霍金辐射和黑洞熵
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从上世纪70年代发现霍金辐射至今,对黑洞的研究已经取得了长足的进展。虽然尚未确证黑洞的存在,但对黑洞的理论研究已经揭示出一些涉及物理学和哲学基本观念的问题,具有划时代的意义。
     论文首先介绍了霍金辐射出现的的历史背景及其所带来的信息疑难问题,即量子纯态演化为热混合态,违背了量子力学中的幺正性原理。接着介绍了解决信息疑难问题的一种比较好的方法-派瑞克方法。其出发点是将黑洞的霍金辐射理解成一种量子隧穿,势垒强弱取决于出射粒子自身能量的大小。用这种方法,派瑞克等人计算了零质量粒子穿过Schwarschild黑洞和Reissner-Nordstrom黑洞的出射修正谱。结果显示粒子的隧穿几率和贝根斯坦-霍金熵的变化量有关,出射谱线偏离纯热谱,满足幺正性原理,支持信息守恒。接下来把派瑞克方法的推广到了更一般的稳态黑洞。此外哈密顿-雅克比方法揭示了派瑞克方法的一些不足之处,即用雅克比方法得到的黑洞温度与霍金得到的并不一致,是后者的两倍。为了解决这一难题,论文引入了各项同性坐标系。考虑了入射粒子的贡献,得到了正确的霍金温度,并证明了在派瑞克方法使用的坐标系(Painleve-Gullstrand坐标系)中入射粒子的贡献为零。
     接下来介绍了黑洞熵的一些性质。根据黑洞热力学第二定律,黑洞熵在数值上等于黑洞表面积的四分之一,且在顺时方向上永不减少。黑洞外部并不是平静的,充满了扰动场。一般来说,扰动场对黑洞熵的影响表现为黑洞熵公式中增加的一个对数修正项。修正项中的系数和扰动场的模型有关,是待定的。第三章在正则系统中引入拉普拉斯方法计算了热场扰动对黑洞熵的修正,因为正则系统允许黑洞和外界热场有能量的交换。论文还介绍了另外一套方法,这种方法的主要特点是将黑洞看成一个处在热场中的盒子,那么黑洞就会和它周围的物质达到热平衡状态。论文将这种方法应用到了不同维度的各种黑洞时空当中,得到了一些有用的结果。最后引入了随动坐标系的观测者,得出了Schwarzschild黑洞在热场扰动下,随动观测者观测到的黑洞熵和他所处的位置有关。
     最后,介绍了广义不确定原理。经研究证实,当引力效果很弱的时候,广义不确定原理可以退化成海森堡不确定关系;当引力场强度不能忽略的时候,海森堡不确定关系不能替代广义不确定原理。根据广义不确定原理,位置的不确定度存在一个最小值。论文用广义不确定原理研究了量子场扰动对Schwarzschild黑洞熵和温度的影响。接下来论文引入了推广的不确定原理(EUP、GEUP)和修正的不确定原理(MDR),并在各种黑洞时空中进行了推广,得到了一些比较有用的结果并进行了分析。
The black hole theory have achieved remarkable success since Hawking radiation was discovered in 1970s. Although the existence of black hole is not confirmed now, the property of black hole fling down a challenge to the basic concept of physics and philosophy, which will surely become a landmark in the history of science。
     The thesis introduced the background of Hawking radiation and its twin brothers-information puzzle, namely, the pure quantum state is translated into mixed thermal state, which violates the underlying unitary theory. The method of Per Kraus, which is regarded as an candidate to resolve information puzzle, shows that Hawking radiation can be consid-ered as a tunneling process and the barrier is defined by the tunneling particle itself. Per Kraus investigated Hawking radiation as massless particles tunneling in Schwarzschild and Reissner-Nordstrom black holes. The result shows that the tunneling rate is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum, but is consistent with an underlying unitary theory. The thesis will introduce many excellent work to extend the method of Per Kraus to the other black hole spacetime. The Hamilton Jacobi approach shows that the value of black hole temperature is twice as before with the method of Per Kraus. In order to deal with this problem, the thesis introduce the Isotropic coordinates and take into account the contribution of ingoing solution to the action, then the standard Hawking temperature is achieved. At the same time, the thesis point out that the imaginary part of action for ingoing particles is zero in the Painleve-Gullstrand coordinates.
     The property of black hole entropy is introduced in chapter two. Based on the second law of thermodynamics, black hole entropy, which will never decrease with time, equal to a quarter of black hole area. There are disturbing field around black hole, so it is hard for black hole to achieve equilibrium with itself. Generally speaking, a logarithmic correction term will be exist in the black hole entropy formula based on the effect of disturbing field. The coefficient of correction term can be regarded as model-dependent parameters. the thesis use the Laplace method to calculate black hole entropy corrections with thermal fluctuations in canonical ensemble, which allows black hole to exchange energy with surrounds. Another method shows that if we put black hole in a cavity of finite radius by immersing it in an isothermal bath, then the thermal equilibrium will be achieved between the black hole and surroundings. We extend this method to various black hole spacetime, then some interesting result is obtained. Finally, the thesis show that the observer in servo-coordinates will find that the value of black hole entropy is related to the position himself under the thermal fluctuations in Schwarzschild black holes.
     In the end of thesis, the thesis introduced the generalized uncertainty principle(GUP). It is shown that the GUP reduces to the conventional Heisenberg relation in situations of weak gravity but transcends it when gravitational effects can no longer be ignored. The GUP implies that there are a lower bound limit on the uncertainty in position. Based on GUP, the thesis investigate the quantum fluctuations on black hole entropy and tempera-ture in Schwarzschild black holes. Next, the thesis will introduce the extended uncertainty principle(EUP), the generalized extended uncertainty principle(GEUP) and the modified dis-persion relations(MDR), then the thesis extend these theory to investigate the property of black holes. Many excellent results are obtained.
引文
[1]赵峥.《黑洞与弯曲的时空》.山西科学技术出版社,2000.
    [2]赵峥.《黑洞的热性质与时空奇异性零曲面附近的量子效应》.北京:北京师范大学出版社,1999.
    [3]刘辽.《广义相对论》.北京:高等教育出版社, 1987.
    [4]Wald R M. General Relativity, Chicago and London:the university of Chicago press,1984
    [5]Bardeen J M, Carter B and Hawking S W. four laws of black hole mechanics. Commun. Math. Phys. 1973,31,161
    [6]霍金著.许明贤,吴忠超译.《时间简史—从大爆炸到黑洞》.长沙:湖南科学技术出版社.1996.
    [7]赵峥.黑洞理论的疑难与重要启示.Chinese Journal of Nature.2006,28,4.
    [8]G. W. Gibbons, M. J. Perry. Proc. R. Soc. Lond, A.1978,358,467.
    [9]HAWKING S W. Speech at 17th international conference on GRG[R]. Dublin (July 21.2004).
    [10]赵峥.田贵花.张靖仪.胡亚鹏.黑洞研究中的重要疑难及可能的解答.科技导报,2006,1000-7857.01-0019-04.
    [11]HAWKING S W. Information los s in black hole [DB/OL]. arXiv:hep-th/0507171.
    [12]M.K. Parikh, F.Wilczek. Hawking Radiation As Tunneling. Phys. Rev. Lett.2000,85,5042. hep-th/9907001.
    [13]M.K. Parikh. A Secret Tunnel Through The Horizon. Int. J. Mod. Phys. D.2004,13,2351. hep-th/0405160.
    [14]Landau L D. Lifshitz E M.1975, The Classical Theory of Field (London:Pergamon Press).
    [15]张靖仪,赵峥.静质量不为零的粒子的量子隧穿辐射.物理学报.2006.Vol.55,No.7.
    [16]Jingyi Zhang, Zheng Zhao. Massive particles' black hole tunneling and de Sitter tunneling. Phys. Lett. B.2005,725,173-180.
    [17]Esko Keski-Vakkuri, Per Kraus. Tunneling in a time-dependent setting. Phys. Rev. D.1996,54, 7407-7420.
    [18]Per Kraus. Hawking Radiation from Black Holes Formed During Quantum Tunneling. Nucl.Phys. B.1994,425,615-633.
    [19]Per Kraus, Frank Wilczek. Self-interaction correction to black hole radiance. Nucl.Phys. B.1995, 433,403-420.
    [20]Per Kraus, Frank Wilczek. Effect of Self-Interaction on Charged Black Hole Radiance. Nucl.Phys B.1995.437,231-242.
    [21]Esko Keski-Vakkuri, Per Kraus. Microcanonical D-branes and Back Reaction. Nucl.Phys. B.1997, 491,249-262.
    [22]S. Hemming, E. Keski-Vakkuri. Hawking radiation from AdS black holes.2001, Phys. Rev. D.64. 044006.
    [23]G.E. Volovik. JETP Lett.1999,69,662.
    [24]K. Srinivasan, T. Padmanabhan. Phys. Rev. D.1999,60,24007.
    [25]S. Shankaranarayanan, T. Padmanabhan, K. Srinivasan. Class. Quantum Grav.2002,19,2671.
    [26]E.C. Vagenas. Nuovo. Cimento. B.2002,117.899.
    [27]E.C. Vagenas, Phys. Lett. B.2003.559,65.
    [28]A.J.M. Medved, E.C. Vagenas. Mod. Phys. Lett. A.2005.20,1723.
    [29]M. Arzano, A.J.M. Medved. E.C. Vagenas. JHEP.2005,0509,037.
    [30]M. Angheben, M. Nadalini, L. Vanzo. S. Zerbini. JHEP.2005.0505.014.
    [31]M. Nadalini, L. Vanzo, S. Zerbini. Hawking radiation as tunnelling:the D-dimensional rotating case. J. Phys. A.2006,39,6601-6608.
    [32]R. Kerner. R.B. Mann. Tunnelling. temperature, and Taub-NUT black holes. Phys. Rev. D.2006, 73.104010.
    [33]Q. Q. Jiang. S. Q. Wu. Phys. Lett. B.2006.635.151.
    [34]Jingyi Zhang, Zheng Zhao. Phys. Lett. B.2005.618.14.
    [35]Michele Arzano. A. Joseph M. Medved. Elias C. Vagenas. Hawking radiation as tunneling through the quantum horizon. JHEP.2005.09.037.
    [36]Qing-Quan Jiang. Shuang-Qing Wu. Hawking radiation of charged particles as tunneling from Reissner-Nordstrom-de Sitter black holes with a global monopole. Phys. Lett. B.2006.639.684.
    [37]蒋青权,吴双清.Kerr解的新形式及其隧穿辐射.物理学报.2006,Vol.55,No.9.
    [38]Qing-Quan Jiang. Shuang-Qing Wu. Xu Cai. Hawking radiation as tunneling from the Kerr and Kerr-Newman black holes. Phys. Rev. D.2006.73.064003.
    [39]Xiang Li. A note on the black hole remnant. Phys. Lett. B.2007.647,207-210.
    [40]Terry Pilling. Black hole thermodynamics and the factor of 2 problem. Phys. Lett. B.2008,660. 402-406.
    [41]Sudipta Sarkar, Dawood Kothawala. Hawking radiation as tunneling for spherically symmetric black holes:A generalized treatment,Phys. Lett. B.2008.659.683-687.
    [42]Cheng-Zhou Liu. Jian-Yang Zhu. Hawking radiation as tunneling from Gravity's rainbow. Gen.Relativ.Gravit.2008, Vol.40, No.9,1899-1911.
    [43]Zhibo Xu. Bin Chen. Hawking radiation from general Kerr-(anti)de Sitter black holes. Phys. Rev. D.2007,75.024041.
    [44]Shuang-Qing Wu and Qing-Quan Jiang. Remarks on Hawking radiation as tunneling from the BTZ black holes. JHEP.2006.03,079.
    [45]Jun Ren, Jingyi Zhang. Zheng Zhao. Tunnelling Effect and Hawking Radiation from a Vaidya Black Hole. Chin.phys.lett.2006.23,2019.
    [46]Emil T.Akhmedov, Valeria Akhmedova. Terry Pilling. Douglas Singleton. Thermal radiation of various gravitational backgrounds. Int.J.Mod.Phys.A.2007.22,1705-1715.
    47] Jingyi Zhang, Zheng Zhao. Charged particles'tunnelling from the Kerr-Newman black hole. Phys. Lett. B.2006.638,110-113.
    [48]Jingyi Zhang. Zheng Zhao. HAWKING RADIATION VIA TUNNELING FROM KERR BLACK HOLES. Mod. Phys. Lett. A.2005.20.1673.
    [49]E. T. Newman, A. I. Janis. Note on the Kerr Spinning-Particle Metric. J. Math. Phys.1965.6.915.
    [50]J. Makela. P. Repo. Quantum-mechanical model of the Reissner-Nordstrom black hole. Phys. Rev D.1998,57,4899-4916.
    [51]T. Damour. Black-hole eddy currents. Phys. Rev. D.1978,18.3598-3604.
    [52]Ryan Kerner, R. B. Mann. Tunnelling, temperature, and Taub-NUT black holes. Phys. Rev. D. 2006.73.104010.
    [53]P. Mitra. Hawking temperature from tunnelling formalism. Phys. Lett. B.2007,648.240-242.
    [54]FuJun Wang. YuanXing Gui. ChunRui Ma. Isotropic coordinates for Schwarzschild black hole radiation. Phys. Lett. B.2007.650.317-320.
    [55]J. B. Hartle. S. W. Hawking. Path-integral derivation of black-hole radiance. Phys. Rev. D.1976. 13.2188-2203.
    [56]S. Massar, R. Parentani. How the change in horizon area drives black hole evaporation. Nucl. Phys. B.2000,575.333.
    [57]J.D. Bekenstein. Black Holes and Entropy. Phys. Rev. D.1973.7.2333.
    [58]J.D. Bekenstein. Generalized second law of thermodynamics in black-hole physics. Phys. Rev. D. 1974.9.3292.
    [59]S. W. Hawking. Particle creation by black holes. Comm. Math. Phys.1975.43.199-220.
    [60]Andrew Strominger. Cumrun Vafa. Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B.1996.379.99.
    [61]A. Ashtekar, J. Baez. A. Corichi. K. Krasnov. Quantum Geometry and Black Hole Entropy. Phys. Rev. Lett.1998,80,904-907.
    [62]Romesh K. Kaul. Parthasarathi Majumdar. Logarithmic Correction to the Bekenstein-Hawking Entropy. Phys. Rev. Lett.2000.84.5255-5257.
    [95]Giovanni Amelino-Camelia. Michele Arzano. and Andrea Procaccini. Severe constraints on the loop-quantum-gravity energy-momentum dispersion relation from the black-hole area-entropy law. Phys. Rev. D.2004.70.107501.
    [64]S.N. Solodukhin. Conical singularity and quantum corrections to the entropy of a black hole. Phys. Rev. D.1995.51.609-617.
    [65]S.N. Solodukhin. Entropy of the Schwarzschild black hole and the string-black-hole correspon-dence.1998. Phys. Rev. D.57.2410-2414.
    [66]Dmitri V. Fursaev. Temperature and entropy of a quantum black hole and conformal anomaly. 1995. Phys. Rev. D.51.5352-5355.
    [67]C. O. Lousto. The energy spectrum of the membrane effective model for quantum black holes.1995, Phys. Lett. B.1995,352.228-234.
    [68]V.P. Frolov. W.Israel. S.N. Solodukhin. One-loop quantum corrections to the thermodynamics of charged black holes. Phys. Rev. D.1996.54,2732-2745.
    [69]R.B. Mann. S.N. Solodukhin. Quantum scalar field on a three-dimensional (BTZ) black hole in-stanton:Heat kernel, effective action, and thermodynamics. Phys. Rev. D.1997.55.3622-3632.
    [70]R.B. Mann, S.N. Solodukhin. Universality of quantum entropy for extreme black holes. Nucl. Phys. B.1998.523.293-307.
    [71]A.J.M. Medved, G. Kunstatter. Quantum corrections to the thermodynamics of charged 2D black holes. Phys. Rev. D.1999,60.104029.
    [72]G. Gour. Schwarzschild black hole as a grand canonical ensemble. Phys. Rev. D.1999.61,021501.
    [73]O. Obregon. M. Sabido, V.I. Tkach. Entropy using Path Integrals for Quantum Black Hole Models. Gen. Relativ. Gravit.2001.33.913-919.
    [74]Jiliang Jing. Mu-Lin Yan. Statistical entropy of a stationary dilaton black hole from the Cardy formula. Phys. Rev. D.2000.63,024003.
    [75]S. Das. R.K. Kaul. P. Majumdar. New holographic entropy bound from quantum geometry. Phys. Rev. D.2001.63.044019.
    [76]D.Birmingham. S. Sen. Exact black hole entropy bound in conformal field theory. Phys. Rev. D. 2001.63.047501.
    [77]A.J.M. Medved. G. Kunstatter. One-loop corrected thermodynamics of the extremal and nonex-tremal spinning Banados-Teitelboim-Zanelli black hole. Phys. Rev. D.2001.63.104005.
    [78]S.A. Major. K.L. Setter. Gravitational Statistical Mechanics:A model. Class.Quant.Grav.2001. 18.5125-5142.
    [79]S.A. Major. K.L. Setter. On the Universality of the Entropy-Area Relation. Class.Quant.Grav. 2001.18.5293-5298.
    [80]D. Birmingham, I. Sachs. S. Sen. Exact Results for the BTZ Black Hole. Int.J.Mod.Phys. D.2001. 10.833-858.
    [81]T.R. Govindarajan. R.K. Kaul. V. Suneeta. Logarithmic correction to the Bekenstein-Hawking entropy of the BTZ black hole. Class.Quant.Grav.2001.18.2877-2886.
    [82]M. Cavaglia. A. Fabbri. Quantum gravitational corrections to black hole geometries. Phys. Rev. D. 2002,65.044012.
    [83]K.S. Gupta. S. Sen. Further Evidence for the Conformal Structure of a Schwarzschild Black Hole in an Algebraic Approach. Phys. Lett. B.2002.526.121-126.
    [84]A.J.M. Medved. Quantum-Corrected Cardy Entropy for Generic 1+1-Dimensional Gravity. Class.Quant.Grav.2002.19.2503-2514.
    [85]S. Mukherji, S.S. Pal. Logarithmic Corrections to Black Hole Entropy and AdS/CFT Correspon-dence. JHEP.2002.0205.026.
    [86]A.J.M. Medved. Quantum-Corrected Entropy for 1+1-Dimensional Gravity Revisited. Class.Quant.Grav.2003,20.2147-2156.
    [87]A.J.M. Medved. Horizon Dynamics of a BTZ Black Hole. Class.Quant.Grav.2003.20.3165-3174.
    [88]G. Gour. Algebraic approach to quantum black holes:Logarithmic corrections to black hole entropy. Phys. Rev. D.2002.66.104022.
    [89]S. Das. V. Husain. Anti-de Sitter black holes, perfect fluids, and holography. Class.Quant.Grav. 2003.20,4387-4401.
    [90]M.M. Akbar. S. Das. Entropy Corrections for Schwarzschild and Reisser-Nordstrom Black Holes. Class.Quant.Grav.2004.21,1383-1392.
    [91]R.K. Kaul. S.K. Rama. Black Hole Entropy from Spin One Punctures. Phys.Rev. D.2003.68. 024001.
    [92]R.K. Kaul. Black Hole Entropy from a Highly Excited Elementary String. Phys.Rev. D.2003.68. 024026.
    [93]Ashok Chatterjee, Parthasarathi Majumdar. Mass and charge fluctuations and black hole entropy. Phys. Rev. D.2005,71,024003.
    [94]Ashok Chatterjee, Parthasarathi Majumdar. Universal Canonical Black Hole Entropy. Phys. Rev. Lett.2004.92.141301.
    [95]S. Carlip. Logarithmic Corrections to Black Hole Entropy from the Cardy Formula. Class. Quant. Grav.2000.17.4175-4186.
    [96]Saurya Das. Parthasarathi Majumdar. Rajat K. Bhaduri. General Logarithmic Corrections to Black Hole Entropy. Class.Quant.Grav.2002.19.2355.
    [97]Gilad Gour. A J M Medved. Thermal fluctuations and black-hole entropy. Class.Quant.Grav.2003. 20.3307-3326.
    [98]A. Chamblin, R. Emparan, C.V. Johnson. R.C. Myers. Charged AdS black holes and catastrophic holography. Phys. Rev. D.1999.60.064018.
    [99]M. Banados. C. Teitelboim. J. Zanelli. Black hole in three-dimensional spacetime. Phys. Rev. Lett. 1992.69.1849.
    [100]Y.S. Myung. Logarithmic corrections to three-dimensional black holes and de Sitter spaces. Phys Lett. B.2004.579,205-210.
    [101]M. Spradlin. A. Strominger. A. Volovich. Les Houches Lectures on De Sitter Space. hep-th/0110007.
    [102]Y.S. Myung. Entropy of the three dimensional Schwarzschild-de Sitter black hole. Mod. Phys. Lett. A.2001.16.2353.
    [103]M. I. Park. Statistical Entropy of Three-dimensional Kerr-De Sitter Space. Phys. Lett. B.1998, 440.275-282.
    [104]FuJun Wang. YuanXing Gui. ChunYan Wang. Entropy corrections to three-dimensional black holes and de Sitter spaces. COMMUN.THEOR.PHYS.2010.53.514-516.
    [105]D. Birmingham. Topological Black Holes in Anti-de Sitter Space. Class. Quantum Grav.1999.16. 1197.
    [106]R. G. Cai. Y. S. Myung. Y. Z. Zhang. Check of the mass bound conjecture in de Sitter space. Phys. Rev. D.2002.65,084019.
    [107]R. G. Cai. Cardy-Verlinde formula and thermodynamics of black holes in de Sitter spaces. Nucl. Phys. B.2002.628.375-386.
    [108]R. G. Cai. Cardy-Verlinde Formula and Asymptotically de Sitter Spaces. Phys. Lett. B.2002.525. 331-336.
    [109]R. G. Cai. Y. S. Myung. Holography in a Radiation-dominated Universe with a Positive Cosmo-logical Constant. Phys. Rev,D.2003.67.124021.
    [110]S. Nojiri, S. D. Odintsov. S. Ogushi. Logarithmic corrections to the FRW brane cosmology from 5d Schwarzschild-deSitter black hole. Int. J. Mod. Phys. A.2003.18.3395-3416.
    [111]Fujun Wang. Yuanxing Gui. Chunrui Ma. Entropy corrections to five-dimensional black holes and de Sitter spaces. Gen Relativ Gravit.2008.40.2649-2657.
    [112]J. W. York. Black-hole thermodynamics and the Euclidean Einstein action. Phys. Rev. D.1986. 33,2092.
    [113]Fujun Wang, Yuanxing Gui. Chunrui Ma. Entropy corrections for Schwarzschild black holes. Phys. Lett. B.2008.660.144-146.
    [114]A. Barvinsky. S. Das. G. Kunstatter. Spectrum of Charged Black Holes-The Big Fix Mechanism Revisited. Class.Quant.Grav.2001.18.4845-4862.
    [115]A. Barvinsky. S. Das. G. Kunstatter. Quantum Mechanics of Charged Black Holes. Phys. Lett. B. 2001,517,415-420.
    [116]A. Barvinsky, S. Das. G. Kunstatter. Discrete Spectra of Charged Black Holes. Found. Phys.2002. 32.1851.
    [117]S. Das. P. Ramadevi. U.A. Yajnik. Mod. Black hole area quantization. Phys. Lett. A.2002.17. 993-1000.
    [118]S. Das. P. Ramadevi. U.A. Yajnik. A. Sule. Quantum Mechanical Spectra of Charged Black Holes. Phys.Lett. B.2003.565.201-206.
    [119]G. Gour. A.J.M. Medved. Quantum Spectrum for a Kerr-Newman Black Hole. Class.Quant.Grav. 2003.20.1661-1672.
    [120]J. Louko. J. Makela. Area spectrum of the Schwarzschild black hole. Phys. Rev. D.1996.54. 4982-4996.
    [121]K. Konishi, G. Paffuti. P. Provero. Minimum physical length and the generalized uncertainty principle in string theory. Phys. Lett. B.1990.234.276.
    [122]R. Guida. K. Konishi. P. Provero. ON THE SHORT DISTANCE BEHAVIOR OF STRING THE-ORIES. Mod. Phys. Lett. A.1991.6.1487.
    [123]M. Maggiore. A Generalized Uncertainty Principle in Quantum Gravity. Phys. Lett. B.1993.304. 65-69.
    [124]L. J. Garay. QUANTUM GRAVITY AND MINIMUM LENGTH. Int. J. Mod. Phys. A.1995.10, 145-165.
    [125]Ronald J. Adler. Pisin Chen. David I. Santiago. The Generalized Uncertainty Principle and Black Hole Remnants. Gen.Rel.Grav.2001.33.2101-2108.
    [126]L.N. Chang. D. Minic, N. Okaruma. T. Takeuchi. Effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem. Phys. Rev. D.2002.65,125028.
    [127]Li Xiang. Black hole entropy without brick walls. Phys. Lett. B.2002.540.9-13.
    [128]Zhao Ren. Wu Yue-Qin. Zhang Li-Chun. Spherically symmetric black-hole entropy without brick walls. Class. Quantum Grav.2003,20.4885-4890.
    [129]Pisin Chen, Ronald J. Adler. Black Hole Remnants and Dark Matter. Nucl.Phys.Proc.Suppl.2003. 124.103-106.
    [130]Marco Cavaglia. Saurya Das. How classical are TeV-scale black holes? Class.Quant.Grav.2004. 21.4511-4522.
    [131]Li Xiang. Dispersion relation, black hole thermodynamics and generalization of uncertainty prin-ciple. Phys. Lett. B.2006.638.519-522.
    [132]曾谨言.《量子力学(卷Ⅱ)》.北京:科学出版社.2001.
    [133]R. J. Adler. T. K. Das. Charged-black-hole electrostatics. Phys. Rev. D.1976,14,2474.
    [134]A. J. M. Medved. Elias C. Vagenas. When conceptual worlds collide:The generalized uncertainty principle and the Bekenstein-Hawking entropy. Phys. Rev. D.2004.70.124021.
    [135]M.Y. Kuchiev, V.V. Flambaum. Scattering of scalar particles by a black hole. Phys. Rev. D.2004. 70.044022.
    [136]Zhao Ren. Zhang Sheng-Li. Generalized uncertainty principle and black hole entropy. Phys. Lett. B.2006.641.208-211.
    [137]R. C. Myers. M. J. Perry. Black holes in higher dimensional space-times. Ann. Phys.1986.172. 304.
    [138]V. Cardoso. J. P. S. Lemos. S. Yoshida. Quasinormal modes of Schwarzschild black holes in four and higher dimensions. Phys. Rev. D.2004,69,044004.
    [139]A. Kempf. Uncertainty Relation in Quantum Mechanics with Quantum Group Symmetry. J. Math. Phys.1994,35.4483-4496.
    [140]A. Kempf. On Quantum Field Theory with Nonzero Minimal Uncertainties in Positions and Mo-menta. J. Math. Phys.1997.38.1347-1372.
    [141]H. Hinrichsen. A. Kempf. Maximal Localisation in the Presence of Minimal Uncertainties in Po-sitions and Momenta. J. Math. Phys.1996,37,2121-2137.
    [142]Brett Bolen. Marco Cavaglia. (Anti-)de Sitter black hole thermodynamics and the generalized uncertainty principle. Gen. Relativ. Gravit.2005,37.1255-1262.
    [143]Mu-In Park. The generalized uncertainty principle in (A)dS space and the modification of Hawking temperature from the minimal length. Phys. Lett. B.2008.659.698-702.
    [144]FuJun Wang, YuanXing Gui, Yu Zhang. The uncertainty principle and Bekenstein-Hawking en-tropy corrections. Gen. Relativ. Gravit.2009,41.2381-2387.
    [145]R. Gambini, J. Pullin. Nonstandard optics from quantum space-time. Phys. Rev. D.1999.59. 124021.
    [146]J. Alfaro. H. A. Morales-Tecotl. L. F. Urrutia. Quantum Gravity Corrections to Neutrino Propa-gation. Phys. Rev. Lett.2000.84.2318-2321.
    [147]G. Amelino-Camelia. M. Arzano. A. Procaccini. Severe constraints on the loop-quantum-gravity energy-momentum dispersion relation from the black-hole area-entropy law. Phys. Rev. D.2004.70. 107501.
    [148]G. Amelino-Camelia. A. Procaccini. M. Arzano. A GLIMPSE AT THE FLAT-SPACETIME LIMIT OF QUANTUM GRAVITY USING THE BEKENSTEIN ARGUMENT IN REVERSE. Int. J. Mod. Phys. D.2004,13.2337-2343.
    [149]G. Amelino-Camelia, L. Smolin, A. Starodubtsev. Quantum symmetry, the cosmological constant and Planck scale phenomenology. Class.Quant.Grav.2004,21,3095-3110.
    [150]G. Amelino-Camelia. M. Arzano. Y. Ling. G. Mandanici. Black-hole thermodynamics with mod-ified dispersion relations and generalized uncertainty principles. Class.Quant.Grav.2006.23.2585-2606.
    [151]J. Lukierski, H. Ruegg, W. J. Zakrzewski. Classical and Quantum Mechanics of Free κ-Relativistic Systems. Ann. Phys.1995.243.90-116.
    [152]J. Kowalski-Glikman. S. Nowak. Non-commutative space-time of Doubly Special Relativity theo-ries. Int. J. Mod. Phys. D.2003.12.299-316.
    [153]FuJun Wang. YuanXing Gui, Yu Zhang. Black hole entropy with modified dispersion relations. COMMUN.THEOR.PHYS.2009.52.261-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700