细菌磁小体免疫荧光检测果树病毒的快速高灵敏度检测体系建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
趋磁性细菌磁小体(BMPs)应用于免疫检测时具有很高的检测灵敏度,但许多方面仍然处于未知阶段,如影响抗体连接到BMPs的环境条件、抗体连接效率(LRA)对检测灵敏度的影响及与常用的酶联免疫吸附测定法(Enzyme linked immunosorbent assay,ELISA)检测抗原的灵敏度相比如何?有待于研究。本文以羊抗兔抗体为例,进行了抗体连接到BMPs影响因子研究,并建立了以BMPs为抗体载体的荧光检测抗原的体系:应用所建立的检测体系对果树病毒-葡萄扇叶病毒(GFLV)和李属坏死环斑病毒(PNRSV)进行了检测;并与ELISA检测方法作了对比研究。
     研究表明:影响抗体连接到BMPs上的因子是多方面的,并且抗体的连接效率与检测灵敏度有关;应用BMPs的荧光检测方法比ELISA方法灵敏10~5~10~6倍。
     由实验结果得知,许多缓冲液可以作为羊抗兔抗体连接到BMPs反应体系的缓冲液,从实验所采用的12种常用缓冲液,在通常所使用的浓度与pH值条件下对LRA的影响研究得知,LRA变化范围为35~95 μg/mg。进一步对两种有机缓冲液(Tris-Cl,HEPES)和一种无机缓冲液(Na_3PO_4)的pH值和浓度研究表明,不同的缓冲液使LRA达到最高时的pH值和溶液浓度不同。当pH 5.6时10~20 mM的Tris-Cl,pH 3.5时20 mM的HEPES,pH 5.6时1~5 mM的Na_3PO_4,其LRA明显高于其他pH值和浓度条件下的。由此得知,偏酸的环境有利于抗体连接到BMPs,而且有机溶液的浓度较无机的高。温度对LRA也有影响,不同的连接温度使LRA达到最高的时间不同。在4-37℃之间连接抗体时,较高的连接温度使LRA达到最高所用的时间较短,4℃时需要12小时,室温(24℃)下需要4小时,37℃时需要2小时。在1 ml的反应体系中抗体用量越多,BMPs用量越少,获得的LRA越高。在1ml的连接体系中,当抗体的用量为300μg,BMPs用量为0.1 mg时,LRA可达762.6μg/mg。并且BMPs的质量与LRA有关,高质量的BMPs可以获得高的LRA。冷冻干燥BMPs对抗体连接效率有影响,使LRA降低;并且冷冻干燥前预处理方式使LRA有异,在液氮中预处理的BMPs的LRA明显高于在-70~C和-20℃预处理的。超声波清洗器悬浮和摇床晃动有利于抗体的连接,缩短LRA达到最大值的时间。
     抗体的连接效率与抗原检测的灵敏度有很大的关系,连接效率越高,抗原检测的灵敏度也越高。在对ELISA和以BMPs为抗体载体的荧光检测方法比较研究表明,对兔IgG检测时,后者的灵敏度比前者提高10~6倍;以羊抗兔IgG-兔IgG的抗体抗原关系所建立的应用BMPs的荧光检测体系对果树病毒(GFLV,PNRSV)的检测表明,其灵敏度是ELISA的10~6倍。由实验得出结论:以BMPs为抗体载体的荧光检测方法检测抗原时具有很高的检测灵敏度。
The effect of incubation factors on immobilization efficiency of antibodies, using goat anti-rabbit IgG as an illustration, onto bacterial magnetic particles (BMPs), focusing on the concentration of immunoglobulin G (IgG) and BMPs, buffer selection and its suitable conditions for the conjugation, and the other incubation factors such as, temperature and duration, shaking or stationary condition, BMPs quality, freeze-dry treatment were carried out in this study. New antigen detection method was established by using BMPs while rabbit IgG was applied as a sample, and later on the established detection method used for determination fruit tree virus- Prunus necrotic ring spot virus (PNRSV) and grape fanleaf virus.The resultant data showed that, many factors could influence goat anti rabbit IgG (antibody) immobilized onto BMPs; different linkage rate of antibody (LRA) had varied antigen (rabbit IgG) detection sensitivity; high LRA can obtained high detection sensitivity; and the BMPs based fluorescence assay had much higher detection sensitivity than the method of ELISA in the detection of rabbit IgG and fruit tree virus.Many buffers can be the conjugation buffers for goat anti-rabbit IgG onto BMPs. 12 buffers tested under the normal buffer concentration and pH, the LRAs obtained in the range of 35-95 μg/mg. The selected three buffers, 2 organic (Tris-Cl and HEPES) and 1 inorganic (Na3PO4) were used to investigate the effect of buffer pH and concentration on immobilization efficiency. The pHs and concentrations were different when the LRAs reached the peak value. The suitable pH and concentrations were pH 5.6, 1-5 mM for buffer Na3PO4; pH 5.6, 10-20 mM for Tris-Cl; and pH3.5, 20 mM for HEPES. Therefore, the lower pH benefits LRA, and the concentration of organic buffer was higher than inorganic buffer. Temperature was also affect on LRA, which could reach the peak point faster with higher temperature when 4℃ to 37℃ were used. High quality with appropriate amount of BMPs and enough amount of antibody quantity would lead high LRA. When 0.1 mg of BMPs and 300 μg of antibody mixed into 1 ml of conjugation buffer, it resulted the LRA of 762.6 μg /mg. Freeze-dry BMPs caused LRA decreased, and different pre-treatment of freeze-dry BMPs had significant difference of LRA, which was much higher of pre-treatment in liquor nitrogen than that in -70℃ and -20℃. Resuspending or shaking the conjugation reactants could accelerate the LRA peak appeared, and much higher than that in a stationary stage.Comparing to the different detection methods of ELISA and BMPs based fluorescence assay, the later one had much higher detection sensitivity. The detection sensitivity of the later method was 10 times higher than the former one for rabbit IgG detection and fruit tree virus determination.
引文
Arakaki A, Webb J, Matsunaga T. A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J. Biol. Chem., 2003, 278: 8745~8750
    Bahaj A S, CrouDce I W, Janes P A B et al. Continuous radionuclide recovery from wastewater using Magnetotactic bacteria. J. Magn. Mater., 1998, 184: 241~244
    Barbara D J, Clark M F, Thresh J M et al. Rapid detection and serotyping of prunus necrotic ringspot virus in perennial crops by enzyme-linked immunosorbent assay. Ann. Appl. Biol., 1978, 90: 395~399
    Bar-Joseph M, Garnsey S M, Gonsalves D et al. The use of enzyme-linked immunosorbent assay for detection of citrus tristeza virus. Phytopathology, 1979, 69: 190~194
    Bazylinski D A, Dean A J, Schiller D et al. N_2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ. Microbiol., 2000, 2: 266~273
    Bazylinski D A, Frankel R B, Jannasch H W. Anaerobic production of magnetite by a marine magnetotactic bacterium. Nature, 1988, 334: 518~519
    Bazylinski D A, Garratt-Reed A J, Frankel R B. Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microsc. Res. Tech., 1994, 27: 389~401
    Blakemore R P, Maratea D, Wolfe R S. Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J. Bacteriol., 1979, 14: 720~729
    Blakemore R P. Magnetotactic bacteria. Science, 1975, 190: 377~379
    Borja M J, Ponz F. An appraisal of different methods for the detection of the walnut strain of cherry leaf roll virus. J. Virol. Methods, 1992, 36: 73~83
    Candresse T, Lanneau M, Revers F et al. An immunocapture PCR assay adapted to the detection and the analysis of the molecular variability of apple chlorotic leaf spot virus. Acta Hortic., 1995, 386: 136~147
    Chirkov S N, Olovnikov A M, Surguchyova N A et al. Immunodiagnosis of plant viruses by a virobacterial agglutination. Ann. Appl. Biol. 1984, 104: 477~483
    Clark M F, Adams A N. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol., 1977, 34: 475~483
    Crossley S J. IC-PCR amplification of apple stem grooving virus isolates and comarison of polymerase and coat protein gene sequences. Acta Hortic., 1998, 472: 113~117
    Delanoy M, Salmon M, Kummert J et al. Development of real-time PCR for the rapid detection of episomal banana streak virus (BSV). Plant Dis., 2003, 87: 33~38
    Derrick K S. Quantitative assay of plant viruses using serologically specific electron microscopy. Virology, 1973, 56: 652-653
    Edwards M L, Cooper J I. Plant virus detection using a new form of indirect ELISA. J. Virol. Methods, 1985, 11: 309~319
    Farina M, Esquivel D M S, Lins de Barros H G P. Magnetic iron-sulphur crystals from a Magnetotactic microorganism. Nature, 1990, 343: 256~258
    Frankel R B, Bazylinski D A, Johnson M et al. Magneto-aerotaxis in marine, coccoid bacteria. Biophys J., 1997, 73: 994~1000
    Frankel R B, Blakemore R P, Wolfe R S. Magnetite in freshwater Magnetotactic bacteria. Science, 1979, 203: 1355~1356
    Friedmann, E. L, Wierzchos J, Ascaso C et al. Chains of magnetite crystals in the meteorite ALH 84001: Evidence of biological origin. Proc. Natl. Acad. Sci., 2001, 98: 2176~2181
    Fuchs M, Pinck M, Etienne L et al. Characterization and detection of grapevine fanleaf virus by using cDNA probes. Phytopathology, 1991, 81: 559~565
    Galipienso L, Vives M C, Navarro L et al. Detection of citrus leaf blotch virus using digoxigenin-labeled cDNA probes and RT-PCR. Eur. J. Plant Pathol., 2004, 110: 175~181
    Gella R. Effect of some virus diseases on the performance of two clones of Agua de Aranjuez pear. Acta Hortic., 1990, 256: 137~142
    Gorby Y A, Beveridge T J, Blakemore R P. Characterization of the bacterial magnetosome membrane. J. Bacteriol., 1988, 170: 834~841
    Gould J L, Kirschvink J L, Deffeyes K S. Bees have magnetic remanence. Science, 1978, 201: 1026~1028
    Gruuberg K, Muller E-C, Otto A et al. Biochemical and proteomic analysis of the magnetosome membrane. Appl. Environ. Microbio., 2004, 70: 1040~1050
    Hamison J G. Quantification of Phytophthora infestans mycelium in potato leaves by ELISA. In proceeding of the fourth COST-88 workshop pp18~19. Invergowire Dundee Scotland 25~27 Sept. 1990
    Hanzlik M, Winklhofer M, Petersen N. Spatial arrangement of chins of magnetosomes in magnetotactic bacteria. Earth and Planet. Sc. Lett., 1996, 145: 125~134
    Hawkes R, Niday E, Gordon J. A dot-immunobinding assay for monoclonal and other antibodies. Anal. Biochem., 1982, 119: 142~147
    Hayes M C, Jourdan S W, Herzog D E Determination of atrazine in water by magnetic particle immunoassay: collaborative study. J. AOAC Internat., 1996, 79: 529~537
    Helguera P R, Docampo D M, Nome S F et al. Enhanced detection of prune dwarf virus in peach leaves by immunocapture-reverse transcription-polymerase chain reaction with nested polymerase chain reaction (IC-RT-PCR-Nested PCR). J. Phytopathology, 2002, 150: 94~96
    Helguera P R, Taborda R, Docampo D M et al. Immunocapture reverse transcription-polymerase chain reaction combined with nested PCR greatly increases the detection of prunus necrotic ring spot virus in the peach. J. Virol. Methods, 2001, 95: 93~100
    Hottenstein C S, Rubio F M, Herzog D P et al. Determination of trace Atrazine levels in water by a sensitive magnetic particle-based enzyme immunoassay. J. Agric. Food Chem., 1996, 44: 3576~3581
    Hu J S, Gonsalves D, Teliz D. Characterization of closterovirus-like particles associated with grapevine leafroll disease. Phytopathology, 1990, 128: 1~14
    Hu J S, Li H P, Barry K et al. Comparison of dot blot, ELISA, and RT-PCR assays for detection of two cucumber mosaic virus isolates infecting banana in Hawaii. Plant Dis., 1995, 79: 902~906
    Iida A, Akai J. TEM study on Magnetotactic bacteria and contained magnetite grains as biogenic mineral, mainly from Hokuriku-niigata region. Japan Rep. Niigata Univ. Ser. E(Geology), 1996, 11: 43~46
    Itak J A, Olson E G, Fleeker J R et al. Validation of a paramagnetic particle-based ELISA for the quantitative determination of carbaryl in water. Bull. Environ. Contam. Toxicol. 1993, 51: 260~267
    Itak J A, Selisker M Y, Herzog D P et al. Determination of captan in water, peaches, and apple juice by a magnetic particle-based immunoassay. J. AOAC Internat., 1994, 77: 86~91
    Itak J A, Selisker M Y, Herzog D R Development and evaluation of a magnetic particle based enzyme immunoassay for aldicarb, aldicarb sulfone, and aldicarb sulfoxide. Chemosphere, 1992, 24: 11~21
    J S, Li H P, Barry K et al. Comparison of dot blot, ELISA, and RT-PCR assays for detection of two cucumber mosaic virus isolates infecting banana in Hawaii. Plant Disease, 1995, 79: 902~906
    Jackson R, Morris D J, Cooper R J et al. Multiplex polymerase chain reaction for adenovirus and herpes simplex virus in eye swabs. J. Virol. Methods, 1996, 56: 41~48
    Kinard G R. Detection of apple chlorotic leaf spot and apple stem grooving viruses using RT-PCR. Plant Disease, 1996, 80: 616~622
    Kirschvink J L, Kirschvink A K, Woodford B J. Magnetite biomineralization in the human brain. Proc. Natl. Acad. Sci., 1992, 89: 7683~7687
    Kirschvink J L, Lowenstam H A. Mineralization of chiton teeth: pales magnetic, sedimentologic, and biologic implications of organic magnetite. Earth. Plan. Sci. Lett., 1978, 44: 193~347
    Kirschvink S. Magnetoreception: Homing in on vertebrates. Nature, 1997, 390: 339~340
    Kolber M, Nemeth M, Krizbai L et al. Detectability of prunus necrotic ringspot and plum pox viruses by RT-PCR, multiplex RT-PCR, ELISA and indexing on woody indicators. Acta Hortic., 1998, 472: 243~247
    Kronvall G. A rapid slide agglutination test for typing pneumococci by means of specific antibody adsorbent to protein A containing staphylococci. J. Med. Microbiol., 1973, 6: 187~195
    Kuhara M, Takeyama H, Tanaka T et al. Magnetic cell separation using antibody binding with protein A expressed on bacterial magnetic particles. Anal. Chem., 2004, 76: 6207~6213
    Kummert J. Sensitive detection of apple stem grooving and apple stem pitting virus from infected apple trees by RT-PCR. Acta Hortic., 1998, 472: 97~104
    Lawruk T S, Gueco A M, Jourdan S W et al. Deteermionation of Chlorothalonil in water and agricultural products by a magnetic particle-based enzyme immunoassay. J. Agric. Food Chem., 1995, 43: 1413~1419
    Lawruk T S, Gueco A M, Mihaliak C A et al. Development of a magnetic particle-based enzyme immunoassay for the quantitation of chlorpyrifos in water. J. Agric. Food Chem., 1996, 44: 2913~2918
    Lawruk T S, Hottenstein C S, Fleeker J R et al. Quantification of 2, 4-D and related chlorophenoxy herbicides by a magnetic particle-based ELISA. Bull. Environ. Contam. Toxicol., 1994, 52: 538~545
    Lawruk T S, Hottenstein C S, Herzog D P et al. Quantification of alachlor in water by a novel magnetic particle-based ELISA. Bull. Environ. Contam. Toxicol., 1992, 48: 643~650
    Lawruk T S, Lachman C E, Jourdan S W et al. Determination of metolachlor in water and soil by a rapid magnetic particle-based ELISA. J. Agric. Food Chem., 1993a, 41: 1426~1431
    Lawruk T S, Lachman C E, Jourdan S W et al. Quantification of cyanazine in water and soil by a magnetic particle-based ELISA. J. Agric. Food Chem., 1993b, 41: 747~752
    Ling K S, Zhu H Y, Jiang Z Y et al. Effective application of DAS-ELISA for detection of grapevine leafroll associated cloterovirus-3 using a polyclonal antiserum developed from recombinant coat protein. Eur. J. Plant Pathol., 2000, 106: 301~309
    Ling K S, Zhu H Y, Petrovic N et al. Comparative effectiveness of ELISA and RT-PCR for detecting grapevine leafroll-associated clostervirus-3 in field sample. Am. J. Enol. Vitic., 2001, 52: 21~27
    Malinowski T. Detecyion of apple stem pitting virus and pear vein yellow virus using reverse transcription polymerase chain reaction. Acta Hortic., 1998, 472: 87~95
    Mann S, Sparks N H C, Board R G. Magnetotactic bacteria: microbiology, biomineralization, palaeomagnetism, and biotechnology. Adv. Microb. Physiol., 1990, 31: 125~181
    Marbot S, Salmon M, Vendrame A et al. Development of real-time RT-PCR assay for detction of prunus necrotic ringspot virus in fruit trees. Plant Dis., 2003, 87: 1344~1348
    Matsunaga T, Hashimoto K, Nakamura N et al. Phagocytosis of bacterial magnetite by leucocytes. Appl. Microbiol. Biotechnol., 1989, 31: 401~405
    Matsunaga T, Kamiya S. Introduction of bacterial magnetic particles into red blood ceels with cell fusion. In: Atsumi K, Kotani M, Ueno S, Katila T, Williamsen S J (eds) 6th International Conference on Biomagnetisms, 1987. Tokyo Denki University Press, Toyko, pp 50~51
    Matsunaga T, Kamiya S. Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization. Appl. Microbiol. Biotechnol., 1987, 26: 328~332
    Matsunaga T, Kawasaki M, Yu X et al. Chemiluminescence enzyme immunoassay using bacterial magnetic particles. Anal. Chem., 1996, 68: 3551~3554
    Matsunaga T, Nakamura C, Burgess J G et al. Gene transfer in magnetic bacteria: transposon mutagenesis and cloning of genomic DNA fragments required for magnetosome synthesis. J. Bacteriol., 1992, 174: 2748~2753
    Matsunaga T, Nakamura C, Burgess J G et al. Gene transfer in magnetic bacteria: Transposon mutagenesis and cloning of genomic DNA fragments required for magnetosome synthesis. J. Bacteriol., 1992, 174: 2748~2753
    Matsunaga T, Nakayama H, Okochi M et al. Fluoreeent detection of cyanobacterial DNA using bacterial magnetic particles on a MAG-miroarray. Biotechnol. Bioeng., 2001, 73: 400~405
    Matsunaga T, Sakaguchi T, Tadokoro F. Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl. Microbiol. Biotechnol., 1991, 35: 651~655
    Matsunaga T, Sato R, Kamiya S et al. Chemiluminescence enzyme immunoassay using protein A-bacterial magnetic complex. J. Magntism Magntic Material, 1999, 194: 126~131
    Matsunaga T, Tsujimura N, Okamura Y et al. Cloning and characterization of a gene, mpsA, encoding a protein associated with intracellular magnetic particles from Magnetospirillum sp. Strain AMB-1. Biochem. Biophysi. Res. Communic., 2000, 268: 932~937
    Matsunaga T, Ueki F, Obata K et al. Fully automated immunoassay system of endocrine disrupting chemicals using monoclonal antibodies chemically conj μ gated to bacterial magnetic particles. Anal. Chem. Acta, 2003, 475, 75~83
    Matsunaga T. Applications of bacterial magnets. TIBTECH., 1991, 9, 91~95
    Mckay, D. S, Gibson Jr. E K, Thomas-Keprta K L et al. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH 84001. Science, 1996, 273: 924~930
    Moench T T, Konetzka W A. A novel method for the isolation and study of a magnetic bacterium. Arch. Microbiol., 1978, 119: 203~212
    Moench T T. Biliphococcus magnetotacticus gen. nov. Sp. nov., a motile, magnetic coccus. Antonie Leeuwenhoek, 1998, 54: 483~496
    Moskowitz B M. Biomineralization of magnetic minerals. Rev. Geophys. Suppl., 1995, 33: 123~128
    Mullis K B, Falcoma F A, Scharf S J et al. Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Sping Harbor Symp. Quant. Biol., 1986, 51: 263~273
    Nakamura N, Burgess J G, Yagiuda K et al. Detection and removal of Eschericha coli using flurescein isothiocyanate conjμgated monoclonal antibody immobilized on bacterial magnetic particles. Anal. Chem., 1993a, 65: 2036~2039
    Nakamura N, Hashimoto K, Matsunaga T. Immunoassay method for the determonation of immunoglobulin G using bacterial magnetic particles. Anal. Chem., 1991, 63: 268~272
    Nakamura N, Matsunaga T. Highly sensitive detection of allergen using bacterial magnetic particles. Anal. Chem. Acta, 1993b, 281: 585~589
    Nemchinov L, Hadidi A, Candresse T et al. Sensitive detection of apple chlorotic leaf spot virus from infected apple or peach tissue using RT-PCR, IC-RT-PCR, or multiplex IC-RT-PCR. Acta Hortic., 1995, 386: 51~62
    Nolasco G, Sequeira Z, Soares C et al, Asymmetric PCR ELISA: Increased sensitivity and reduced costs for the detection of plant virus. Eur. J. Plant Pathol., 2002, 108: 293~298
    Ota H, Takeyama H, Nakayama H et al. SNP detection in transforming growth factor-β 1 gene using bacterial magnetic particles. Biosens. Bioelectron., 2003, 18, 638~687
    Parakh D B, Shamioul A M, Hadidi A et al. Detection of prune dwarf ilarvirus from infected stone fruits using reverse transcription-polymerase chain reaction. Acta Hortic., 1995, 386: 421~430
    Pink L, Fuchs M, Pinck M et al. A satellite RNA in grapevine fanleaf virus strain F 13. J. Gen. Virol., 1988, 69: 233~239
    Pusey P I. Influence of prunus nectotic ringspot virus on growth, producticity, and longevity of peach tree. Plant Dis., 1991, 75:847-851
    Rott M E, Jelkmann W. Characterization and detection of several filamentous of cherry: Adaptation of an alternative cloning method (DOP-PCR), and modification of an RNA extraction protocol. Eur. J. Plant Pathol., 2001, 107: 411-420
    Rowhani A, Chay C, Golino D A et al. Development of a polymerase chain reaction technique for the detection of grapevine fanleaf virus in grapevine tissue. Phytopathology, 1993, 83:749-753
    Rowhani A, Maningsa M A, Lile L S et al. Development of a detection system for viruses of woody plants based on PCR analysis of immobilized virions. Phytopathology, 1995, 85:347-352
    Rubio F M, Itak J A, Scutellaro A M et al. Performance characteristics of a novel magnetic-particle-based enzyme-linked immunosorbent assay for the quantitative analysis of atrazine and related triazines in water samples. Food Agric. Immunol., 1991, 3:113-125
    Sabanadzovic S, Saldarelli P, Savino V. Molecular diagnosis of grapevine fleck virus. Vitis, 1996, 35:137-140
    Saiki R, Scharf S, Faloona F et al. Enzymatic amplification of betaglobin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985, 230:1350-1354
    Saldarelli P, Minafra A, Martelli G P et al. Detection of grapevine leafroll-associated closterovirus Ⅲ by molecular hybridization. Plant Pathol., 1994, 43:91-96
    Satoshi T et al. Simplifying of the immunofilter paper assay for faster of plant viruses: Simplified RIPA. Ann. Phytopathol. Soc. Jpn., 1996, 62:240-242
    Schlaeppi J-M A, Kessler A, Fory W. Development of a magnetic particle-based automated chemiluminescent immunoassay for Triasulfuron. J. Agric. Food Chem., 1994, 42:1914-1919
    Schuler D, Spring S, Bazylinski D A. Improved technique for the isolation of magnetotactic spirilla from a freshwater sediment and their phylogenetic characterization. Syst. Appl. Microbiol. 1999,22:466-471
    Schuler D. Formation of magnetosomes in Magnetotactic bacteria. J. Mol. Microbiol. Biotechnol., 1999, 1:79-86
    Schuler D. Molecular analysis of a subcellular compartment: the magnetosome membrane in Magnetospirillum gryphiswaldense. Arch. Microbiol., 2004, 181:1-7
    Schunck B, Kraft W, Truyen U. A simple touch-down polymerase chain reaction for the detection of canine parvovirus and feline panleukopenia virus in feces. J. Virol. Methods, 1995, 55:427
    Scott, E. R. Origin of carbonate-magnetite-sulfide assemblages in Martian meteorite ALH 84001. J. Geophys. Res. 1999, 104(E2): 3803-3813
    Shen S, Desselberger U, Mckee T A. The development of an antigen capture polymerase chain reaction assay to detect and type human enteroviruses. J. Virol. Methods, 1997, 65:139
    Singh R P, Nie X, Singh M et al. Sodium sulphite inhibition of potato and cherry polyphenolics in nucleic acid extraction for virus detection by RT-PCR. J. Virol. Methods, 2002, 99:123-131
    Skrzeczkowski L J, Howell W E, Mink G I. Occurrence of peach latent mosaic viroid in commercial peach and nectarine cultivars in the U.S. Plant Dis., 1996, 80:823
    Smith K M. Plant virus. London: Chapman and Hall, 1977. Sixth edition
    Sode K, Kudo S, Sakaguchi T et al. Application of bacterial magnetic particles for highly selective mRNA recovery system. Biotechnol. Tech., 1993, 7, 688~694
    Spiegel S, Rosner A, Tam Y et al. Detection of prune dwarf virus in sweet cherry in Israfl. Acta Hortic., 1998, 472: 249~255
    Spiegel S, Scott S W, Bowman-Vance V et al. Improved detection of prunus necrotic ringspot virus by the polymerase chain reaction. Eur. J. Plant Pathol., 1996, 102: 681~685
    Takeyama H, Yamazawa A, Nakamura C et al. Application of bacterial magnetic particles as novel DNA carriers for ballistic transformation of marine cyanobacterium. Biotechnol. Yech., 1995, 9, 355~360
    Tanaka T, Matsunaga T. Detection of HbA_(1c) by boronate affinity immunoassay using bacterial magnetic particles. Biosens. Bioelectron., 2001, 16: 1089~1094
    Tanaka T, Matsunaga T. Fully automated chemiluminescence immunoassay of insulin using Antibody-Protein A-Bacterial magnetic particle complexes. Anal. Chem., 2000, 72 (15): 3518~3522
    Tanaka T, Yamasaki H, Tsujimura N et al. Magnetic control of bacterial magnetite-myosin conjμ gate movement on actin cables. Mat. Sci. Eng., 1997, C5: 121~124
    Thomas-Keprta K L, Clemett S J, Bazylinski D A et al. Truncated hexa-octahedral magnetite crystals in ALH 84001: presumptive biosignatures. Proc. Natl. Acad. Sci., 2001, 98: 2164~2169
    Torres de Araujo F F, Pires M A, Frankel R B et al. Magnetite and magnetotaix in algae. Biopbys. J. 1986, 50: 375~378
    Tsuda S, Kameya-Iwaki M, Hanada K et al. A novel detection and identification technique for plant viruses: Rapid immunofilter paper assay (RIPA). Plant disease, 1992, 76: 466~469
    Van Regenmorte M H V, Fauquet C M, Bishop D Het al. Virus taxonomy. 7th report of ICTV. New York: San Diego Academic Praess, 2000. 691~701
    Walcott C, Gould J L, Kireschvink J L. Pigeons have magnets. Science, 1979, 205: 1027~1029
    Walker J E, Saraste M, Runswick M et al. 1982, EMBO J. 8: 945~981
    Wetzel T, Candresse T, Macquaire G et al. A highly sensitive immunocapture polymerase chain reaction method for plum pox potyvirus detection. J. Virol. Methods, 1992, 39: 27~37
    Wetzel T, Candresse T, Ravelonandro M et al. A polymerase chain reaction assay adapted to plum pox potyvirus detection. J. Virol. Methods, 1991, 33: 355~365
    Yang C D, Takeyama H, Tanaka T et al. Synthesis of bacterial magnetic particles during cell cycle of Magnetospirillum magneticum AMB-1. Appl. Biochem. B iotechnol., 2001, 91~93: 155~160
    Yoshino T, Tanaka T, Takeyama H et al. Single nucleotide polymorphism genotyping of aldehyde dehydrogenase 2 gene using a single bacterial magnetic particle. Biosens. and Bioelectron., 2003, 18, 661~666
    Yoza B, Arakaki A, Matsunaga T. DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer. J. Biotech., 2003, 101, 219~228
    Yoza B, Matsumoto M, Matsunaga T. DNA extraction using modified bacterial magnetic particles in the presence of amino silane compound. J. Biotech., 2002, 94, 217~224
    Yu H. Comparative studies of magnetic particle-based solid phase fluorogenic and electrochemiluminescent immunoassay. J. Immunol. Methods, 1998, 218: 1~8, 13
    Yu H. Enhancing immunoelectrochemiluminescence (IECL) for sensitive bacterial detection. J. Immunol. Methods, 1996, 192: 63~71
    蔡文启,刘宏迪,黄德来等.协同凝集试验快速诊断葡萄扇叶病毒.微生物学报,1992,32(4):262~265
    柴素芬.果树病毒病的防治.惠州大学学报(自然科学版),1999,19(4):51~53
    陈建军,刘崇怀,古勤生等.DAS-ELISA、RT-PCR和IC-RT-PCR检测葡萄卷叶病毒Ⅲ的比较研究.果树学报,2003,20(3):173~177
    陈剑平,董玛佳,陶金斐等.胶体金免疫电镜技术检测和鉴定病汁液中不同形态的植物病毒.植物病理学报,1993,23(2):169~174
    陈君帜,李清.李属植物脱毒技术及病毒检测研究进展.北京农林大学学报,2001,23(5):71~74
    代红艳,张志宏,吴禄平等.甜樱桃茎尖培养及PNRSV的RT-PCR检测.园艺学报,2003,30(1):87~89
    范国昌,李荣森,李小刚等.我国趋磁细菌的分布及其磁小体的研究.科学通报,1996,41:349~353
    冯兰香,卢爱兰,李茂林.病毒细菌协同凝集试验在蔬菜病毒检验中的应用.中国蔬菜,1998,(2):1~5
    傅润民.果树无病毒苗木与无病毒栽培技术.北京:中国农业出版社,1998.1~12
    顾沛文,龚玉梅.三种ELISA方法检测葡萄卷叶病毒(GLRaV)和扇叶病毒(GFLV)的比较.中外葡萄与葡萄酒,2002,(3):14~16,19
    顾沛雯,龚玉梅.三种ELISA方法检测葡萄卷叶病毒(GLRaV)和扇叶病毒(GFLV)的比较.中外葡萄与葡萄酒,2002,(3):14~16,19
    韩俊英,曾瑞萍.荧光定量PCR技术及其应用.国外医学遗传学手册,2000,23(3):117~120
    洪霓,刘福昌,王国平等.A蛋白酶联法检测苹果褪绿叶斑病毒和茎沟病毒的研究.中国果树,1992,(1):44~47
    洪霓,王国平,张尊平等.梨病毒脱毒技术研究.中国果树,1995,(4):5~7,24
    侯义龙,张开春,胡文玉等.20世纪果树病毒检测技术的回顾与展望.沈阳农业大学学报,2001,32(2):144~149
    侯义龙.果树主要病毒RT-PCR检测体系的建立、优化及病毒特异性DNA片段克隆测序研究.[博士论文].沈刚:沈阳农业大学,2000
    胡勤学,林木兰,张立春等.利用RT-PCR扩增和分析柑桔裂皮病类病毒.植物学报,1997,39(7):613~617
    胡勤学,张立春,陈捷等.生物素肼化学标记和DIG标记cDNA探针检测柑桔裂皮病类病毒.病毒学报,1997,(2):159~163
    孔宝华,陈海如.RT-PCR检测李坏死环斑病毒的研究.植物检疫,2000,14(5):257~260
    雷光富.朱西儒,张海保.香蕉试管苗的束顶病毒批量快速检测程序的建立.广西热作科技,1997, (2):36~38
    联邦真菌研究所,应用生物学研究会(英)汇编.复旦大学生物系植物病毒研究室译.植物病毒志.第二集.1981.上海:上海科技出版社
    李峰.格瑞菲斯瓦尔德磁螺菌(Magnetospirillum gryphiswaldense MSR-1)磁小体合成相关基因的克隆及其功能分析.博士生论文.2004
    梁国栋.最新分子生物学实验技术.北京:农业出版社,2001
    梁训生,张成良,张作芳.植物病毒血清学技术.北京:农业出版社,1985
    刘宏迪,冯鲁昕,王祈楷等.金黄色葡萄球菌与难养菌协用凝集检测苹果锈果病.微生物学报,1990,30(6):455~463
    牛建新,刘连科,朱军等.库尔勒香梨上ACLSV的RT-PCR检测.果树学报,2003b,20(4):243~246
    牛建新,刘连科,朱军等.以dsRNA为模板的梨脉黄病毒RT-PCR检测技术研究.果树学报,2003a,20(2):143~145
    钱秀红,周雪平.斑点免疫测定法在植物病毒研究中的应用及技术要点,生物技术学报,1994,4(4):39~41
    邱文平.植物病毒的分子生物学检测方法.热带作物研究,1992,(2):65~69
    阮小风,杨勇,马书尚等.甜樱桃病毒病的ELISA检测研究.山东农业大学学报,1998b,29(3):277~282
    阮小风,周瑗月,马书尚等.桃病毒病调查与检测研究.西北农业学报,1998,7(3):59~62
    阮小风,周瑗月,马书尚等 桃病毒病调查与检测研究.西北农业学报,1998a,7(3):59!~62
    尚佑芬.国内外植物病毒研究发展概况.山东农业科学,1998,(1):51~54
    隋春,吴绿平,张志宏.利用PCR技术检测草莓镶脉病毒.园艺学报,2003,30(1):82~84
    田波,裴美云.植物病毒研究方法.上册.1987.北京:科学出版社
    田亚南,柯穗,柯冲.柑桔黄龙病诊断法的研究进展.福建农业学报,1998,13(1):27~35
    田亚南,柯穗,柯冲.应用多聚酶链式反应(PCR)技术检测和定量分析柑桔黄龙病病原.植物病理学报,1996,26(3):243~250
    王国平,刘福昌,国际翔.我国草莓主栽区病毒种类的鉴定.植物病理学报,1991,21(1):9~14
    王国平,刘福昌,薛光荣等.草莓病毒种类鉴定及培育无病毒种苗的技术.中国农业科学,1990,23(4):43~49
    王明霞.应用PCR微量板杂交法检测植物病毒和类病毒.植物保护,1996,(1):34~35
    王肃鲁,王斐.苹果病毒病与无病毒栽培.新疆农恳科技,1997,(2):18~19
    王小风,李秋波,王荣等.苹果褪绿叶斑病毒和茎沟病毒的鉴定提纯和酶联法检测.微生物学报,1992,32(2):137~144
    卫杨保,姜伟,张洪霞等.趋磁细菌WD-1的生长和磁小体的合成条件.武汉大学学报(自然科学版),1994,6:121~127
    卫杨保,张洪霞,姜伟等.武汉东胡水体中趋磁细菌WD-1的分离.武汉大学学报(自然科学版),1994.6:115~120
    相宁,刘宏迪,张成良.用病毒与葡萄球菌协同凝集法检测植物病毒.病毒学报,1992,8(1):85~89
    肖火根,胡晋生.香蕉束顶病毒PCR检测技术研究,华南农业大学学报,1999,20(1):5~8
    徐均焕,盛方镜.用A蛋白酶免疫电镜快速检测几种蔬菜作物的两种杆状病毒.植物病理学报,1996,26(3):231~236
    扬崇良.植物病毒研究及进展.山东农业科学,2000,(6):50~51
    杨崇良.植物病毒研究及进展.山东农业科学,2000,(6):50~51
    杨永生,刘巨元,南玉恒等.苹果病毒检测技术应用.内蒙古农业科技,1998,(6):31~32
    于绍夫.落叶果树主要病毒病害.北京:农业出版社,1993
    袁小环,李青.血清学方法和分子生物学方法检测植物病毒研究进展.热带农业科学,2001,(6):63~68
    张福庆,李巍,田卫东.葡萄扇叶病毒和卷叶病毒的田间病状鉴别与防治.中外葡萄与葡萄酒,2002,(3):20~21
    张建军,莫晓风.一种快速简便的植物病毒检测方法.植物检疫,1998,12(4):222~223
    张尊平,张少瑜,洪霓等.热处理脱除梨病毒技术研究.北方果树,2001,(5):8~9
    郑金成.苹果无病毒苗繁育技术.北京:中国林业出版社,1991
    植物病毒鉴定编写组.植物病毒鉴定.北京:农业出版社,1980

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700