深部节理岩体应变软化行为及围岩与支护结构相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在深部开采工程中,节理岩体普通存在。由于深部节理岩体处于复杂、高应力的工程地质环境,深部围岩表现出的力学特性与浅部围岩相比往往具有很大的差异,深部巷道支护结构稳定性、围岩-支护相互作用关系等都已成为深部工程支护设计中面临的新难题,所以,深入了解深部节理岩体破坏过程中的非线性行为对于工程设计具有重要的指导意义。然而,由于深部节理岩体具有强烈的非均质性、各向异性,提出一个能够充分表达各类岩体非线性力学行为的本构模型是十分困难的,特别是反映节理岩体的峰值后行为(如应变软化及扩容行为等)更加困难。
     针对以上问题,在前人研究成果的基础上,探讨了深部节理岩体的破坏机制及强度劣化特性;以Hoek-Brown准则为基础,将量化的GSI围岩评级系统与宏观连续介质理论之间建立联系,构建了深部节理岩体等效应变软化模型;以FLAC3D有限差分软件为工具,对比分析了不同本构模型条件下的深部巷道工作面空间约束效应;研究了不同GSI指标的深部围岩应变局部化特征;对非线性剪胀角模型进行改进,提出适用于深部节理岩体的非线性剪胀角模型;根据可缩性U型钢支架的受力特点,构建了可缩性U型钢支架的支护特征曲线;以节理岩体应变软化模型为基础,通过建立深埋巷道三维数值模型,计算围岩特征曲线与支护结构特征曲线,研究了节理岩体应变软化模型、非线性剪胀角模型对围岩-支护相互作用的影响,并得出以下重要结论:
     (1)构建了考虑围压影响的节理岩体等效应变软化模型,该模型可以较为合理的表达围岩应力释放过程中节理岩体强度逐渐劣化的过程;
     (2)通过对围岩-支护相互作用关系的计算可知,巷道在开挖过程中,无论是恒定(包括剪胀角为零)剪胀角还是非线性剪胀角模型,当距离工作面相同位置施作支护结构时,支护结构所承受的围岩压力基本相同,即岩体剪胀角对围岩空间约束效应影响很小;
     (3)构建的可缩性U型钢支架支护特征曲线,能够较为合理的反应U型钢支架的受力变形特点,围岩稳定性评价结果与现场实际情况相符,研究成果可为类似支护结构设计及稳定性验算提供参考;
     (4)将收敛-约束法应用于深埋水平巷道及竖井围岩稳定性评价中,结合现场应用情况可以看出,收敛-约束法能够较为客观的反映围岩-支护相互作用关系,能够直观的评价支护系统的稳定性,可以为类似矿山建设和开采设计提供参考。
In deep mining engineering, joints is ordinary existence. Due to the deep joint rock mass ina complex and high stress of the engineering geological environment,compared with thesurrounding rock of shallow, deep surrounding rock show the very big difference in themechanical properties. The supporting design of deep engineering have facing new problems instability analysis of supporting structure and the interaction between surrounding rock-support,So, in-depth understanding of deep joint rock mass failure process of nonlinear behavior forengineering design have important guiding significance. However, due to the deep joint rockmass has strong heterogeneity and anisotropy, it is very difficult to put forward a nonlinearconstitutive model which can fully express all kinds of rock mass mechanics behavior,Especially reflect joint rock mass after the peak behavior (such as strain softening and flashbehavior, etc.) more difficult.
     In view of the above question, in the previous research results foundation, discusses thedeep joint rock mass damage mechanism and strength degradation characteristics.Based onHoek-Brown standards, establish contact in the quantitative GSI rock rating system and macrocontinuum theory. Constructs the equivalent strain softening model for deep joint rock mass.With FLAC3Dfinite software for the tool, comparatived with the deep roadway face spaceconstraint effect in different constitutive model, Study the the deep surrounding rocks ofdifferent GSI indicators strain localization feature, Improved nonlinear dilatancy angle model,put forward a suitable dilatancy angle of the nonlinear model for deep joint rock.According tothe yielding of u-shape set mechanical characteristics, constructs the yielding of u-shape setsupport characteristic curve; as the foundation with joint rock mass strain softening model,establish the three dimensional numerical model for deep roadway, calculation of ground rockcurves and supporting characteristic curve. And draw the following important conclusions:
     (1)Build a jointed rock mass equivalent strain softening model which consider confiningpressure effect, These model can reasonable expression of the process that strength graduallydegradation in joint rock mass.
     (2)Based on the interaction between surrounding rock-support, in roadway excavationprocess, whether constant (including the dilatancy angle is zero) dilatancy angle or nonlineardilatancy angle model, when applied supporting structure in the same position, supporting structure which under the pressure of surrounding rock are basically the same, rock dilatancyangle of surrounding rock space constraint effect is very small.
     (3)The construction of the yielding of U shaped steel bracket support characteristiccurve,which can be more reasonable reaction of u-shape set stress deformation characteristics, itis consistent in surrounding rock stability analysis and the actual situation.
     (4)Application of Convergence-Constraint Method to analysis the surrounding rockstability in deep buried level roadway and shaft, combined with the application can be seen, theConvergence-Constraint Method can be objectively reflect between the surrounding rock andsupport interaction, which can provide the reference for the similar mine construction andmining design.
引文
[1]袁亮.深井巷道围岩控制理论及淮南矿区工程实践[M].北京:煤炭工业出版社,2006.
    [2]牛双建,靖洪文,张忠宇.深部软岩巷道围岩稳定控制技术研究及应用[J].煤炭学报,2011,36(6):914-920.
    [3]王卫军,彭刚,黄俊.高应力极软破碎岩层巷道高强度耦合支护技术研究[J].煤炭学报,2011,22(2):223-229.
    [4]康红普,林健,杨景贺.松软破碎硐室群围岩应力分布及综合加固技术[J].岩土工程学报,2011,33(5):808-815.
    [5]Labiouse V. Ground response curves for rock excavations supported by ungrouted tensioned rockbolts[J].Rock Mech Rock Eng,1996(29):19-38.
    [6]孙淑娟,王琳,张敦福,等.深部巷道开挖过程中围岩体的时程响应分析[J].煤炭学报,2011,36(5):738-747.
    [7]杨官涛,李夕兵,刘希灵.竖井围岩-支护系统稳定性分析的最小安全系数法[J].煤炭学报,2009,34(2):175-180.
    [8]Cai Y. An analytical model to predict axial load in grouted rock for soft rock tunnelling[J].Tunneling and Underground Space Technology,2004(19):607-618.
    [9]周晓敏,陈建华,罗晓青.孔隙型含水基岩段竖井井壁厚度拟订设计研究[J].煤炭学报,2009,34(9):1174-1179.
    [10]Zdenek P,Bazant F. Continuum theory for strain-softening[J]. Journal of Engineering Mechanic,1984(12):1666-1692.
    [11]袁亮,薛俊华,刘泉声,等.煤矿深部岩巷围岩控制理论与支护技术[J].煤炭学报,2011,36(4):535-544.
    [12]Qing Lü.Probabilistic evaluation of ground-support interaction for deep rock excavation usingartificial neural network and uniform design[J].Tunnelling and Underground Space Technology,2012,(37):78-85.
    [13]夏才初,唐志成,宋英龙.节理峰值剪切位移及其影响因素分析[J].岩土力学,2012,33(4):961-971.
    [14]Besue`lles,Desrues, Raynaud, J. Experimental characterization of the localization phenomenoninside a Vosges sandstone in a triaxial cell[J].International Journal of Rock Mechanics&Mining Sciences,2000(37):1123-1237.
    [15]Sonmez H,Ulusay R.Modifications to the geological strength index(GSI)and their applicabilityto stability of slopes[J].International Journal of Rock Mechanics and Mining Sciences,1999(6):743-760.
    [16]黄高峰,李宗利,牟声远.Hoek-Brown准则参数在边坡工程中的敏感性分析[J].岩土力学,2009,23(7):2163-2168.
    [17]张立松,闫相祯,杨恒林,等.基于测井信息的煤岩GSI-JP破碎分级预测[J].岩土工程学报,2011,33(7):1091-1098.
    [18]ZDENEK P,BAZANT F. Continuum theory for strain-softening[J]. Journal of Engineering Mechanics,1984(12):1666-1692.
    [19]王水林,吴振君,李春光,等.应变软化模拟与圆形隧道衬砌分析[J].岩土力学,2010,31(6):1929-1937.
    [20]赵瑜,李晓红,顾义磊,等.高应力区隧道围岩变形破坏的数值模拟及物理模拟研究[J].岩土力学,2007,28(10):0393-0396.
    [21]温森,杨圣奇.基于Hoek-Brown准则的隧洞围岩变形研究[J].岩土力学,2011,32(1):63-70.
    [22]王学滨,潘一山.基于梯度塑性理论的岩样单轴压缩扩容分析[J].岩石力学与工程学报,2004,23(5):721-724.
    [23]王学滨.基于梯度塑性理论的岩样峰后变形特征研究[J].岩石力学与工程学报,2004,23(增1):4292-4295.
    [24]王学滨.平面应变压缩岩样侧向变形特征数值模拟[J].岩土工程学报,2005,27(5):0525-0531.
    [25]李英杰,张顶立,刘保国.考虑变形模量劣化的应变软化模型在FLAC3D中的开发与验证[J].岩土力学,2011,32(增2):0647-0653.
    [26]陆银龙,王连国,张蓓,等.软岩巷道锚注支护时机优化研究[J].岩土力学,2012,33(5):1395-1402.
    [27]Ki-Il Songa, Gye-Chun Chob, Seok-Won Lee. Effects of spatially variable weathered rock properties on tunnel behavior[J]. Probabilistic Engineering Mechanics,2011(26):413-426
    [28]Melih Genis. Assessment of the dynamic stability of the portals of the Dorukhan tunnel usingnumerical analysis[J]. International Journal of Rock Mechanics&Mining Sciences,2010(47):1231-1241
    [29]Buddhima Indraratna a,n, DavidA.F.Oliveira b, E.T.Brown. Effect of soil–infilled joints on thestability of rock wedges formed in a tunnel roof[J].International Journal of Rock Mechanics&Mining Sciences,2010(47):739-751
    [30]C.O. Aksoy, O.Kantarci,V.Ozacar. An example of estimating rock mass deformation around anunderground opening using numerical modeling[J].International Journal of Rock Mechanics&Mining Sciences,2010(47):272-278
    [31]F. Varas, E. Alonso, L.R. Alejano. Study of bifurcation in the problem of unloading a circularexcavation in a strain-softening material[J].Tunnelling and Underground Space Technology,2005(9):311-322.
    [32]Egger, P. Design and construction aspects of deep tunnel (with particular emphasis on strain softening rocks)[J]. Tunneling and Underground Space Technology,2000(4):403-409.
    [33]张洪武.饱和多孔介质动力应变局部化分析中的内尺度律[J].岩土力学,2001,22(3):0249-0305.
    [34]刘金龙,汪卫明,陈胜宏.边坡稳定分析中应变局部化的简化计算[J].岩土力学,2005,26(5):0799-0805.
    [35]王学滨,潘一山.平面应变岩样局部化变形场数值模拟研究[J].岩石力学与工程学报,2003,22(4):521-524.
    [36]曾亚武,赵震英,朱以文.岩石材料破坏形式的分叉分析[J].岩石力学与工程学报,2002,11(7):948-952.
    [37]王红英,张强,张玉军.深部巷道围岩分区破裂化数值模拟[J].煤炭学报,2010,35(4):535-541.
    [38]李文婷,李树忱,冯现大.基于莫尔–库仑准则的岩石峰后应变软化力学行为研究[J].岩石力学与工程学报,2011,30(7):1460-1467.
    [39]许兴亮,张农,李玉寿.煤系泥岩典型应力阶段遇水强度弱化与渗透性实验研究[J].岩石力学与工程学报,2009,28(增1):3089-3095.
    [40]孟召平,彭苏萍,张慎河.不同成岩作用程度砂岩物理力学性质三轴试验研究[J].岩土工程学报,2003,25(2):140-144.
    [41]杨圣奇,温森,李良权.不同围压下断续预制裂纹粗晶大理岩变形和强度特性的试验研究[J].岩石力学与工程学报,2007,26(8):1572-1588.
    [42]李利平,李术才,赵勇.超大断面隧道软弱破碎围岩渐进破坏过程三维地质力学模型试验研究[J].岩石力学与工程学报,2012,31(3):550-561.
    [43]蒲成志,曹平,赵延林.单轴压缩下多裂隙类岩石材料强度试验与数值分析[J].岩土力学,2005,26(5):0799-0805.
    [44]刘晓丽,王思敬,王恩志.单轴压缩岩石中缺陷的演化规律及岩石强度[J].岩石力学与工程学报,2008,27(6):1195-1207.
    [45]周小平,哈秋聆,张永兴.峰前围压卸荷条件下岩石的应力–应变全过程分析和变形局部化研究[J].岩石力学与工程学报,2005,24(18):3236-3246.
    [46]王学滨.加载速度对岩样全部变形特征的影响[J].岩土力学,2008,29(2):353-361.
    [47]陆银龙,王连国,杨峰.软弱岩石峰后应变软化力学特性研究[J].岩石力学与工程学报,2010,31(11):3661-3667.
    [48]PARK K H,KIM Y J. Analytical solution for a circular opening in an elastic-brittle-plastic rock[J].International Journal of Rock Mechanics and Mining Sciences,2006,43(4):616-622.
    [49]Sharan S K. Elastic-brittle-plastic analysis of circular openings in Hoek-Brown media[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(6):817-824.
    [50]Sharan S K. Analytical solutions for stresses and displacements around a circular opening in ageneralized Hoek-Brown rock[J]. International Journal of Rock Mechanics and Mining Sciences,2008,40(1):78-85.
    [51]Wang S L,Yin X T,Tang H,et al. A new approach for analyzing circular tunnel in strain-softening rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(1):170-178.
    [52]Lee Y K,Pietruszczak S. A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass[J]. Tunnelling and Underground Space Technology,2008,23(5):588-599.
    [53]Park K H,Tontavanich B,Lee J G. A simple procedure for ground response curve of circular tunnel in elastic-strain softening rock masses[J]. Tunnelling and Underground Space Technology,2008,23(2):151-159.
    [54]李大伟,侯朝炯,柏建彪.大刚度高强度二次支护巷道控制机理与应用[J].岩土工程学报,2008,30(7):1072-1079.
    [55]陈景涛,冯夏庭.高地应力下硬岩的本构模型研究[J].岩土力学,2007,28(11):2271-2279.
    [56]曹文贵,莫瑞,李翔.基于正态分布的岩石软硬化损伤统计本构模型及其参数确定方法探讨[J].岩土工程学报,2007,29(5):671-676.
    [57]赵星光,蔡明,蔡美峰.岩石剪胀角模型与验证[J].岩石力学与工程学报,2010,29(5):970-982.
    [58]王水林,吴振君,李春光.应变软化模拟与圆形隧道衬砌分析[J].岩土力学,2010,31(6):1929-1937.
    [59]Nima Babanouri, SaeedKarimiNasab a,n, AlirezaBaghbanan. Over-consolidation effect on shear behavior of rock joints[J]. International Journal of Rock Mechanics&Mining Sciences,2011,(48):1283-1291
    [60]周小平,张永兴,王建华.断续节理岩体劈裂破坏的贯通机理研究[J].岩石力学与工程学报,2005,24(1):0008-0013.
    [61]李术才,朱维申.复杂应力状态下断续节理岩体断裂损伤机理研究及其应用[J].岩石力学与工程学报,1999,18(2):142-146.
    [62]肖卫国,兑关锁,陈铁林.剪胀和破坏耦合的节理岩体本构模型的研究[J].岩石力学与工程学报,1999,18(2):2535-2544.
    [63]蒋宇静,王刚,李博.岩石节理剪切渗流耦合试验及分析[J].岩石力学与工程学报,2007,26(11):2253-2260.
    [64]徐松林,郑文,刘永贵.岩体中弹性波传播尺度效应的初步分析[J].岩土工程学报,2011,33(9):1348-1357.
    [65]王谦源,栗东平,魏晋龙.岩体轴向抗压强度与变形尺度效应的节理分布影响[J].岩石力学与工程学报,2008,27(9):1852-1858.
    [66]夏才初,李宏哲,刘胜.含节理岩石试件的卸荷变形特性研究[J].岩石力学与工程学报,2010,29(4):0697-0705.
    [67]P. Fortsakis a, K. Nikas a, V. Marinos. Anisotropic behaviour of stratified rock masses in tunnelling[J]. Engineering Geology,2012,(42):74-83.
    [68]M. Bonini, G. Barla. The Saint Martin La Porte access adit (Lyon–Turin Base Tunnel) revisited[J]. Tunnelling and Underground Space Technology,2012(30),38-54.
    [69]Salina Yong a,n, PeterK.Kaiser b, SimonLoew. Influence of tectonic shears on tunnel-induced fracturing[J]. International Journal of Rock Mechanics&Mining Sciences,2010,(47):894-907.
    [70]H. Basarir a, M.Genis b, A.Ozarslan. The analysis of radial displacements occurring near theface of a circular opening in weak rock mass[J]. International Journal of Rock Mechanics&Mining Sciences,2010,(47):771-783.
    [71]林达明,尚彦军,孙福军.岩体强度估算方法研究及应用[J].岩土力学,2011,32(3):837-844.
    [72]杜景灿,陈祖煜.岩桥破坏的简化模型及在节理岩体模拟网络中的应用[J].岩土工程学报,2002,24(4):0421-0427.
    [73]吴顺川,金爱兵,高永涛.基于广义Hoek-Brown准则的边坡稳定性强度折减法数值分析[J].岩土工程学报,2006,28(11):1975-1981.
    [74]朱道建,杨林德,蔡永昌.柱状节理岩体压缩破坏过程模拟及机制分析[J].岩石力学与工程学报,2009,28(4):0716-0725.
    [75]李同录,罗世毅,何剑.节理岩体力学参数的选取与应用[J].岩石力学与工程学报,2004,23(13):2182-2186.
    [76]卢波,陈剑平,葛修润.节理岩体结构的分形几何研究[J].岩石力学与工程学报,2005,24(3):0461-0468.
    [77]胡波,王思敬,刘顺桂.基于精细结构描述及数值试验的节理岩体参数确定与应用[J].岩石力学与工程学报,2007,26(12):2458-2466.
    [78]张强勇,陈旭光,林波,等.深部巷道围岩分区破裂三维地质力学模型试验研究[J]岩石力学与工程学报,2009,V28(09):1757-1766.
    [79]邵鹏,张勇,贺永年,等.断续节理岩体动态疲劳损伤研究[J].岩土工程学报,2005,27(7):824-827.
    [80]白明洲.大型地下洞室围岩稳定性的岩体结构控制效应研究[J].岩石力学与工程学报,2001,20(6):893-893
    [81]唐志成,夏才初,黄继辉.节理峰值后归一化位移软化模型[J].岩土力学,2011,32(7):2013-2018.
    [82]金济山.岩石扩容性质及其本构模型的研究[J].岩石力学与工程学报,1993,12(2):162-172.
    [83]唐志成,夏才初,肖素光.节理剪切应力–位移本构模型及剪胀现象分析[J].岩石力学与工程学报,2011.30(5):0917-0926.
    [84]X.G.Zhao,M.Cai. Influence of plastic shear strain and confinement-dependent rock dilation on rock failure and displacement near an excavation boundary[J]. International Journal of Rock Mechanics&Mining Sciences,2010(47):723-738.
    [85]赵星光,蔡美峰,蔡明.地下工程岩体剪胀与锚杆支护的相互影响[J].岩石力学与工程学报,2010.29(10):2056-2061.
    [86]X.G.Zhao,M.Cai. A mobilized dilation angle model for rocks[J]. International Journal of RockMechanics&Mining Sciences,2010(47):368-384.
    [87]A.I. Sofianos, P.P. Nomikos. Equivalent Mohr–Coulomb and generalized Hoek–Brown strengthparameters for supported axisymmetric tunnels in plastic or brittle rock[J]. International Journalof Rock Mechanics&Mining Sciences,2006(43):683-704.
    [88]孔位学,芮勇勤,董宝弟.岩土材料在非关联流动法则下剪胀角选取探讨[J].岩土力学,2009,30(11):3278-3283.
    [89]白正雄,陈益峰,周创兵.压剪荷载作用下硬质岩石裂隙的峰后剪胀特性及其演化规律[J].岩石力学与工程学报,2010,29(增2):4131-4140.
    [90]CARRANZA-TORRES C,FAIRHURST C. Application of the convergence-confinement methodof tunnel design to rock masses that satisfy the Hoek-Brown failure criterion[J]. Tunnelling andUnderground Space Technology,2000,15(2):187-213.
    [91]Oreste,P.P. A procedure for determining the reaction curve of shotcrete lining considering transient conditions[J]. Rock Mechanics and Rock Engineering,2003:209-236.
    [92]P. Oreste. Distinct analysis of fully grouted bolts around a circular tunnel considering thecongruence of displacements between the bar and the rock[J]. International Journal of RockMechanics&Mining Sciences,2008,(45):1052-1067
    [93]Young-Jin Shin, Ki-IlSong. Interaction between tunnel supports and ground Convergence-Consideration of seepage forces[J]. International Journal of Rock Mechanics and Mining Sciences,2011:394-405.
    [94]L.R. Alejano,ALONSO E. Considerations of the dilatancy angle in rocks and rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,2005,42(4):481-507.
    [95]L.R. Alejano,Rodriguez-Dono. Ground reaction curves for tunnels excavated in different qualityrock masses showing several types of post-failure behaviour[J]. Tunnelling and Underground Space Technology,2009:689-705.
    [96]L.R. Alejano,E. Alonso.Application of the convergence-confinement method to tunnels in rockmasses exhibiting Hoek-Brown strain-softening behaviour[J]. International Journal of Rock Mechanics and Mining Sciences,2010:150-160.
    [97]L.R. Alejano,Alfonso Rodríguez-Dono, María Veiga. Plastic radii and longitudinal deformationprofiles of tunnels excavated in strain-softening rock masses[J]. Tunnelling and UndergroundSpace Technology,2012:169-182.
    [98]C. Gonza′lez-Nicieza, A.E.A′lvarez-Vigil. Influence of the depth and shape of a tunnel in theapplication of the convergence-confinement method[J]. Tunnelling and Underground Space Technology,2008:25-37.
    [99]李煜舲,林铭益.三维有限元分析隧道开挖收敛损失与纵剖面变形曲线关系研究[J].岩石力学与工程学报,2008:258-266.
    [100]Gunter G. Gschwandtner. Input to the application of the convergence confinement methodwith time-dependent material behaviour of the support[J]. Tunnelling and Underground SpaceTechnology,2012:13-22.
    [101]侯公羽,李晶晶.弹塑性变形条件下围岩-支护相互作用全过程解析[J].岩土力学,2012,33(4):961-971.
    [102]Kyung-Ho Park, Bituporn Tontavanich. A simple procedure for ground response curve of circular tunnel in elastic-strain softening rock masses[J]. Tunnelling and Underground Space Technology,2008:151-159.
    [103]CARRANZA-TORRES C. Some Comments on the application of the Hoek-Brown failurecriterion for intact rock and rock masses to the solution of tunnel and slope problems[C]//BARLA G, BARLA M Eds. MIR2004—X Conference on Rock and Engineering Mechanics.Torino: Italy Pàtron Editore Bologna,2004:285-326.
    [104]吴顺川,金爱兵,高永涛.基于广义Hoek-Brown准则的边坡稳定性强度折减数值分析[J].岩土工程学报,2006,28(11):1975-1980.
    [105]Johan C,Lars. An exact implementation of the Hoek–Brown criterion for elasto-plastic finiteelement calculations[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(6):831-847.
    [106]J.L.BIs,B.Feuga. The Frae ture of Roeks[M], TranslatedbyJ.wanklyn,Northox for dacademic,London,1988,50-64.
    [107]Amadei,B.Strength of a Regularly Jointed Rock Mass Under Biaxial and Axis metrieLDading.Int.J.ROekMeeh.Min.Sei.GeomeehAbstL,1988,253-258.
    [108]Ramamurthy T, Jora VK. Strength Predietions for Jointed Rocks in Confinedand UneonfinedStates.Int.J.RockMeehMin.Sei.&Geomeeh.Abstr,1994,(1):9-22.
    [109]HOEK E,WO OD D,SHAH S. A modified Hoek-Brown criterion for jointed rock masses[C]//Proc.Rock Characterization,Symp.Int.Soc.Rock.Mech.,Eurock92.London:Brit Geotech.Soc.,1992:209-213.
    [110]Hoek E. Strength of rock and rock masses[J]. ISRM News Journal,1994,2(2):4-16.
    [111]Hoek E, Brown E T. The Hoek-Brown failure criterion-a1988pdate[A]. Proceedings of15thCanadian Rock Mechanics Symposium[C].Toronto,1988.251-259.
    [112]Harun Sonmez, Candan Gokceoglu. An application of fuzzy sets to the Geological Strength Index (GSI)system used in rock engineering[J]. Engineering Applications of Artificial Intelligence,2003,(16):251-269
    [113]Cai M,Kaisera P K,Unob H,et al. Estimation of rock mass deformation modulus and strengthof jointed hard rock masses using the GSI system[J].International Journal of Rock Mechanics&Mining Sciences,2004,41:3-19.
    [114]Cai M,Kaisera P K,Unob H,et al. Determination of residual strength parameters of jointedrock masses using the GSI system[J]. International Journal of Rock Mechanics&MiningSciences,2007,44:247-265.
    [115]闫长斌,徐国元.对Hoek-Brown公式的改进及工程应用[J].岩石力学与工程学报,2005,24(22):4030-4035.
    [116]LI A J, MERIFIELD R S, LYAMIN A V. Stability charts for rock slopes based on the Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(5):689-700.
    [117]李日运,昊林峰.岩石风化程度特征指标的分析研究[J].岩石力学与工程学报,2004,23(22):3830-3834.
    [118]韩凤山.大体积节理化岩体强度与力学参数[J].岩石力学与工程学报,2004,23(5):777-780.
    [119]SHARAN S K. Analytical solutions for stresses and displacements around a circular openingin a generalized Hoek-Brown rock[J]. International Journal of Rock Mechanics and MiningSciences,2008,45(1):78-85.
    [120]Yang X. Seismic displacement of rock slopes with nonlinear Hoek-Brown failure criterion[J].International Journal of Rock Mechanics and Mining Sciences,2007,44(6):948-953.
    [121]Hoek E,Carranza-Torres C,Corkum B. Hoek-Brown failure criterion(2002edition)[A]. Proceedings of NARMS-TAC2002, Mining Innovation an Technology[C].Toronto:University of Toronto,2002:267-273.
    [122]铁摩辛柯,古地吉.弹性理论[M].徐芝纶,译.北京:高等教育出版社,1990.
    [123]ITASCA. FLAC3D. Fast Lagrangian analysis of continua, www.itascacg.com,2006.
    [124]Rafael J,Alcibiades S,Claudio O. Linearization of the Hoek and Brown rock failure criterionfor tunneling in elasto-plastic rock masses[J]. International Journal of Rock Mechanics andMining Sciences,2008,45(7):1153-1163.
    [125]Jiang Y, Yoneda H, Tanabashi Y. Theoretical estimation of loosening pressure on tunnelsinsoft rocks[J]. Tunnelling and Underground Space Technology,2001(16):99-105.
    [126]Hoek E, Diederich M.S. Empirical estimation of rock mass modulus[J]. Rock Mechanics andRock Engineering,2006:203-215.
    [127]Denise Bernaud. A numerical approach for design of bolt-supported tunnels regardedashomogenized structures[J]. Tunnelling and Underground Space Technology.2009(24):533-546
    [128]Bernaud, D., Rousset, G. The new implicit method for tunnel analysis[J]. Int. J.Numer. Anal.Methods Geomech.1996(9):673-690.
    [129]Wong, H, Trompille, Dias, D. Extrusion analysis of a bolt-reinforced tunnelface with finiteground-bolt strength[J]. Can. Geotech.2004(41):326-341.
    [130]Bernaud, D., Rousset, G. The new implicit method for tunnel analysis[J]. International Journalfor Numerical Analytical Methods in Geomechanics.1996(20):673-690.
    [131]Graziani, A., Boldini, D., Ribacchi, R. Practical Estimate of Deformations and Stress ReliefFactors for Deep Tunnels Supported by Shotcrete[J].Journal Rock Mechanics and RockEngineering2005(5):345-372.
    [132]Shemyakin E I,Kurlenya M V,Oparin V N,et al. Zonal disintegration of rocks aroundunderground workings:practical applications[J].Journal of Mining Science,1989,25(4):297-302.
    [133]Adams G D,Jager A J. Etroscopic observations of rock fracturing ahead of stope faces indeep-level gold mines[J].Journal of the South Africa Institute of Mining and Metallurgy,1980(2):115-127.
    [134]Sonmez H, Ulusay R. A discussion on the Hoek-Brown failure criterion and suggestedmodification to the criterion verified by slope stability case studies[J].Yerbilimleri.2002(26):77-99.
    [135]刘高,王小春,聂德新.金川矿区地下巷道围岩应力场特征及演化机制[J].地质灾害与环境保护,2002,13(4):40-45.
    [136]Hoek E, Brown E T. Empirical strength criterion for rock masses[J].Geotech. Engng.Div.,ASCE,1980,106(GT9):1013-1035.
    [137]王秀英,王梦恕,张弥.山岭隧道堵水限排衬砌外水压力研究[J].岩土工程学报,2005,27(1):125-127.
    [138]徐干成,白洪才,郑颖人.地下工程支护结构[M].北京:中国水利水电出版社,2001.
    [139]Brown E T. Estimating the mechanical properties of rock mass[C]//Proceedings of SouthernHemisphere International Rock MechanicsSymposium. Perth:Australian Centre for GeomechanicsPress,2008:3-21.
    [140]郑雨天,朱华满.巷道围岩特性曲线的测定与应用[J].煤炭学报,1990,15(l):25-31.
    [141]V.biuoes.采用“收敛-约束”法分析点锚固锚杆在深埋岩石隧洞中的支护效果[J].贾海宴译.世界隧道,1995,(4):59-67.
    [142]C. Gonza′lez-Nicieza, A.E.A′lvarez-Vigil. Influence of the depth and shape of a tunnel in theapplication of the convergence-confinement method[J]. Tunnelling and Underground Space Technology,2008:25-37.
    [143]张传庆,冯夏庭,周辉,等.应力释放法在隧洞开挖模拟中若干问题的研究[J].岩土力学,2008,29(5):1174-1181.
    [144]胡玉银.考虑岩石扩容性的洞周弹脆性收敛线的确定[J].地下空间,1994,14,(2):83-88.
    [145]王卫军,彭刚,黄俊.高应力极软破碎岩层巷道高强度耦合支护技术研究[J].煤炭学报,2011,22(2):223-229.
    [146]何满潮.中国煤矿软岩巷道支护理论与实践[M].徐州:中国矿业大学出版社,1996.
    [147]贾剑青,王宏图,李晶.复杂条件下隧道支护结构稳定性分析[J].岩土力学,2010,31(11):3599-3605.
    [148]潘一山,章梦涛,李国臻.稳定性动力准则的圆形硐室岩爆分析[J].岩土工程学报,1993,15:59-66.
    [149]Ribacchi R. Mechanical tests on pervasively jointed rock material:insight into rock mass behaviour[J]. Rock Mechanics and RockEngineering,2000(4):243-266.
    [150]孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,2007,26(6):1081-1107.
    [151]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [152]赵星光.岩石剪胀角模型及其在地下工程中的应用[D].北京:北京科技大学,2010.
    [153]Barton N. Review of a new shear strength criterion for rock joints[J].Engineering Geology,1973(4):287-332.
    [154]修作量,王兴库.浅谈煤巷锚杆支护技术的现状与发展[J].煤矿开采,1996,11(2):3-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700