计及压制件成形精度的液压机主机结构设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压机是制造业的一种基础制造装备。液压机主机的刚度对压制件的精度具有显著影响。现行的液压机设计中,主机刚度指标的制订依据主要源自经验类比,缺乏压制件精度方面的考虑,可能导致所设计的液压机刚度不足,不能满足压制件的成形精度要求;或导致刚度储备过大,降低产品的性价比。为此,本文对计及压制件精度的液压机主机结构设计方法进行了研究。论文主要研究内容和成果如下:
     1.通过对液压机-模具系统分析,得出了液压机主机诸结构部件中,下横梁弯曲变形是影响压制件成形精度的主要因素的结论,进而建立了压制件成形精度与液压机下横梁刚度间的映射关系模型,将压制件成形精度映射为液压机下横梁刚度性能要求。
     2.构建了液压机概念设计方法。该方法采用材料力学方法,建立液压机主要结构部件的力学模型及概念设计模型;基于液压机各部件概念设计模型,依据液压机的公称载荷、工作空间等技术规格及各部件的刚度性能要求,确定各部件截面的惯性矩和抗剪切截面面积或抗拉压界面面积,得到液压机主机的概念设计原型,进而得到液压机主机结构设计原型。
     3.提出了基于灵敏度分析与近似建模技术的液压机主机结构优化策略。即:基于液压机主机结构设计原型,建立主机部件的有限元模型,进行部件结构性能灵敏度分析,进而提取影响液压机主机部件性能的关键结构参数作为主机结构优化的候选设计变量;基于正交数值模拟试验,以主机结构轻量化/高刚度为优化目标,建立主机结构近似优化模型;求解优化模型,获得液压机主机结构优化设计方案。
     4.基于上述研究成果,提出了以压制件成形精度作为设计约束,计及压制件精度的液压机主机结构设计方法。该方法基于压制件成形精度与液压机下横梁刚度的映射关系模型,将压制件成形精度映射为液压机下横梁刚度性能要求;基于液压机概念设计模型和液压机技术规格与各部件刚度性能约束,设计液压机主机结构概念原型;进而得到液压机主机结构设计原型;以该原型设计为基础,进行主机部件结构性能灵敏度分析及主机结构优化设计。
     5.将所提出的计及压制件精度的液压机主机结构设计方法应用于THP10-10000型100MN等温锻造液压机主机结构设计,实现了该液压机主机结构的概念原型设计、原型结构设计及优化设计。得到了该液压机主机结构轻量化最优解和轻量化/高刚度化Pareto优化解。其中,轻量化最优解在满足了液压机刚度要求同时,较原型设计质量优化率2.044%,较样机质量优化率5.774%。轻量化/高刚度化Pareto优化解为液压机设计决策提供了多个可行解。
     本文研究的计及压制件成形精度的液压机主机结构设计方法,虽然其具体对象是液压机,但就其理念和原理而言,也适用于其它成形制造装备设计,具有一般性意义。
Hydraulic press is fundamental to manufacturing industry. Though stiffness of hydraulic press has direct impact on the forming precision of mouldings, as there is less knowledge about the forming precision of mouldings versus the stiffness of hydraulic press, design indexes of the stiffness performance of hydraulic press are mainly determined by experience in current hydraulic press design, which may result in stiffness shortage and low forming precision of mouldings, or stiffness overage and high cost of the press. To resolve the above issue, a design method for mainframe of hydraulic press considering forming precision of mouldings is proposed and studied in this thesis. Main research works and results of the thesis are as follows.
     1. By analysis of the hydraulic press-mould system, it was concluded that the stiffness of lower beam of hydraulic press is the major factor affecting the forming precision of mouldings. And a mapping model between the forming precision of mouldings and the deflection of the lower beam is established, with which the forming precision of mouldings can be mapped to the design index of the lower beam stiffness.
     2. A method for conceptual design of mainframe of hydraulic press is constructed. The method consists of setting up mechanical models and conceptual design models of structural components of the mainframe with mechanics of material theory, designing the conceptual prototypes of the structural components by calculating initial moment of bending and cross section area of shearing of the structural components based on the conceptual design models according to the technical specifications and the design indexes of stiffness of the mainframe of the hydraulic press, and finally designing the structural prototype of the mainframe based on the conceptual prototypes. The structural prototype of the mainframe can be a starting point for optimization of the mainframe of hydraulic press.
     3. A sensitivity analysis and approximate modeling based strategy for mainframe optimization of hydraulic press is put forward. The optimization strategy includes two steps: step 1, stiffness and mass sensitivity analysis of the structural components with FEA (finite element analysis), by which key dimension parameters can be filtrated as candidates of optimization variables of the mainframe; step 2, setting up the approximate optimization model for the mainframe by means of DOE (design of experiments) and FEA with light weight or light weight and high stiffness as object of optimization, and solving the model by appropriate optimization algorithm to obtain optimized design schemes for the mainframe of hydraulic press.
     4. A design method for mainframe of hydraulic press considering forming precision of mouldings is proposed. In this method, the design process of the mainframe is as follows: firstly, the forming precision of mouldings is mapped to the design index of the lower beam stiffness via the mapping model between the forming precision of mouldings and the deflection of the lower beam; secondly, the conceptual prototype and structural prototype of the mainframe is designed with the conceptual design models of the structural components according to the technical specifications and the design indexes of stiffness of the mainframe; thirdly, the sensitivity analysis and optimization is carried out to acquire optimized design schemes of the mainframe of hydraulic press based on the structural prototype.
     5.The design method is applied to the mainframe design of Model THP10-10000 100MN isothermal forging hydraulic press. Conceptual prototype design, structural prototype design and optimization of the mainframe of the hydraulic press are realized by the method. Optimized design scheme for light weight and Pareto optimized design schemes for light weight and high stiffness are obtained of the mainframe of the hydraulic press. The light weight optimized design scheme provides a light weight rate of 2.044% and 5.774% in comparison with the structural prototype and the engineering mockup respectively while satisfying the design indexes of stiffness of the mainframe. The Pareto optimized design schemes for light weight and high stiffness provides multi feasible solutions for the mainframe of the hydraulic press.
     Although the object of this thesis is hydraulic press, the ideas and principles proposed in the thesis are applicable and general to the design of other forming equipment.
引文
[1]姚保森.我国锻造液压机的现状及发展[J].锻压装备与制造技术,2005,3:28-30.
    [2]俞新陆.液压机[M].机械工业出版社,1982.
    [3]俞新陆.液压机现代设计理论[M].机械工业出版社,1987.
    [4]朱钒,张志.国内外液压机技术现状及发展趋势[J].机床与液压,2000,1:6-7.
    [5]王凤喜,钟玉水.航空工业的发展与模锻件的需求[J].锻压机械,1997,5:3-5.
    [6]朱钒,张志.国内外液压机技术现状及发展趋势[J].机床与液压,2000,1:6-7.
    [7]夏巨谌,金属材料精密塑性加工方法[M].国防工业出版社,2007.
    [8]王以华,吕景林,姜剑敏.精密模锻行业发展的新趋势锻造与冲压.2007,C00:34,36,38,40.
    [9]钛合金叶片精锻研制组.钛合金叶片精密锻造[J].航空工艺,1988,5:1-7.
    [10]薛治中.铝合金精密锻件的技术现状和前景[J].锻压技术,1994,6:7-12.
    [11]王凤喜,钟玉水.航空工业的发展与模锻件的需求[J].锻压机械,1997,5:3-5.
    [12]曾凡昌.锻压先进制造技术及在航空工业领域的应用航空制造技术[J].中国锻压协会航空材料成形委员会.2009,6:26-29.
    [13] http://www.industrychina.net/news/news_info.asp?news_id=100013700.
    [14] http://news.sina.com.cn/c/2007-03-18/190912548774.shtml
    [15]天津市天锻压力机有限公司.100MN数控钛合金等温锻造液压机研制项目可行性研究报告,2003:1-10
    [16]王淑云,李惠曲,东斌鹏.大型模锻件和模锻液压机与航空锻压技术[J].CMET锻压装备与制造技术.2009,5:30-34.
    [17]林峰,颜永年,吴任东.重型模锻液压机承载结构的发展[J].锻压装备与制造技术,2007,42(5):27-31.
    [18]支凤春,谢云岫,刘宪文.国外多向模锻设备[J].一重技术,1995,66(4):2-15.
    [19] V.Ya.Val’kov. Exeperience in producing large Forged and Stamped Items [J]. Russion Journal of Non-Ferrous Metals, 2000, 41(7): 93-96.
    [20] http://wenwen.soso.com/z/q182909927.htm
    [21]林道盛,杨雨笙.锻压机械及其有限元计算[M].北京工业大学出版社.1998.
    [22]王野平,林正英.闭式压力机立柱刚度的优化设计[J].锻压机械,2002,4:20-23.
    [23]俞新陆,杨津光,巢克念.液压机[M].机械工业出版社,1990.
    [24]俞新陆.液压机的设计与应用[M].机械工业出版社,2007.
    [25]聂绍珉,赵希禄.液压机机架的结构优化及HYSOP程序系统[J].东北重型机械学院报,1993,128(4):6-9.
    [26]天津市锻压机床厂.中小型液压机设计计算[M].天津人民出版社,1980.
    [27]曲庆璋,梁兴复.多向模锻液压机横梁的有限元分析[J].西安公路学院学报,1989,7:40-46.
    [28]张庆.空间板梁组合结构有限元程序设计与800吨立挤钢管液压机方案设计[D](硕士学位论文).东北重型机械学院,齐齐哈尔市,1984.
    [29]金炯石.3150吨锻造液压机底座强度分析[J].重型机械,1985,4:5-8.
    [30]金炯石.液压机三维有限元计算中的几个问题.重型机械,1985,2:18-21.
    [31] Sinha, S P Murarka, P D Sinha, G L. Analysis of a Hydraulic Press Structure by Finite Element Method. International Conference on Metal Forming Technology; Bombay; India; 1987, 5, 19-22.
    [32]吴生富,聂绍珉,金淼.液压机全预紧组合机架的整体性分析[J].锻压技术,2006,3:111-114.
    [33]史灿,宋淼,闰晓强.大型轧机组合式机架紧固预紧力研究[J].冶金设备,2008,4:47-49.
    [34]刘茜,董正身,卞学良.基于ANSYS的C型液压机机身有限元分析[J].机械设计与制造,2006,4:21-22.
    [35]黄奎,莫健华,陈柏金.双柱上传动锻造水压机多根拉杆顺序加载预紧力分析[J].中国机械工程,2008,19(7):867-871.
    [36]张剑寒,曾攀,颜永年,黄少峰.400MN航空模锻液压机机架有限元分析[J].锻压技术,34(4):93-96.
    [37]彭俊斌,颜永年,张人佶,林峰.预应力钢丝缠绕机架坎合梁的整体性分析[J].机械工程学报,2008,6:50-54.
    [38] Mihai ??LU, ?tefan ??LU.The finite element analysis of part support system for horizontal hydraulic press-2.MN. Scientific Bulletin of the Politehnica University of Timisoara, 2009, 3: 84-89.
    [39]段志东,苏铁明.组合机架的刚度分析和拉杆预紧力研究.机械科学与技术,2009,28(4):450-454
    [40]商跃进.下拉式机架三维有限元分析[J].兰州交通大学学报,2008,27(1):60-62.
    [41]李培武.压力机组合机身结合面间接触压力及接触状态研究[J].塑性工程学报,1995,2:33-38.
    [42]吴生富.150MN锻造液压机本体组合结构研究[D](博士学位论文).燕山大学,秦皇岛,2006.
    [43]田会然.800MN多向模锻液压机本体结构设计及分析[D(]硕士学位论文).燕山大学,秦皇岛,2005.
    [44]王力波.大吨位拉深液压机的组合机身结构分析[D](硕士学位论文).南京理工大学,南京,2008.
    [45]尹云,孙彩丽,郭康.50MN锻造水压机整体机架有限元分析[J].锻造设备与制造技术,2008,2:88-89.
    [46]冯培恩,邱清盈,潘双夏等.机械产品的广义优化设计进程研究[J].中国科学,1999(E),29(4):338-346.
    [47]陈立周.稳健设计[M].北京:机械工业出版社,1999.
    [48]张大可,孙圣权.液压机下横梁结构拓扑的进化结构优化[J].重庆大学学报,2009,10:1117-1121.
    [49]吴鹏.板系结构拓扑优化及其在液压机底座设计中的应用研究[D](博士学位论文).燕山大学,秦皇岛,2007.
    [50]王野平,林正英,张加正.闭式压力机立柱刚度的优化设计[J].锻压机械2002,41:20-24.
    [51]鲍新强,RZU800HM型液压机有限元分析及主要部件优化设计[D](硕士学位论文).合肥工业大学,2007.
    [52]段智勇.巨型模锻液压机整体结构功能评估与优化设计[D](硕士学位论文).中南大学,南京,2008.
    [53]秦东展,祁建中,张明成.液压机横梁结构的优化设计[J].锻压技术,2004,29(2):49-52.
    [54]郑辉,唐国宝.基于准静态方法的模块化液压机结构分析[J].锻压技术, 2005,11:100-102.
    [55]赵升吨,王军,白振岳.法兰支承液压缸结构的遗传算法优化设计[J].锻压技术,2008,33(2):95-98.
    [56]吴生富.150MN锻造液压机本体组合机架的整体性分析[J].燕山大学学报,2006,3:58-85.
    [57]李艳聪,张连洪,王明红.计及设备因素的成形制件精度驱动的模具结构分析[J].机械科学与技术,2008,27(5):571-574.
    [58]詹俊勇,高建和.正交实验与多元线性回归方法在开式压力机机身优化设计中的应用[J],机械工程师,2009,11:22-25.
    [59]王力波.大吨位拉深液压机的组合机身结构分析[D](硕士学位论文).南京理工大学,2008.
    [60]李艳聪,张连洪,刘占稳.基于神经网络和遗传算法的液压机上横梁轻量化和刚度优化设计[J].机械科学与技术,2010,2:47-50.
    [61]李艳聪,张连洪.刚度和质量驱动的预紧组合框架式液压机多目标优化设计[J].机械工程学报,2010,1:140-146.
    [62] Yancong Li,Lianhong Zhang,Chun Zhang.Prediction and Analysis of Forged Workpiece’s Precision in Hydraulic Press Based on BP Neural Network and Genetic Algorithm[C]. Advanced Materials Research, Vols. 97-101 (2010): 2598-2602.
    [63] Arentoft M, Eriksen M, Determination of 6 stiffnesses for a press. Journal of Materials Processing technology[J], 2000, v105:246~252.
    [64] M. Arentoft, T. Wanheim. A new approach to determine press stiffness[J]. CIRP Annals - Manufacturing Technology, 2005, v54(n1): 265~268.
    [65]陈永亮.机械产品快速设计方法、工具及应用研究[博士后研究报告],天津大学,天津,2002.
    [66]侯亮,徐燕申,李森等,基于参数化造型、变量优化的广义模块化设计[J].组合机床与自动化加工技术,2001,8:13-15.
    [67]郑辉,基于设计知识和结构优化的液压机机身柔性模块化设计的研究[D](硕士学位论文).天津大学,2003.
    [68]徐丽萍,面向产品族的液压机广义模块化设计研究[D](硕士学位论文).天津大学,天津,2004.
    [69]钟伟弘,徐燕申.基于广义模块化的整体框架式液压机机身结构的优化设计[J].重型机械,2004,(2):47-50.
    [70]钟伟弘,徐燕申.液压机机身广义模块化产品族建模技术的研究[J].重型机械,2004,4:22-26.
    [71]钟伟弘,徐燕申,胡亚辉.整体框架式液压机广义模块化产品族建模技术的研究[J].制造技术与机床,2005,12:26~29.
    [72]侯亮,徐燕申,张连洪等.基于模板模块的液压机框架结构模块化设计[J].锻压机械,2001,(2):30-33.
    [73] P.Gu,D.Xue,A.Ramirez-Serrano, et.The 16th CIRP international design seminar:Design & innovation for a sustainable society[J]. Kananaskis, Alberta, Canada: 2006, 448-455.
    [74] Y.L.Chen, Y.S.Xu, Q.Zhang.Adaptable Product Platform Design Through Generalized Modularization and Application to Hydraulic Press Frame Structures[J]. Kananaskis, Alberta, Canada: 2006, 369-376.
    [75] Y.S.Xu, Y.L.Chen, P.Gu, G.Wang.Adaptable design of products and manufacturing systems Methods and applications[J]. The 16th CIRP international design seminar: design & innovation for a sustainable society. Kananaskis, Alberta, Canada: 2006, 437-447.
    [76]满佳,陈永亮,张连洪,耿文轩.面向定制的液压机可适应产品平台构建方法研究[J].2008年中国机械工程学会车成组技术分会年会论文:9-13.
    [77]陈兴玉,赵韩,董玉德.YH30型液压机的可适应性设计[J].农业机械,2009,25(3):55-59.
    [78]徐铭章,整体框架式液压机可适应设计与优化系统研究[D](硕士学位论文).天津大学,天津,2007.
    [79]聂绍珉.现代大中型锻造液压机的特点及发展趋势[J].金属加工,2009,1:40-43.
    [80]赵永生,赵铁石.机械工业重大关键技术企业调研报告(重型机械部分).(第一稿)燕山大学2008年5月.
    [81]肖景容.精密模锻[M].北京:机械工业出版社,1985.
    [82]王富军.锻件精度问题的分析[J] .煤矿机械,2005,9:78-80.
    [83]周杰,伍驭美.拉紧螺栓预紧力对闭式组合机身压力机精度的影响.锻压机械,2001,1:35-38.
    [84]王明红.面向制件精度的成形模具与装备耦合刚度分析[D](硕士学位论文).天津大学,天津,2007.
    [85]邓家褆.产品概念设计[M].北京:机械工业出版社,2002.
    [86] Morgan Swink, Technological Innovativeness as a Moderator of new Product Design Integration and Top Mangement Support ,J PROD INNOV MANAG 2000,17 :208~220
    [87]唐林.产品概念设计基本原理及方法.北京:国防工业出版社,2006.
    [88]邹慧君,汪利.机械产品概念设计及其方法综述[J].机械设计与研究,1998,2:9-12.
    [89]苏翼林,材料力学,天津大学出版社,2003,2版
    [90]刘鸿文.简明材料力学[M].北京:高等教育出版社.2006.
    [91]范钦珊.工程力学[M].清华大学出版社,2005.
    [92]刘华军.液压拉伸预紧技术在大型压力机安装中的应用.锻压机械.1997,2:14-17.
    [93]吴生富,聂绍珉,金淼.大型锻造液压机全预紧机架的整体性分析.燕山大学学报.2006,2:143-146.
    [94]邵蕴秋.有限元分析实例导航.北京:中国铁道出版社,2004.
    [95]张波.有限元数值分析原理与工程应用.北京:清华大学出版社,2005.
    [96]张永昌.MSC.Nastran有限元分析理论与应用.北京:科学出版社,2004.
    [97] J R.D.库克.有限元分析的概念和应用[M].北京:科学出版社,1989.
    [98]石益平.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.
    [99]赵腾轮.ABAQUS6.6在机械工程中的应用[M].北京:中国水利水电出版社,2007.
    [100]刘占稳.100MN等温锻造液压机有限元结构分析与优化[D](硕士学位论文).天津大学,天津,2008.
    [101]林峰,颜永年,吴任东.现代重型模锻液压机的关键技术.机械工程学报,2006,42(3):9-14.
    [102]张广红,吴爱国,郑爱红.万吨液压机等温锻造恒速度控制设计[J].液压与气动,2005,4:19-21.
    [103]杜平安.有限元网格划分的基本原则.机械设计与制造,2000,1:34-36.
    [104] CRAIG K J, STANDER N, DOOGE D A, et al.Automotive crashworthiness design using response surface-based variable screening and optimization[J]. Engineering Computations, 2005, 22(1-2): 38-61.
    [105] MARKLUND P O, NILSSON L. Optimization of a car body component subjected to side impact [J]. Structural and Multidisciplinary Optimization, 2001, 21(5): 383-392.
    [106] FANG H, RAIS-ROHANI M, LIU Z, et al. A comparative study of meta-modeling methods for multi- objective crashworthiness optimization[J]. Computers & Structures, 2005, 83(25-26): 2121-2136.
    [107]宁方飞,刘晓嘉.一种新的响应面模型及其在轴流压气机叶型气动优化中的应用.航空学报,2007,28(4):813-820.
    [108]杨书仪,刘德顺,文泽军.基于响应面法的桥梁主桁架结构优化设计.机械设计,2007,24(6):14-16.
    [109] Vitali R. Response Surface Methods for High-dimensional Structural Design Problems. Florida : University of Florida, 2000: 262-280.
    [110]张维刚,廖兴涛,钟志华.基于逐步回归模型的汽车碰撞安全性多目标优化[J].机械工程学报,43(8):142-147.
    [111] Vitali R. Response Surface Methods for High-dimensional Structural Design Problems. Florida: University of Florida, 2000: 262-280.
    [112]陈立周.稳健设计[M].北京:机械工业出版社,1999.
    [113]姜同川.正交试验设计[M].烟台:山东科学技术出版社,1985.
    [114]马成良,张海军,李素平.现代试验设计优化方法及应用[M].郑州:郑州大学出版社,2008.
    [115] SaxenaA.Topology design of large displacement compliant mechanisms with multiple materials and multiple output ports. Structural and Multidisciplinary Optimization, 2005, 30(6): 477-490.
    [116] FANG H, RAIS-ROHANI M, LIU Z, et al. A comparative study of meta-modeling methods for multi-objective crashworthiness optimization[J]. Computers & Structures, 2005, 83(25-26): 2121-2136.
    [117] Kenneth F. Reinschmidt, Alan D. Russell. Applications of Linear Programming in Structural Layout and Optimization. Computers & Structures, 1974, 4(4): 855-869.
    [118] DebK.,JainS. Multi-speed gearbox design using multi-objective evolutionary algorithms. Journal of Mechanical Design, 2003, 125(3): 609-619.
    [119]郭立新.遗传算法在机械优化设计中的应用[J].机械设计与制造,1999,1:43-44.
    [120]陈伦军.机械优化设计遗传算法[M].北京:机械工业出版社,2006.
    [121] Shyy W ,Papila N,Vaidyanathan R,et a1.Global design optimization for aerodynam ics and rocket propulsion components [J]. Progress in Aerospace Sciences, 2001, 37: 59-118.
    [122]伊卫林,黄鸿雁,韩万金.基于模拟退火算法与响应面模型的三维气动优化设计方法空气动力学学报.2008,26(1):36-41.
    [123] MYERS R H, MONTGOMERY D C. Response surface methodology:process and product optimization using designed experiments[M]. New York:John. Wiley, 2002.
    [124]中国机械工程学会焊接学会,焊接手册[M].北京:机械工业出版社,2001,62~70.
    [125]王松涛.基于简化模型的复杂机械系统分析方法研究[D](硕士学位论文).天津大学,天津,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700