恒流特性埋弧焊的机电一体动力学模型与电弧稳定机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
埋弧焊(Submerged arc welding /SAW)以其高效率的特点广泛应用在许多工业场合。多丝焊接也主要采用埋弧焊工艺,多丝焊接又可以分为多电源多丝焊接和单电源多丝焊接两种,单电源多丝焊接工艺中由于焊接电源只有一个,或者说总的热输入量是有限的,焊丝在导电嘴中的摆放位置主要用于热的分布分配。多电源多丝焊接工艺中几个焊丝在一个熔池内燃烧,总的热量输入是单丝焊接热量输入的若干倍,使单位时间内金属的熔化量大大提高,从而可以明显提高焊接生产率。本文所讨论的多丝焊接是指这种多电源多丝焊接。
     近些年,一种新型的电子控制的焊接电源,开关模式焊接电源出现在许多工业应用领域。这种焊接电源的外特性可以很好的控制为恒压或恒流特性,本文将研究这种电源组成的埋弧焊接系统的电弧动力学模型与稳定机理。
     一个埋弧焊接系统主要由三部分组成:用于提供热源的焊接电源;用于控制焊接速度的行走机构;用于调节和控制焊接电压和电弧的控制箱。在焊接过程中,焊丝一边连续不断的燃烧,一边由送丝机不断地把焊丝送到燃烧区,两者之间只有达到动态平衡状态才能形成良好的焊缝。在焊接电弧的引弧阶段,电弧从产生到稳定也要经过一段时间的暂态过渡。本文以焊接电弧电压为主要参数,结合焊接电源、送丝机、以及具有PWM控制特性的送丝机电源,建立了具有恒流特性自动埋弧焊接过程中的机(送丝机)电(焊接电弧)一体化动力学模型。模型准确地反映了焊丝在一边燃烧、一边送进过程中的动态平衡关系。模型中得到一个复合时间常数,该常数不仅与控制电路特性有关,也与送丝机特性、电弧特性有关。从理论上为后续自动埋弧焊接的数字化控制奠定了基础。论文通过拉扑拉斯变换从S域对系统模型进行了稳定性分析。
     由于焊接电源极性的不同以及强电磁场的存在,焊接过程中焊接电源之间的相互隔离、电弧之间的相互协同配合成为多丝焊接协同控制器需要主要考虑的问题。根据上述特点和要求,除了采用传统的继电器隔离技术和变压器隔离技术外,选择光隔离技术作为各电源之间信号/命令的传输媒体,明显提高了系统的抗电磁干扰能力,也提高了系统的灵活性、减小了设备的体积。另一方面,机械设备的数字化和智能化已经成为当今工业社会的主要发展趋势,论文提出了一种适用于多台设备同步协调控制的程序结构,即任务-作业-进程程序结构。在这种程序结构下,多设备的数字化同步控制变的清晰明了。
     根据理论,设计了模块结构的多丝焊接协同控制电路,电路布置在一个20cm*30cm的PCB(印刷线路板)板上。电路中包括两个方便控制的共地式Buck结构直流/直流电源,一个用于焊接速度(即行走小车)的控制,一个用于电弧和送丝速度的动态平衡控制。论文还报告了一种基于集成电路SG3525的PWM信号发生器及其调节方法、比例放大器系数的整定与选择、复合时间常数的估计与设计等。在实际设计的控制电路中,还考虑了几个子焊接系统的级联问题、电源的软启动和过流保护、电弧收弧阶段防止焊丝插入熔池的控制方法等。
     根据实验结果,双丝焊的焊接速度可以提高到1.4-2.0(m/min),三丝焊的焊接速度可达到2.5-2.8(m/min),符合理论分析结果和有关文献报道的结果。
Submerged arc welding (SAW) is a popular welding method used in many industrial fields because it has the property of high productivity. The technique of multi-electrode welding, or multi-wire welding, is commonly used in submerged welding processing. Multi-electrode welding can also be classified into two groups, single-power-supplied (SPS) multi-electrode welding and multi-power-supplied (MPS) multi-electrode welding. In SPS multi electrode welding system, the heat supplied from one single power, the total heat input being limited in a definite value, wires are used for heat distribution in welding processing. In MPS multi-electrode system, two or more welding arcs burning in one molten pool, the heat input is several times of single power supply. It greatly incases the welding productive because the amount of melting metal in a unit time is increased. In this paper, we refer to this kind of welding scheme as multi-electrode welding.
     In recent years, a new type of electronic controlled welding power supplies, switch-mode welding power is emerged and used in industrial field. The output character of this power can be well controlled ether in constant voltage (CV) mode or in constant current mode (CC). The dynamic model and the stability of welding arc under this power supply in submerged arc welding are studied in this paper.
     Generally, a submerged welding system consists of three parts, a power supply for heat input, a bogie for welding speed control, and a control unit for welding arc adjusting. In the welding processing, wire is burned in the arc, and is sent into the arc by the wire feeder at same time. A smooth welding seam could be obtained only if a balance were reached between the speed of wire burning and the speed of wire sending. In the period of arc initiation, a transient is existed from the time of arc igniting to the time of arc stable. Taking welding arc voltage as major a parameter, cooperated with power supply and wire feeder, an electron-mechanical dynamic model of submerged arc welding in constant current condition is established. Under this model, the balance relationship between wire burning and wire sending is depicted. A compound time constant, which is derived from control circuit, wire feeder, and welding arc, is obtained. It is the theoretical foundation for the further designing of numerical controller. The stability of the system is analyzed in S domain through Lap lace’s transformation.
     Due to the defference of electronic poles in defferent power supplies and the electron-magnetic interference (EMI) in multi-electrode system, the isolation schemes among powers and the coordination method among arcs become the major problems which need to be solved in multi-electrode welding. According to the character and request above, optical isolation technique is used for the transmission of signals or instructions among equipments besides the traditional relay- and transformer-isolation schemes. The ability of anti-EMI of the system is increased. And it also enhances the adaptability and reduces the bulk of the system. Furthermore, the trend today goes towards numerical equipments in mechanical field. A task/job/procedure program structure for several devices working coordinately is reported in the paper. Under this structure, the method of numerical synchronization for several devices becomes easy and clear.
     Based on the theory, a module structured multi-electrode welding coordinate control circuit, which is placed on a 20cm*30cm printed circuit board (PCB), is designed. Two DC-DC converters, which derived from Buck converter but power ground and gate drive signals ground are common earthed, are designed on it. One is designed for the bogie speed control, and another is for the balance of welding arc and wire feeder control. The principle of a pulse width modulation (PWM) generator and its adjusting method based on integrated circuit SG3525 is reported. The method of the parameters selection of operation amplifier, estimate and design of time constant, are reported as well. Some of the specific questions, such as the method of series connection of several sub-systems, soft start, over current protection, and the prevention of wire inserting into the molten pool during wind up are discussed.
     According to the experimental results, the welding speeds reached to 1.4-2.0(m/min.) in double-wire welding, and to 2.5-2.8(m/min.) in three-wire welding. The results tally with the theoretical analysis, as well as the reported results in some related references.
引文
[1]胡斌.高生产率多丝埋弧自动焊[J].造船技术, 1997(2)(总第204期):38-40
    [2] Tusek J. SAW with multiple electrodes achieves high production rates[J],Welding Journal.1996,75 (8):41-43
    [3] Tusek J. Raising arc welding productivity. Weld Review International[J],1996(8):102-105
    [4]李培麟,陆皓.多丝埋弧焊工艺条件对热源参数的影响[J].焊接学报, 2011,32(6):13-16
    [5]吕艳丽,华学明,叶定剑,等.多丝气体保护焊电弧干扰研究现状[J].热加工工艺,2011,40(5):155-158
    [6]魏占静.德国克鲁斯(CLOOS)的高效焊接技术[EB/OL]. http://www. jvdbwelds. com.cn/2003
    [7] Okui, Nobuyuki, Ohga, Susumu, et al. Study on high speed fillet welding by Tandem Arc MAG Process[J]. Quarterly Journal of the Japan Welding Society, 2000,18(4): 555-562
    [8] Jeff Nadzam. Tandem GMAW Offers Quality Weld Deposits, High Travel Speeds [J]. Welding Journal,2003,(11):28-31
    [9] Tim Morehead. Automatic Multiwire GMAW Multiplies Productivity [J]. Welding Journal, 2003, (6): 40-43
    [10] D.Sc.Janez Tusek. Mathematical modeling of melting rate in twin-wire welding [J].Materials Processing Technology, 2000, 100: 250-256
    [11] Ken Michie, Stephen Blackman and T.E.B.Ogunbiyi. Twin-wire GMAW: Process Characteristics and Applications [J]. Welding Journal. 1999.78(5): 31-34
    [12]杨春利,刚铁,林三宝,等.高强铝合金厚板双丝MIG焊工艺的初步研究[J].中国有色金属学报, 2004, 14(5): 259-264
    [13]徐文立,孟庆国,方洪渊,等.高强铝合金板双丝焊温度场[J] .焊接学报,2004, 25(3):11-14
    [14]孟庆国,方洪渊,徐文立,等.双丝焊热源模型[J] .机械工程学报, 2005, 41(4):110-113
    [15]孟庆国,方洪渊,徐文立,等.铝合金双丝焊应力场的数值模拟[J].焊接学报,2005,26(8):43-46
    [16]孟庆国,方洪渊,徐文立,等. 2219铝合金双丝焊热影响区组织及力学性能[J] .焊接学报, 2006, 27(3): 9-13
    [17]范成磊,杨春利,程士军,等. 2519高强铝合金双丝MIG焊接接头时效弱化研究[J] .焊接, 2005(11): 24-27
    [18]王元良,屈金山,胡久富,周友龙.高效节能的细丝双丝自动焊接研究[J].焊接技术,2000,29(增刊):39-42
    [19]冯曰海,周方明,蒋成禹.双弧焊接工艺研究现状及发展[J].焊接,2002(1):5-9
    [20]彭云,陈武柱,许祖泽.管线钢大电流双面高速埋弧焊接用焊丝研制[J].焊接学报,2001, 22(2):62-66
    [21]高洪明,吴林.提高焊接生产率的途径[J].焊接, 2000(2):6-10
    [22] H. L. Tsai, Y. S. Tarng and C. M. Tseng. Optimization of Submerged Arc Welding Process Parameters in Hard facing [J].International Journals of Advanced Manufacture Technology, 1996,12:402-406
    [23] Rehfeldt D, Thomas Schmitz. Assessment of the characteristics of power sources for metal-active gas welding [J]. Welding and Cutting, 1996, 48(5):84-87
    [24]刘金合.高能密度焊[M].西安:西北工业大学出版社,1994
    [25]金一鸣,张齐.互补MOSFET的脉冲变压器隔离驱动电路设计[J].微计算机信息,2006, Vol.22(2):94-96
    [26]成都电焊机研究所.焊接设备选用手册[M].北京:机械工业出版社,2006:144-172
    [27]曾敏,曹彪,黄石生,等.微机控制逆变GMAW-P焊系统的研究[J].华南理工大学学报(自然科学版), 2003, 31(1): 45-47
    [28]李鹤岐,吴荣,路广.单片机控制IGBT逆变埋弧焊接设计[J].电焊机, 2004, 34(10): 1-4
    [29]吴开源,李阳,陆沛涛,等.基于DSP的GMAW-P焊数字化控制系统[J].焊接学报, 2007, 28(11): 41-44
    [30]薛家祥,张晓囡,黄石生. CO2弧焊电源动特性的模糊逻辑推理评定[J].华南理工大学学报, 2000, 28(11): 5-6
    [31] Z. Bingul, G. E. Cook and A. M. Strauss. Application of fuzzy logic to spatial thermal control in fusion welding[J], IEEE Trans. on Industry application, 2000,36(6):1523-1530
    [32] P. Koseeyaporn, G. E. Cook, A. M. Strauss, et al. Adaptive voltage control in fusion arc welding[J], IEEE Trans. on Industry Applications, 2000,36(5):1300-1307
    [33] Tusek J, Suban M .High-productivity multiple-wire submerged-arc welding and claddingwith metal-powder addition[J].Journal of Materials Processing Technology,133 (2003) 207-213
    [34] Skrzypezyk S. Submerged-arc welding in a programmed run [J]. Welding International, 1994, 8(3):173-175
    [35] Uttrachi G D. Multiple electrode systems for submerged arc welding [J]. Welding Journal, 1978, 57(5):15-22
    [36] Hayashi S, Nakajima M.,Yunlaguehi T. High efficiency submerged arc fillet welding process for heavy section joints[J]. Kawasaki Steel Technical Report, 1996 ( 33):7-13
    [37] R.S. Chandel, H.P. Seow, F.L. Cheong.Effect of increasing deposition rate on the bead geometry of submerged arc welds[J].Journal of Materials Processing Technology, 1997 (72) 124-128
    [38]李富强.16Mnq直缝焊管双丝埋弧焊的工艺研究[J].焊管,2000,23(2):16-19
    [39]张绍庆.双丝埋弧焊在螺旋焊管中的应用[J].焊管,1998,21(6):12-15
    [40] Tusek J. Metal-powder twin-wire submerged-arc welding [J]. Welding&Metal Fabrication, 1998, 66 (7):21-24
    [41]梁卫东,马跃洲,高辉云.埋弧自动焊数字控制器设计[J].焊接学报,2004,25(6):54-58
    [42] J. H. Zhang, H. F. Wang. A Novel Welding Inverter Power Source System with Constant Current Output Characteristic Based on Fuzzy Logic Control[C]. Proceedings of the Fifth International Conference on Digital Object Identifier, 18-20 Aug. 2001 1: 567-570
    [43]赖忠民,高飞.几种交流TIG焊电弧稳定性的比较研究[J].江苏科技大学学报(自然科学版), 2006, 20(5):86-89
    [44]殷树言,黄继强,陈树君.方波交流GTAW电弧再引燃机理的研究[J].机械工程学报, 2002,38(3):16-18
    [45]董克权,刘超英,肖奇军.双丝焊温度场仿真的热源模型研究[J].热加工工艺,2006,35(3):49-52, 60
    [46]李迪.用人工神经网络技术对焊缝质量的智能控制[D].广州:华南理工大学,1993: 35-58
    [47]赵冬斌.基于三维视觉传感填丝脉冲GTAW熔池形状动态智能控制研究[D].哈尔滨:哈尔滨工业大学,2000: 113-115
    [48]张广军.视觉传感的变间隙填丝脉冲GTAW对接焊缝成形智能控制[D].哈尔滨:哈尔滨工业大学,2002: 89-96
    [49] I.S.Kim, Y.J.Jeong, I.J.Son, et al. Sensitivity analysis for process parameters influencingweld quality in robotic GMW welding process[J]. Journal of materials processing technology,2003,140:676-681
    [50] Y.S.Tarng, W.H.Yang, S.C.Juang. The Use of Fuzzy Logic in the Taguchi Method for the Optimization of the Submerged Arc Welding Process[J]. International Journel of Advanced Manufacturing Technology, 2000 (16):688-694
    [51] N.Murugana, V.Gunaraj. Prediction and control of weld bead geometry and shape relationships in submerged arc welding of pipes[J]. Journal of materials processing technology, 2005 (168) :478-487
    [52] A. D. Chertov. Use Of Artificial Intelligence Systems In The Metallurgical Industry Survey[J]. Metallurgist, 2003,47(5):257-262
    [53] Evlazarson. Methods of artificial intelligence in welding (Part 2): Collection and formalization of knowledge [J]. Welding Interational, 2003, 17 (12): 966-970
    [54]韦寿祺,黄知超.电子束焊机中线性光电隔离装置的设计[J].电焊机,2003,(33)3: 22-23
    [55]谢元峰.基于ANSYS的焊接温度场和应力的数值模拟研究[D].武汉:武汉理工大学,2006
    [56] Tekriwal P. Finite element analysis of three-dimensional transient heat transfer in GMA welding[J]. Welding Journal, 1988, 67(7):150-156
    [57]莫春立,钱百年,国旭明,等.焊接热源计算模式的研究进展[J].焊接学报,2001,22(3):94
    [58]薛家祥,易志平,方平,等.焊接过程电信号虚拟分析仪的研究[J].机械工程学报,2004,40(2):60-63
    [59] Su J P, Chen T M, Wang C C. Adaptive fuzzy sliding mode control with GA-based laws[J]. Fuzzy Sets and Systems, 2001, 120 (1) :145-158
    [60] Wang C H, Liu H L, Lin T C. Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems .IEEE Transactions on Fuzzy Systems. 2002, 10(1) :39-49
    [61]潘立民(编译),铝合金双丝焊接法的开发[J].焊接技术,1995(6):44-47
    [62]李鹤岐,王新,蔡秀鹏,等.国内外埋弧焊的发展状况[J].电焊机, 2006, 36(4):1-6
    [63]李永兵,王雅生,陈关龙.外加纵向磁场移动焊接熔池流场和传热耦合分析[J].西安交通大学学报,2003,37(5):483-487.
    [64]浣喜明,姚为正.电力电子技术[M].北京:高等教育出版社,2004:5-13
    [65]阎石.数字电子技术基础[M],第四版.北京:高等教育出版社. 2004:403-450
    [66]刘嘉.弧焊逆变电源的数字化控制[D].北京:北京工业大学, 2002
    [67] Jamil A Khan. Numerical thermal model of resistance spot welding in aluminum.Journal of Thermophysics and Heat Transfer[J]. 2000,14(1):88-95
    [68]余燕,吴祖乾.焊接材料选用手册[M].上海:上海科学技术文献出版社,2005:46-54
    [69]王莉,葛平,孙一康.基于模糊RBF神经元网络的冷连轧板形板厚多变量控制[J].北京科技大学学报, 2002, 24(5):556-559
    [70](日)电气学会半导体电力变换系统调查专门委员会.电力电子电路[M].陈国呈译.北京:科学出版社,2003:1-8
    [71] J.B. Liao, M.H. Wu, R.W. Baines. A coordinate measuring machine vision system[J]. Computers in Industry,1999(38): 239-248
    [72]刘焕.嵌入式光隔离开关量输入继电器输出接口卡PM-582及应用[J].电测与仪表,2003,40(4): 53-55
    [73]邓醉杰,叶丽花,黄守道,等.复合励磁永磁同步发电机端电压采样隔离电路-线性光耦HCNR200的应用[J].防爆电机,2006, 41(2):36-38
    [74]张宝生,王念春.基于高线性模拟光耦器件HCNR200的模拟量隔离板[J].仪表技术, 2005(5):59-60
    [75]史学涛,尤富生,季振宇,等.一个双极性的宽带高精度光藕隔离放大器[J].生物医学工程学杂志. 2005,22(5):870-874
    [76]陈强,潘际銮,大岛健司.焊接过程的模糊控制[J].机械工程学报,1995, 31(4):86-91
    [77]李熙岩.埋弧焊自动跟踪在生产中的应用[J].焊接技术, 1997(1):16-17
    [78]孙孝纯. MZ-1000埋弧焊机自动跟踪系统性能的研究[J].电焊机, 1993(5): 12-15
    [79] (日)雨宫好文,松井信行.控制用电机入门[M].王棣棠译.北京:科学出版社,2001.6:49-77
    [80] (日)雨宫好文,妹尾允史著.电子机械控制入门[M].白玉林,商福昆译.北京:科学出版社, 2001:121-148
    [81] (日)正田英介,春木弘著.自动控制[M].卢伯英译.北京:科学出版社, 2002:25-126
    [82]胡绳荪. Fuzzy-P控制超声波传感埋弧焊焊缝的跟踪系统[J].焊接学报, 1998, Vol.19(2):104-109
    [83] Li Liangyu, Wang Yuan, Wu Bolin. Effect of arc on radiation thermometry in welding process[J]. China welding, 2002,11(1):39-41
    [84] Zhang Guodong, Pan Chunxu, Huang Anguo, et al. Calculation of AF transformation kinetics in HSLA steel weld[J]. China welding, 2004, 13(1):46-49
    [85]赵红强,胡登高,李庆,等.直流逆变式氩弧焊机的电源设计[J].变压器, 2005, Vol.42(1):16-19
    [86]杭争翔,殷树言,黄鹏飞.交流脉冲MIG弧焊电源及弧长控制[J].焊接学报, 2003, Vol.24(2):83-85
    [87]杨立军,李俊岳,李桓,等.CO2焊短路过程动特性与外特性的关系[J].焊接学报, 2003, 24(2):31-34
    [88]潘际銮.现代弧焊控制[M].北京:机械工业出版社, 2000:98-120
    [89]贾贵玺,刘金涛,王长风,等.全桥移相零电流弧焊逆变器[J].焊接学报, 2004, 25(3):85-88
    [90]梁卫东,马跃洲,高辉云.埋弧自动焊数字控制器设计[J].焊接学报, 2004, 25 (6):54-57
    [91]蔡立民.MZS-1250型双弧双丝埋弧焊设备及工艺[J].电焊机, 2006, 36(4): 29-31
    [92]唐雪锋,李鹤岐,李春旭,等.逆变埋弧焊机控制系统软件设计[J].电焊机, 2006,36(4):18-21
    [93]吴蓦,许家群,夏文川,等.基于光电隔离继电器的燃料电池堆单片电压检测系统的设计[J].自动化与仪器仪表, 2005(7):38-39
    [94]王其隆.弧焊过程质量实时传感与控制[M].北京:机械工业出版社2000:150-198
    [95]李生田,刘志远.焊接结构现代无损检测技术[M],北京:机械工业出版社,2000:36-49
    [96]林尚杨,陈善本等主编.焊接机器人及其应用[M].北京:机械工业出版社,2000:38-158
    [97] Bauchspiess A, Absi Alfaro Sadek C, Dobrzanski Leszek A. Predictive sensor guided robotic manipulators in automated welding cells[J]. Journal of Materials Processing Technology, 2001, 109(1):13-19
    [98] Pashkevich Anatoly P, Dolgui Alexandre B, Semkin Konstantin I. Kinetic aspects of a robot-positioner system in an arc welding application[J]. Control Engineering Practice,2003, 11(6): 633-647
    [99]薛家祥,余文松,黄石生.模糊逻辑用于弧焊过程的控制[J].电焊机,1999, 29(3):1-4
    [100]董德祥,陶伯华.双丝窄间隙埋弧焊微机控制系统的研究[J].电焊机,1994, 24(2):12-16
    [101] Christensen, N. Distribution of temperatures in arc welding[J]. Brit. Weld Journal, 1965, 12(3): 54-75
    [102]王铁钧,王洪亮,程志国.新型红外焊缝位置检测系统的研制[J].焊接, 2001 (7): 26-27
    [103]赵家瑞,董挺.焊接自动控制基础[M].北京:机械工业出版社,1989: 1-8
    [104]鲍云杰,任平平,陈杰富,等.逆变埋弧焊机及其自动焊系统的数字化控制[J].电焊机, 2006,36(4):25-28
    [105] Chaoying Liu, Shisheng Huang. Program structures and synchronization schemes in numerical coordinate controllers of 3 wire welding[J]. China welding, 2006,15(4):9-12
    [106] Pei Wu, Jiaheng Lu, Wenqi Zhang, et al. Measurement of dynamic resistance in resistance spot welding[C]. Proceedings of CAWE2006, Jinan, China, 19-22 Oct, 2006, 670-673
    [107] Zhentai Zheng,Ping Shan,Shensun Hu, et al. Numerical simulation of gas metal arc welding temperature field[J]. China welding, 2006, 15(4):55-58
    [108]黄石生.弧焊电源及其数字化控制[M].北京:机械工业出版社, 2007. 23-33
    [109]黄石生编著.电子控制的弧焊电源(第一版)[M].北京:机械工业出版社,1991:154-156
    [110]黄石生著.逆变理论与弧焊逆变器(第一版) [M].北京:机械工业出版社, 1995:87-95
    [111]黄石生.现代焊接电源及设备[M].广州:华南理工大学出版社. 1994:20-29
    [112]黄石生.弧焊电源[M].北京:机械工业出版社,1980
    [113]黄石生.新型弧焊电源及其智能控制[M].北京:机械工业出版社,2000
    [114]陈丙森主编.计算机辅助焊接技术[M].北京:机械工业出版社. 1999:56-172
    [115]赵朋成.双丝共熔池GMAW焊接熔池热场和流场的数值模拟[D].广州:华南理工大学,2006
    [116]赵熹华,王宸煜.专家系统在焊接中的应用及发展趋势[J].焊接, 1998, (8):2-6
    [117]彭金宁,陈丙森.焊接专家系统在我国的发展[J].焊接, 1993(11): 2-6
    [118]韩国明.焊接工艺理论与技术[M].北京:机械工业出版社,2007:77-78
    [119]璩克旺,陶生桂.开关电源的隔离技术[J].通信电源技术,2003, 8:17-19
    [120]张炳范.焊接最优化基础[M].天津大学出版社,1990.11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700