玻璃微珠的理化特性及复合化玻璃微珠的研究.中国粉体技术. 1995, (3): 7~9
    9万超瑛,张勇,徐宏,古宏展,黄伟.超细空心微珠填充聚氯乙稀复合材料的研究.工程塑料应用. 2003, 31(9): 15~18
    10刘培生.多孔材料导论.清华大学出版社, 2004: 1~3
    11张玉龙,李长德.泡沫塑料入门.浙江科学技术出版社, 2000: 1~40
    12吴舜英,徐敬一.泡沫塑料成型.化学工业出版社, 1999: 1~9
    13闻荻江,陈再新.增强泡沫塑料的特性和应用.玻璃钢/复合材料. 1998, (2): 49~51
    14 L. J. Gibson, M. F. Ashby. Cellular Solids: Structure and properties. Second edition. Cambridge University Press, 1997:42~50
    15刘挺.聚氨酯包装泡沫的研制.聚氨酯工业. 1999, 14(2): 32~34
    16 J. H. Vincent, R. J. Aitken, D. Mark. Porous Plastic Foam Filtration Media: Penetration Characteristics and Application in Particle Size-Selective Sampling. J. Aerosol. Soi.. 1993, 24: 929~944
    17 R. J. Aitken, J. H. Vincent. Application of Porous Foams as Size Selectors for Biologically-relevant Samplers. Appl. Occup. Envir. Hyg.. 1993, 8: 363~369
    18 N. O. Breun. The Dust Holding Capacity of Porous Plastic Foam Used in Particle Size-Selective Sampling. J. Aerosol. Soi.. 2000, 31(3): 379~385
    19 J. A. DeRuntz, O. Hoffman. The Static Strength of Syntactic Foams. ASME Journal of Applied Mechanics. 1969, 9: 551~557
    20 T. Matsunaga, J. K. Kim, S. Hardcastle, P. K. Rohatgi. Crystallinity and Selected Properties of Fy Ash Particles. Materials Science and Engineering A. 2002, 235: 333~343
    21 S. Shukla, S. Seal, Z. Rahaman, K. Scammon. Electroless Copper Coating of Cenospheres Using Silver Nitrate Activator. Materials Letters. 2002, 57: 151~157
    22沈志刚,王明珠,麻树林,刑玉山.空心微珠填充聚丙烯复合材料的研究.中国塑料. 2001, 15(8): 32~35
    23 N. Gupta, W. Ricci. Comparison of Compressive Properties of Layered Syntactic Foams Having Gradient in Microballoon Volume Fraction and Wall Thickness. Materials Science and Engineering A. 2006, 427: 331~342
    24 M. Kiser, M. Y. He, F. W. Zok. The Mechanical Response of Ceramic Microballoon Reinforced Aluminum Matrix Composites under Compressive Loading. Acta Materialia. 1999, 47(9): 2685~2694
    25 D. Q. Wang, Z. Y. Shi, H. Gao, H. F. Lopez. Synthesis of Lead Fly-Ash Composites by Squeeze Infiltration. Journal of Materials Synthesis and Processing. 2001, 9(5): 247~251
    26 E. Gikunoo, O. Omotoso, I. N. A. Oguocha. Effect of Fly Ash Addition on the Magnesium Content of Casting Aluminum Alloy A535. J. Mater. Sci.. 2004, 39: 6619~6622
    27 M. Koopman, G. Gouadec, K. Carlisle, K. K. Chawla, G. Gladysz. Compression Testing of Hollow Microspheres (Microballoons) to Obtain Mechanical Properties. Scripta Materialia. 2004, 50: 593~596
    28 N. Gupta, E. Woldesenbet, P. Mensah. Compression Properties of Syntactic Foams: Effect of Cenosphere Radius Ratio and Specimen Aspect Ratio. Composites Part A-Applied Science and Manufacturing. 2004, 35: 103~111
    29 L. J. Gibson, M. F. Ashby. Cellular Solids: Structure and properties.刘培生.第二版.清华大学出版社, 2003: 154~155
    30 M. Narkis, S. Kenig, M. Puterman. Three-Phase Syntactic Foams. Polymer Composites. 1984, 5: 159~165
    31 W. H. Lin, M. H. R. Jen. Manufacturing and Mechanica1 Properties of Glass Bubbles/Epoxy Particulate Composites. Journal of composite Materials. 1998, 32: 1356~1390
    32蔡小烨,梁小清,尚嘉兰. SiO2微球复合材料力学性能的实验研究.复合材料学报. 1994, 11(4): 69~75
    33 S. Ghosal, S. A. Self. Particle Size-Density Relation and Cenosphere Content of Coal Fly Ash. Fuel. 1995, 74(4): 522~529
    34 P. K. Rohatgi, R. Q. Guo, H. Iksan, E. J. Borchelt, R. Asthana. Pressure Infiltration Technique for Synthesis of Aluminum-Fly Ash Particulate Composite. Mater. Sci. Eng. A. 1998, 244: 22~30
    35 P. K. Rohatgi, J. K. Kim, R. Q. Guo, D. P. Robertson, M. Gajdardziska- josifovska. Age-Hardening Characteristics of Aluminum Alloy-Hollow Fly Ash Composites. Metal. Mater. Trans. A. 2002, 33A: 1541~1547
    36 N. Sobczak, J. Sobczak, J. Morgiel, L. Stobierski. TEM Characterization of the Reaction Products in Aluminum-Fly Ash Couples. Materials Chemistry and Physics. 2003, (81): 296~300
    37 J. Bienia?, M. Walczak, B. Surowska, J. Sobczaka. Microstructure and Corrosion Behavior of Aluminum Fly Ash Composites. J. Optoelectronics and Advanced Materials. 2003, 5(2): 493~502
    38 V. M. Malhotra, P. S. Valimbe, M. A. Wright. Effects of Fly Ash and Bottom Ash on the Frictional Behavior of Composites. Fuel. 2002, 81: 235~244
    39 S. M. Kulkarni, S. Sharathchandra, D. Sunil. On the Use of an Instrumented Set-Up to Characterize the Impact Behavior of An Epoxy System Containing Varying Fly Ash Contents. Polymer Testing. 2002, 21: 763~771
    40殷建港.高强度低密度环氧树脂复合材料研究.工程塑料应用. 1994, 22(3): 7~10
    41卢子兴,石上路,邹波,寇长河,张子龙,李鸿运.环氧树脂复合泡沫材料的压缩力学性能.复合材料学报. 2005, 22(4): 17~22
    42江东亮,闻建勋,陈国民.新材料.上海科学技术出版社, 1994: 25~30
    43何祚镛.声学理论基础.国防工业出版社,1981: 8~9
    44李亦东,于翘.阻尼结构与高聚物阻尼材料.材料科学与工程. 1995, 13(2): 1~13
    45张忠明.金属材料阻尼性能测试系统.西安理工大学学报. 2000, 16(2): 133~137
    46张国定,赵昌正.金属基复合材料.上海交通大学出版社, 1996: 212~215
    47王俊峰,韩俐伟,吴青.高分子聚合物力学阻尼材料的研究进展.化学工程师. 2000, 77(2): 33~36
    48吕生华,梁国正,范晓东.高分子阻尼材料的研究进展.中国塑料. 2001, 15(12): 1~6
    49 C. Zener. Elasticity and Anelasticity of Metals. University of Chicago Press, 1956.
    50 J. Zhang, R. J. Perez, E. J. Lavernia. Dislocation-Induced Damping in Metal Matrix Composites. Journal of Materials Science. 1993, 28: 835~846
    51 C. Y. Wei, S. N. Kukureka. Evaluation of Damping and Elastic Properties of Composites and Composite Structures by the Resonance Technique. J. Mater. Sci.. 2000, 35: 3785~3792
    52葛庭燧.固体内耗理论基础-晶界弛豫与晶界结构.科学出版社. 2000: 7~13
    53 I. G. Ritchie, Z. L. Pan. High-Damping Metals and Alloys. Metallurgical and Transactions A. 1991, 22A:607~616
    54方前锋,葛庭燧.高阻尼材料的阻尼机理及性能评估.物理. 2000, 29(9): 541~545
    55戴沛德.阻尼技术的工程应用.西安交通大学出版社, 1986:41~42
    56徐兴.阻尼材料复模量测试中的动力学分析.振动工程学报. 1996, 9(4): 421~425
    57 I. G. Ritchie. High Damping Alloys-The Metallurgist′s Cure for Unwanted Vibrations. Canadian Metall. Quart.. 1987, 26(3): 239~250
    58张骏旭.对共振棒法测高阻尼钢板内耗的几点建议.材料开发与应用. 1997, 12(5): 29~32
    59 G. F. Lee. Resonance Apparatus for Damping Measurements. Metall. and Mater. Trans. A. 1995, 26A: 2819~2823
    60黎大志.复合材料阻尼测试方法及空气阻尼影响的探讨.振动与冲击. 1992, 41~42(1~2): 128~130
    61 K. W. Sprungmann, I. G. Ritche. Instrumentation, Computer Software, andExperimental Techniques Used in Low-Frequency Internal Friction at WNRE. Atomic Energy of Canada Limited Report, AECL 26438. 1980
    62葛庭燧.晶界驰豫50年.物理. 1999, 28(9): 529~540
    63徐兴.阻尼材料复模量测试中的动力学分析.振动工程学报. 1996, 9(4): 421~425
    64朱贤方.自由衰减法测量线性内耗的准确公式.物理学报. 1996, 45(6): 1110~1015
    65水嘉鹏.试样的内耗值与振动系统内耗值的比较.物理学报. 1998, 47(4): 658~663
    66水嘉鹏.低频内耗测量时标准滞弹性固体的内耗行为.物理学报. 1999, 48(4): 692~698
    67李晓光,何怡贞.用倒扭摆测量金属玻璃内耗应注意的问题.物理. 1990, 19(2): 105~106
    68孙宗琦,阎德勤.用扭摆测量获取材料非线性内耗参数的计算方法.物理学报. 1993, 42(4): 592~595
    69 HB765521999,《塑料与复合材料动态力学性能的强迫非共振型试验方法》.中华人民共和国航空工业标准.
    70高乃奎. EPDM/Al(OH)3复合材料动态力学性能的研究.高分子材料科学与工程. 2001, 17(1): 90~92
    71 S. Laddha, D. C. Van Aken. On the Application of Magneto Mechanical Models to Explain Damping in an Antiferromagnetic Copper-Manganese Alloy. Metall. Mater. Trans. . 1995, 26A: 957~963
    72 F. Yin. Characterization of the Strain-Amplitude and Frequency Dependent Damping Capacity in the M2052 Alloy. Trans. JIM. 2001, 42(3): 385~388
    73邓华铭. Mn2Fe基合金的反铁磁与高阻尼.功能材料. 2001, 32(5): 467~ 469
    74焦剑编.高聚物结构性能与测试.化学工业出版社, 2003, 421~435
    75吴静珍.声学材料结构阻尼特性的检测.制品与工艺. 2002, 2: 21~24
    76 ASTM D5023295, Standard Test Method for Measuring the Dynamic Mechanical Properties of Plastics Using Three Point Bending.
    77 R. Chandra, S. P. Singh, K. Gupta. Damping Studies in Fiber-Reinforced Composites-A Review. Composite Structures. 1999, 46: 41~51
    78陈艳秋,李剑锋.聚合矿物复合材料的阻尼性能与减振机理.噪声与振动控制. 1998, 5: 34~36
    79 L. H. Sperling著.互穿聚合物网络和有关材料.黄宏慈,欧玉春译.科学出版社, 1987: 120~126
    80 J. C. Wang, G. C. Yang. Finite Element Micromechanical Modeling the Damping Behaviors of PMMCs at Room Temperature. Computational Materials Science. 2001, 21: 9~16
    81 D. J. Nelson, J. W. Hancock. Interfacial Slip and Damping in Fiber-Reinforced Composites. J. Mater. Sci.. 1978, 13: 2429~2440
    82 A. Chandra. A Study of Dynamic Behavior of Fiber-Reinforced Composites. In: Proceedings of Workshop on Solid Mechanics. University of Roorkee, India, 1985: 59~63
    83 J. D. Eshelby. The Continuum Theory of Lattice Defects. Solid State Physics. 1956, 3: 79~144
    84 E. J. Lavernia, R. J. Perez, J. Zhang. Damping Behavior of Discontinuously Reinforced Al Alloy Metal-Matrix Composites. Metall. Mater. Trans.. 1995, 26A: 2803~2818
    85 A. S. Nowick, B. S. Berry. Anelastic Relaxion in Crystalline Solids. New York:Academic Press Inc.. 1972: 213~220
    86 J. G?ken, W. Riehemann. Thermoelastic Damping of the Low Density Metals AZ91 and DISPAL. Materials Science and Engineering A. 2002, 324: 134~140
    87 J. V. Humbeeck. Damping Capacity of Thermoelastic Martensite in Shape Memory Alloys. J. Alloys and Compounds. 2003, 355: 58~64
    88 A. Duwel, J. Gorman, M. Weinstein, J. Borenstein, P. Ward. Experimental Study of Thermoelastic Damping in MEMS gyros. Sensors and Actuators A. 2003, 103: 70~75
    89 K. B. Milhgan, V. K. Kinra. On the Thermoelastic Damping of an One– Dimensional Inclusion in a Uniaxial Bar. Mechanics Research Communications. 1993, 20(2):137~142
    90 V. K. Kinra, J. E. Bishop. Elastothermodynamic Damping in Particulate Composites: Hollow Sphere Inclusions. J. Applied Mechanics. 1997, 64: 111~115
    91 K. Maslov, V. K. Kinra, B. K. Henderson. Elastodynamic Response of a Coplanar Periodic Layer of Elastic Spherical Inclusions. Mechanics of Materials. 2000, 32: 785~795
    92 J. E. Bishop, V. K. Kinra. Elastodynamic Damping in Laminated Composites. Int. J. Solids Structures. 1997, 34(9): 1075~1092
    93 S. D. Panteliou, A. D. Dimarogonas. Thermodynamic Damping in Porous Materials with Ellipsoidal Cavities. J. Sound and Vibration. 1997, 201(5): 555~565
    94 S. D. Panteliou, T. G. Chondros, V. C. Argyrakis. Damping Factor as an Indicator of Crack Severity. Journal of Sound and vibration. 2001, 241(2): 235~245
    95 M. N. Ludwigson, R. S. Lakes, C. C. Swan. Damping and Stiffness of Particulate Sic-InSn Composite. J. Composite Materials. 2002, 36(19): 2245~2254
    96 S. K. Srivastava, B. K. Mishra, S. C. Jain. Effect of Imperfect Interfaces on Elastothermodynamic Damping of Particulate Metal-Matrix Composites. J. Reinforced Plastics and Composites. 2001, 20(1): 37~51
    97 M. J. Silver, D. Peterson, R. S. Erwin. Predictive Thermoelastic Damping in Beams Using Finite Element Techniques. American Institute of Aeronautics and Astronautics. 2002, 1729: 1~10
    98 J. M. Kenny, M. Marchetti. Elasto-Plastic Behavior of Thermoplastic Composite Laminates under Cyclic Loading. Composite Structures. 1995, 32: 75~82
    99 U. E. Eloss. Factor of Viscoelastically Damped Beam Structures. J. Acoust. Soc. Am.. 1962, 34(8): 1082~1089
    100 R. Plunkett. Damping Analysis: an Historical Perspective. M3D: Mechanics and Mechanisms of Material damping, ASTM STP1169. American Society for Testing and Materials, Philadelphia. 1992, 562~569
    101 D. J. Hourston,M. G. Huson, J. A. Meeluskey. Semi- and Fully Interpenetrating Polymer Networks Based on Polyurethane-Polyacrylate SystemⅥ. Polyurethane-Poly (methyl Acrylate-co-Ethyl Acrylate) Semi-Interpenetrating Polymer Networks. Journal of Applied polymer Science. 1986, 32: 3881~3891
    102 A. A. Donatelli, L. H. Sperling. D. A. Thomas. A Semi-empirical Derivation of Phase Domain Size in Interpenetrating Polymer Networks. Journal of Applied polymer Science. 1977, 21: 1189~1197
    103 J. K. Yeo, L. H. Sperling, D. A. Thomas. The Critical Prediction of Domain Size in IPN’s and Related Materials. Polymer. 1983, 24(5): 307~313
    104 J. J. Fay, C. J. Murphy, D. A. Thomas, L. H. Sperling. Effect of Morphology, Crosslink Density, and Miscibility on Interpenetrating Polymer NetworkDamping Effectiveness. Polym. Eng. Sci.. 1991, 31(24): 1731~1741
    105 D. Sophiea, D. C. Klempner, V. Sendijarevic. Damping Properties of EP/PU Interpenetrating Polymer Networks. Adv. Chem. Ser.. 1994, 239: 39~48
    106 D. J. Hourston, F. U. Schafer. Polyurethane/Polystyrene One-Shot Interpenetrating Polymer Networks with Good Damping Ability: Transition Broadening Through Cross-Linking, Internetwork Grafting and Compatibilization. Polym. Adv. Tech.. 1996, 7(4): 273~280
    107 D. J. Hourston, F. U. Schafer. Poly (ether urethane)/Poly (ethyl methacrylate) IPNs with High Damping Characteristics: The Influence of the Crosslink Density in Both Networks. Journal of Applied polymer Science. 1996, 62(12): 2025~2037
    108 Y. C. Chern, W. F. Pan. Damping Characteristics of Modified EP/PUR IPN Materials. Journal of Materials Science. 1997, 32(13): 3052~3061
    109 J. M. Windmaier, S. Drillieres. Relationships Between Polymerization Activating Systems and Viscoelastic Properties of the Subsquent Polyurethane/Poly (tert-butyl acrylate) Interpenetrating Polymer Networks. Journal of Applied polymer Science. 1997, 63: 950~959
    110黄光速,何其佳,江潞霞.聚苯基硅氧烷/聚丙烯酸酯同步互穿网络聚合物阻尼材料的研究.高分子材料科学与工程. 2001, 17(2): 133~136
    111晏欣,姚树人. PVA/PBA乳胶互穿聚合物网络阻尼材料的研究.高分子材料科学与工程. 2003, 19(6): 92~96
    112 H. H. Chu, C. M. Lee, W. G. Guang. Damping of Vinyl Acetate-n-Butyl Acylate Copolymers. Journal of Applied polymer Science. 2004, 91(3): 1396~1403
    113吴培熙,张留成.聚合物共混改性.轻工业出版社, 1998: 381~383
    114李沛龙,戴圣龙.低密度阻尼金属/金属复合体材料的组织与性能研究.材料工程. 1999, 5: 12~15
    115陈兵勇,马国富,阮家声.宽温域高阻尼橡胶材料的研究进展.世界橡胶工业. 2004, 31(11): 33~37
    116 E. J. Buckler, L. M. Kristensen. Filled-Polystyrene Laminates. Rubber Age. 1967, 99(3): 67~76
    117唐冬雁.互穿聚合物网络/钛酸钡高阻尼复合材料的制备及性能研究.哈尔滨工业大学博士学位论文. 2001:10
    118 S. D. Adams, M. R. Meheri. Dynamic Flexural Properties of Anisotropic FibrousComposites Beams. Composites Science and Technology. 1994, 50(4): 497~514
    119 J. Fujimoto, T. Tamura. Optical Coherence Tomography of Glass Reinforced Polymer Composites. Composite Materials. 1999, 4: 365~374
    120 I. C. Finegan, C. Ioana, R. F. Gibson, F. Ronald. Analytical Modeling of Damping at Micromechanical Level in Polymer Composites Reinforced with Coating Fibers. Composites Science and Technology. 2000, 60(7): 1077~1084
    121范永忠,孙康,吴人洁.环氧树脂混杂复合材料的阻尼性能研究.功能材料. 2000, 3(31): 94~96
    122 H. Kishi, M. Kuwata, S. Matsuda, T. Asami, A. Murakami. Damping Properties of Thermoplastic-Elastomer Interleaved Carbon Fiber-Reinforced Epoxy Composites. Composites Science and Technology. 2004, 64: 2517~2523
    123张文,陈长勇.氧化锌晶须/环氧树脂复合材料减振性能.青岛化工学院学报. 1998, 19(4): 361~364
    124 C. F. Wu, Y. S. Otani, N. Namiki, H. Emi, K. Nitta. Phase Modification of Acrylate Rubber/Chlorinated Polypropylene Blends by a Hindered Phenol Compound. Polymer Journal. 2001, 33(4): 322~329
    125秦东奇,王静媛,于小强,李峰,汤心颐. PU/PMMA IPN的阻尼行为研究.高分子材料科学与工程. 2000, 16(5): 95~98
    126 S. T. Kang, S. I. Hong, C. R. Choe, M. Park, S. H. Rim, J. Y. Kim. Preparation and Characterization of Epoxy Composites Filled with Functionalized Nanosilica Particles Obtained via Sol-Gel Process. Polymer. 2001, 42: 879~887
    127杨亦权,杜淼,郑强.新型高聚物阻尼材料研究进展.功能材料. 2002, 33(3): 234~236
    128 M. Hori, T. Aoki, Y. Ohira, S. Yano. New Type of Mechanical Damping Composites Composed of Piezoelectric Ceramics, Carbon Black and Epoxy Resin. Composites. 2001, 32: 287~290
    129张诚盛,江峰,吴鸿飞,徐意.聚合物阻尼材料研究进展.浙江工业大学学报. 2005, 33(1): 83~87
    130 G. Wu, T. Miura, S. Asai, M. Sumita. Carbon Black-Loading Induced Phase Fluctuations in PVDF/PMMA Miscible Blends: Dynamic Percolation Measurements. Polymer. 2001, 42: 3271~3279
    131 M. Sumita, T. Tokushima. Piezoelectric Dispersion Type Organic Damping Composite. U S 6002196, 1999
    132翟彤,周成飞,郭建梅,曹巍,曾心苗.聚氨酯泡沫材料的多层复合及其吸声性能研究.功能材料(增刊). 2007, 38: 3732~3734
    133黄学辉,唐辉,陶志南.高性能聚氨酯基多孔复合吸声材料的研究.材料导报. 2007, 21(6): 152~154
    134 B. Castagnede, A. Moussatov, D. Lafarge, M. Saeid. Low Frequency in Situ Metrology of Absorption and Dispersion of Sound Absorbing Porous Materials Based on High Power Ultrasonic Non-Linearly Demodulated Waves. Applied Acoustics. 2007, 10:246~257
    135 H. Zhou, B. Li, G. S. Huang. Sound Absorption Behavior of Multiporous Hollow Polymer Micro-Spheres. Materials Letters. 2006, 60: 3451~3456
    136 L. Jaouen, A. Renault, M. Deverge. Elastic and Damping Characterizations of Acoustical Porous Materials: Available Experimental Methods and Applications to a Melamine Foam. Applied Acoustics. 2008, 69(121):1129~1140
    137 S. D. Panteliou, A. D. Dimarogonas. Damping Associated with Porosity and Crack in Solids. Theoretical and Applied Fracture Mechanics. 2000, 34: 217~223
    138李开明.复合高阻尼材料减振效能的研究.空间电子技术. 2004, 1: 42~54
    139 F. S. Liao, A. C. Su, T. C. Hsu. Vibration Damping of Interleaved Carbon Fiber-Epoxy Composite Beams. J. Comp. Mater.. 1994, 28(18): 1840~1854
    140 A. Trego, D. Eastman. Flexural Damping Predications of Mechanical Elements Designed Using Stress Coupled, Cocured Damping Fiber Reinforced Composites. J. Advanced Materials. 1999, 31(1): 7~17
    141 K. Moser, M. Lumassegger. Increasing the Damping of Flexural Vibration of Laminated FPC Structures by Incorporation of Soft Intermediate Piles with Minimum Reduction of Stiffness. Comp. Struct.. 1988, 10: 321~333
    142 D. D. L. Chung. Structural Composite Materials Tailored for Damping.. Journal of Alloys and Compounds. 2003, 355: 216~213
    143 A. Lumsdaine, R. A. Scott. Shape Optimization of Unconstrained Viscoelastic Layers Using Continuum Finite Elements. Journal of Sound and Vibration. 1998, 216(1): 29~52
    144 S. Donald. J. O. Gardner, K. Kazue, M. Yutaka, T. V. Quat. Encapsulated Copper Interconnection Devices Using Sidewall Barriers. Thin Solid Films. 1995, 262: 104~119
    145张继新.复合型环氧灌封材料的应用.航天工艺. 1994, 3: 28~30
    146刘晓冬.环氧树脂灌封材料的制备及研究.哈尔滨工程大学硕士论文. 2005: 30~31
    147王宗明,何欣翔,孙殿卿.实用红外光谱学.石油化学工业出版社, 1978: 35~38
    148花荣,刘文忠,张磊.应用粘弹分析仪检测层压复合钢板的阻尼性能.理化检测-物理分册. 1997, 33(1): 31~32
    149 S. R. Hartshorn. Structural Adhesives Chemistry and Technology. Plenum Press, 1986: 230~233
    150波恩,沃耳夫,著.光学原理.杨蕸荪,译.科学出版社, 1978: 498~520
    151沃丁柱著.复合材料大全.化学工业出版社, 2000: 134~136
    152 J. N. Wei, H. F. Cheng, C. L. Gong, F. S. Han, J. P. Shui. Effects of Macroscopic Pores on the Damping Behavior of Foamed Commercially Pure Aluminum. Metall. Mater. Trans. A. 2002, 33: 3565-3568
    153 D. Zhang, X. Q. Xie, T. X. Fan, T. Okabe, T. Hirose. Morphology and Damping Characteristics of Woodceramics. J. Mater. Sci.. 2002, 37: 4457~4463
    154 T. Sakamoto, K. Shibata, K. Takanashi, M. Owari, Y. Niher. Analysis of Surface Composition and Internal Structure of Fly Ash Particles Using an Ion and Electron Multibeam Microanalyzer. Applied Surface Science. 2003, 203~204: 762~771
    155窦作勇.空心球/Al多孔材料阻尼与冲击吸能行为及其机理研究研究.哈尔滨工业大学博士学位论文. 2008: 37~41
    156汪仕元,雍志华,李娟.多孔材料的密度测试方法探讨.实用测试技术. 2002, 28(5): 16~17
    157李云凯,王勇,高勇,钟家湘.粉煤灰空心微珠性能的测试研究.硅酸盐学报. 2002, 30(5): 664~667
    158 E. W. Andrews, L. J. Gibson. The Influence of Cracks, Notches and Holes on the Tensile Strength of Cellular Solids. Acta Mater.. 2001, 49: 2975~2979
    159 F. H. Chung. Quantitative Interpretation of X-Ray Diffraction Patterns of Mixtures. J. Appl. Cryst.. 1974, 1:526~531
    160 J. F. Shackelford, W. Alexander. The CRC Materials Science and Engineering Handbook. CRC Press, 1992: 436~438
    161 J. Z. Liang. Toughening and Reinforcing in Rigid Inorganic Particle Filled Polypropylene: A Review. J. Appl. Polym. Sci.. 2002, 83: 1547~1555
    162翟冠杰,姜建壮,于梅,刘兴华,安宁,魏兴国.漂珠纳米结构对阻热的贡献研究.粉煤灰. 2005, 17(1): 28~30
    163徐风广.粉煤灰中漂珠的物性研究与应用.中国矿业. 2002, 11(6): 43~45.
    164沈光明.高强度Al2O3空心球制品在高温窑中的应用.陶瓷工程. 1999, 33(3): 23~24
    165王家邦,杨辉,陈桂华.陆静娟.原位合成纳米氧化铝烧结助剂制备轻质氧化铝陶瓷.硅酸盐学报. 2003, 31(2): 133~137
    166 J. Wellborn, W. William. Manufacture of Alumina Bubble to Provide Favorable Properties in Uses to 1700℃. Industrial Heating. 1994, 61: 50~52
    167 M. T. Aronhime, X. Peng, J. K. Miller. Effect of Filler on the Curing Process of Epoxy Resin. Appl. Polymer. Sci.. 1986, 32: 3589~3626
    168 V. L. Zvetkov. Comparative DSC Kinetics of the Reaction of DGEBA with Aromatic Diamines. I. Non-Isothermal Kinetic Study of the Reaction of DGEBA with M-Phenylene Diamine. Polymer. 2001, 42(16): 6687~6697
    169 S. Montserrat, J. G. Martin. Non-Isothermal Curing of a Diepoxide Cycloaliphatic Diamine System by Temperature Modulated Differential Scanning Calorimetry. Thermochim. Acta. 2002, 388: 343~354
    170 S. Montserrat, F. Roman, P. Colomer. Vitrification and Dielectric Relaxation during the Isothermal Curing of an Epoxy-Amine Resin. Polymer. 2003, 44(1): 101~114
    171刘祥查,陆路德,杨绪杰,等.热分析法研究复合纳米TiO2催化酸酐/环氧树脂固化特性.热固性树脂. 2000, 15(1): 26~29
    172 H. E. Kissinger. Reaction Kinetics in Different Thermal Analysis. Anal. Chem.. 1957, 29: 1702~1706
    173 C. Lue, Z. Cui, B. Yang, X. Su, C. Huo, J. Shen. Polymerization Mechanisms and Curing Kinetics of Novel Polymercaptan Curing System Containing Epoxy/Nitrogen. J. Appl. Polym. Sci.. 2002, 86: 589~595
    174陈小庆,王岚,黄培,时钧.螺环原碳酸酷/环氧树脂体系固化反应动力学.热固性树脂. 2005, 20(3): 23~26
    175赵敏,高俊刚,李刚.纳米SiO2/邻甲酚醛环氧树脂复合材料的性能与固化特性.塑料工业. 2004, 32(9): 11~16
    176 D. Rosu, C. N. Cascaval,F. Mustata, C. Ciobanu. Cure Kinetics of Epoxy Resins Studied by Non-Isothermal DSC Data. Thermochim. Acta.. 2002, 383: 119~127
    177 J. H. Flynn, L. A. Wall. A Quick Direct Method for the Determination ofActivation Energy from Thermogravimetric Data. J. Polym. Sci. Part B. 1966, 4: 323~328
    178 L. W. Crane, P. J. Dynes, D. H. Kaelble. Analysis of Curing Kinetics in Polymer Composites. J. Polym. Sci. Polym. Lett. Ed.. 1973, 11: 533~540
    179 K. de la Caba, P. Guerrero, I. Mondragon, J. M. Kenny. Comparative Study by DSC and FTIR Techniques of an Unsaturated Polyester Resin Cured at Different Temperatures. PoIym. Int.. 1998, 45(4): 333~338
    180 K. H. Hsieh, J. L. Han. Graft Interpenetrating Polymer Networks of Polyurethane and Epoxy. I. Mechanical Behavior. Journal of Polymer Science. 1990, 28: 625
    181 T. I. Kadurina, V. A. Prokopenko. Curing of Epoxy Oligomers by Isocyanates. Polymer. 1992, 33: 3860
    182朱昌明.聚氨酯合成材料.江苏科学技术出版社, 1992: 30~42
    183张东兴,黄龙男,王荣国,王洋.硅烷偶联剂的对滑石粉、空心微珠表面改性的研究.纤维复合材料. 2000, 2(10): 10~12
    184 R. Leboda, V. M. Gunko, M. Marciniak, A. A. Malygin, A. A. Malkin, W. Grzegorczyk, B. J. Trznadel, E. M. Pakhlov, E. F. Voronin. Structure of Chemical Vapor Deposition Titania/Silica Gel. J. Colloid Interface Sci.. 1999, 218(1): 23~39
    185 B. Mouanda. Grafting Polyvinylimidazole onto Silicon Wafers via a Copolymer of Methacrylate Epoxy and Methacrylate-Functional Silane Coupling Agents. Polymer. 1997, 38: 5301~5306
    186 A. C.Miller, J. C. Berg. Effect of Silane Coupling Agent Adsorbate Structure on Adhesion Performance with a Polymeric Matrix. Composites Part A: applied science and manufacturing. 2003, 34: 327~332
    187高红云,张招贵.硅烷偶联剂的偶联机理及研究现状.江西化工. 2003, 2: 30~34
    188 B. Arkles. Tailoring Surfaces with Silanes. Chem. Tech.. 1977, 7: 764~770
    189 W. J. Van Oij, T. F. Child. Protecting Metals with Silane Coupling Agents. Chem.. 1998, 28(2): 26~35
    190 T. F. Child, W. J. Van Ooij. Application of Silane Technology to Prevent Corrosion of Metals and Improve Paint Adhesion. Trans IMF. 1999, 77(2): 64~70
    191 L. J. Gibson, M. F. Ashby. Cellular Solids: Structure and Properties. Second Edition. Cambridge University Press. 1997: 232~238
    192 P. Sepulveda. Gelcasting Foams for Porous Ceramics. The American Ceramic Society Bulletin. 1997, 76(10): 61~68
    193宝鸡有色金属研究所编.粉末冶金多孔材料.第一版.冶金工业出版社, 1979: 6
    194刘培生.多孔材料孔率的测定方法.钛工业进展. 2005, 22(6): 34~37
    195郑亚萍,马瑞,夏印平.粉末涂料用有机硅改性环氧树脂的研究.热固性树脂. 2005, 20(3): 39~41
    196 G. H. Wu, J. Gu, X. Zhao. Preparation and Dynamic Mechanical Properties of Polyurethane Modified Epoxy Composites Filled with Functionalized Fly Ash Particulates. Journal of Applied Polymer Science. 2007, 105: 1118~1126
    197 P. Cousin, P. Smith. Dynamic Mechanical Properties of Sulfonated Polystyrene/Alumina Composites. Journal of Polymer Science Part B: Polymer Physics. 1994, 32: 457~466
    198 C. H. Qin, W. M. Cai, J. Cai, D. Y. Tang, J. S. Zhang, M. Qin. Damping Properties and Morphology of Polyurethane/Vinyl Eater Resin Interpenetrating Polymer Network. Materials Chemistry and Physics. 2004, 85: 402~409
    199 B. J. Ash, L. S. Schadler, R. W. Siegel. Glass Transition Behavior of Alumina/Polymethylmethacrylate Nanocomposites. Materials Letters. 2002, 55: 83~87
    200 E. S. A. Rashid, K. Ariffin, C. C. Kooi, H. M. Akil. Preparation and Properties of POSS/Epoxy Composites for Electronic Packaging Applications. Materials Design. 2009, 30: 1~8
    201刘建英,徐平,于英华.泡沫铝复合材料的制备及阻尼性能.煤矿机械. 2004, 5: 33~35
    202 B. J. Lazan. Damping of Materials and Members in Structural Mechanics. Pergamon Press, 1968: 56
    203 Z. Hasin. The Elastic Moduli of Heterogeneous Material. J. Appl. Mech. Trans. ASME. 1964, 6: 536~544
    204 C. F. Zorowski, T. Murayama. Processing 1st of International Conference on Mechanical Behavior of Materials. Society of Materials Science, Kyoto, Japan. 1972: 5
    205 S. N. Goyanes, P. G. Konig, J. D. Marconi. Dynamic Mechanical Analysis of Particulate-Filled Epoxy Resin. Journal of Applied Polymer Science. 2003, 88: 883~892
    206 S. P. Rawal, J. H. Armstrong, M. S. Misra. Damping Characteristics of Metal Matrix Composites. AD-A213 712. 1989
    207 J. A. DiCarlo, J. E. Maisel. Testing and Design. ASTM STP 674, 1979: 201
    208 J. A. DiCarlo, J. E. Maisel. Advanced Fibers and Composites for Elevated Temperatures. Pennsylvania: AIME. 1980: 55
    209 J. W. Cahn. Interfacial Free Energy and Interfacial Stress: the Case of an Internal Interface in a Solid. Acta Metallurgy Materials. 1989, 37: 773~776
    210叶恒强著.材料界面结构与特性.科学出版社, 1999, 1: 97
    211顾敏.喷射共沉积颗粒增强铝基复合材料阻尼特性的研究.郑州大学博士学位论文. 2003: 115
    212 P. K. Kolay, D. N. Singh. Physical, Chemical, Mineralogical, and Thermal Properties of Cenospheres From an Ash Lagoon. Cement. Concre. Res.. 2001, 31: 539~542
    213 A. I. Eller. Damping Constants of Pulsating Bubbles. J. Acoust. Soc. Am.. 1970, 47: 1469~1470
    214 J. Zhang, R. J. Perez, E. J. Lavernia. Effect of SiC and Graphite Particulates on the Damping Behavior of Metal Matrix Composites. Acta Metallurgy Materials. 1994, 42(2): 395~409
    215 Q. Zhang, G. H. Wu, G. Q. Chen, L. T. Jiang, B. F. Luan. The Thermal Expansion and Mechanical Properties of High Reinforcement Content SiCp/Al Composites Fabricated by Squeeze Casting Technology. Composites Part A. 2003, 34: 1023~1027
    216 A. S. Bicos, C. Johnson, P. Davis. Need for and Benefits of Launch Vibration Isolations. SPIE Proceedings. 1997, 3045: 14 ~19
    217 P. S. Wilke, C. D. Johnson, E. R. Fosness. Payload Isolation Dystem for Launch Vehicles. SPIE Proceedings. 1997, 3045: 20~30
    218张军,堪勇,华宏星,张志谊.卫星减振的试验研究.应用力学学报. 2006, 23(1): 76~79
    219杜华军,于百胜,郑钢铁,黄文虎.蜂窝锥壳卫星适配器约束阻尼层振动抑制分析.应用力学学报. 2003, 20(3): 5~9
    220潘坚,雷冶大.阻尼减振技术在航天领域中的实践.宇航材料工艺. 1991, (4): 87~90
    221 J. C. Slater, W. K. Belvin, D. J. Inman. Survey of Modern Methods for Modeling Frequency Dependent on Damping Infinite Element Models. Proceedings of SPIE-The International Society for Optical Engineering, Kissimmee, FL, USA: The International Society for Optical Engineering. 1993: 1508~1512
    222 E. E. Ungar, E. M. Kerwin. Loss Factors of Viscoelastic Systems in Terms of Energy Concepts. Journal of Acoustical Society of America. 1962, 34(2): 954~958
    223 C. D. Johnson, D. A. Kienholz. Finite Element Prediction of Damping in Structures with Constrained Viscoelastic Layers. AIAA Journal. 1982, 20(9): 1284~1290
    224张海燕.复合夹层板结构动力特性研究.武汉理工大学硕士学位论文. 2005: 26
    225王威远,王聪,魏英杰,邹振祝.复合材料蜂窝结构锥形壳振动传递特性试验研究.工程力学. 2007, 24(7): 1~5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700