洗涤冷却室内部结构优化及热质传递过程的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以洗涤冷却室内气液两相流动为研究对象,分别对鼓泡区分隔板及洗涤冷却管结构进行了优化实验研究。另外,应用Fluent模拟软件对两种工业装置中的洗涤冷却管内热质传递过程和降膜流动特性进行了数值模拟计算。
     采用双平行电导探针对洗涤冷却室内气液两相泡状流特性相关参数进行了测量,并以气含率、气泡直径和界面浓度为判断依据,对分隔板结构进行了优化;采用LC0120T型接触式防水加速度传感器测定了不同工况下洗涤冷却管的振动信号,对不同工况下信号的振动能级和振幅的大小进行了比较,并结合鼓泡区气液两相流特性参数的实验结果,分析发现较高气速时可采用无支管洗涤冷却管。
     通过对比热模平台下测量得到的实验值与洗涤冷却管内温度分布的模拟值,证实了所选用VOF模型、标准κ-ε湍流模型和所建立传质方程在本文研究系统中的可行性。对长4m的洗涤冷却管内热质传递和降膜流动进行了模拟计算,发现入口降膜厚度、洗涤冷却水入口流速和入口气速对洗涤冷却管出口气体温度和管内液膜流动特性产生了重要的影响;长6.55m的洗涤冷却管,其出口气体温度可以达到659K左右,且当其长度缩短到2m时,出口气体温度值为942K,水蒸气含量可达49%。
The gas-liquid two-phase flow in the water scrubbing-cooling chamber (WSCC) of gasifier was mainly researched in the thesis. The experimental studies of the structure optimization of compartmentation board and dip tube were carried out. At the same time, a two-dimensional numerical simulation was performed to study falling water film flow field and heat and mass transfer in two different industrial-scale dip tubes of WSCC of OMB entrained-flow gasifier.
     The characteristic parameters of gas-liquid two-phase flow were measured during experiment by a parallel-wire conductance probe. Based on gas holdup, bubble diameter and surface concentration, the structure of the compartmentation board was optimized. The vibration of dip tube was estimated by a waterproof acceleration sensor of LC0120T type under different conditions. The comparison of vibration energy level and frequency spectrum were discussed in detail. No-branches dip tube was proposed to adopt under higher gas velocities after researching the vibration of dip tube and the characteristic parameters of the gas-liquid two-phase flow in the WSCC.
     The predicted axial temperature distribution results were in good agreement with the experimental data measured in the bench-scale dip tube, which validated that the numerical models, including VOF method, standardκ-εturbulent model, mass transfer equations and all the other models applied in this paper were reasonable. The simulation results of 4 m dip tube indicated that the thickness of inlet water falling film, the velocity of inlet quenching water and the inlet velocity of syngas had a great influence on the heat and mass transfer and the flow patterns of the water falling film of industrial-scale dip tube. Furthermore, the results of 6.55 m dip tube revealed that the temperature of the syngas achived 659K at outlet of the dip tube. When the length of the dip tube was shortened to 2 m, the corresponding temperature was 942K and the volume of water steam was 49%.
引文
[1]戴彦德.中国以煤为主的能源消费结构难改[EB/OL]. http://istock.jrj.com.cn/article, hk00133,1688530.html/2011-03-24
    [2]邱立新,雷仲敏,周田君.洁净煤技术的评价方法研究—以煤炭气化技术的分析与评价为例[J].洁净煤技术,2006,12(1):5-8
    [3]Minchener A J. Coal Gasification for Advanced Power Generation[J]. Fuel 2005,84(17), 2222-2235
    [4]Dullien F A L. Introduction to Industrial Gas Cleaning[M]. London,1988
    [5]Nonhebel G. Gas Purification Processes[M]. London,1964
    [6]王旭宾.德士古煤气化工程技术问题探讨[J].化肥工业,2004,31(2):37-40
    [7]陈意心,王亦飞,梁铁等.新型洗涤冷却室内气液两相的分布特性[J].化工学报,2008,59(2):322-327
    [8]金刚,王亦飞,路文学.新型洗涤冷却室结构的应用[J].大氮肥,2007,30(5):358-360
    [9]Wu Y X, Cheng Ong B, Al-Dahhan M H. Predictions of radial gas holdup profiles in bubble column reactors[J]. Chem. Eng. Sci.,2001,56(3):1207-1210
    [10]Prakash A, Margaritis A, Li H. Hydrodynamics and local heat transfer measurements in a bubble column with suspension of yeast[J]. Biochem. Eng. J.,2001,9(2):155-163
    [11]Hyndman C L, Larachi F, Guy C. Understanding gas-phase hydrodynamics in bubble columns:a convective model based on kinetic theory[J]. Chem. Eng. Sci.,1997,52(1): 63-77
    [12]Fair J R, Lambright A J, Andersen J W. Heat transfer and gas holdup in a sparged contactor[J]. Ind. Eng. Chem. Process Des. Dev.,1962,1(1):33-36
    [13]Yoshida F, Akita K. Performance of gas bubble columns:volumetric liquid-phase mass transfer coefficient and gas holdup[J]. AIChE J.,1965,11(1):9-13
    [14]Akita, K, Yoshida, F. Gas holdup and volumetric mass transfer coefficient in bubble columns[J]. Ind. Eng. Chem. Process Des. Dev.,1973,12(1):76-80
    [15]Moshtari B, Babakhani E G, Moghaddas J S. Experimental study of gas hold-up and bubble behavior in gas-liquid bubble column[J]. Petroleum & Coal,2009,51(1):27-32
    [16]Kanatarci N, Borak F, Ulgen K O. Bubble column reactors[J]. Process Biochemistry, 2005,40(7):2263-2283
    [17]Veera U P, Kataria K L, Joshi J B. Effect of superficial gas velocity on gas hold-up profiles in foaming liquids in bubble column reactors[J]. Chem. Eng. J.,2004,99(1): 53-58
    [18]Tang C, Heindel T J. Time-dependent gas holdup variation in an air-water bubble column[J]. Chem. Eng. Sci.,2004,59(3):623-632
    [19]Krishna R. Design and scale up of a bubble column slurry reactor for Fischer-Tropsch synthesis[J]. Chem. Eng. Sci.,2001,56(2):537-545
    [20]Urseanu M I, Guit R P M, Stankiewicz A, van Kranenburg G, Lommen J H G M. Influence of operating pressure on the gas hold-up in bubble columns for high viscous media[J]. Chem. Eng. Sci.,2003,58(3-6):697-704
    [21]卢瑞华.洗涤冷却室内气液流动特性研究[D].上海:华东理工大学,2006
    [22]Jager B, Espinoza R. Advances in low temperature Fischer-Tropsch synthesis[J]. Cataly. Today.1995,23(1):17-28
    [23]Zahraduik J, Fialova M, Ruzicka M, D rahos J. Duality of the gas-liquid flow regimes in bubble column reactors[J]. Chem. Eng. Sci.,1997,21-22 (52):3811-3826
    [24]Shawaqfeh A T. Gas holdup and liquid axial dispersion under slug flow conditions in gas-liquid bubble column[J]. Chem. Eng. Pro.,2003,42(10):767-775
    [25]Pohorechi R, Moniul W, Zdrojkowski A. Hydrodynamics of a pilot plant bubble column under elevated temperature and pressure[J]. Chem. Eng. Sci.,2001,56(3):1167-1174
    [26]Anabtawi M Z A, Abu-Eishah S I, Hilal N. Hydrodynamic studies in both bi-dimensional and three-dimensional bubble column with a single sparger[J]. Chem. Eng. Pro.,2003, 42(5):403-408
    [27]Krishna R, Wilkinson PM, Van Dierendonck LL. A model for gas holdup in bubble columns incorporating the influence of gas density on flow regime transitions [J]. Chem. Eng. Sci.,1991,46(10):2491-2496
    [28]陈祖茂,郑冲,冯元鼎.利用摄像法研究三相流化床中的气泡行为[J].北京化工学院学报,1994,21(2):1-4
    [29]Matsuura A. Distribution of bubble properties in a gas-liquid-solid bed[J]. AIChE J.,1984, 30(6):894-903
    [30]王铁峰,王金福,金涌.三相循环流化床中气泡大小及其分布的实验研究[J].化工学报,2001,52(3):197-203
    [31]Prince M J, Blance H W. Bubble coalescene and break-up in air-sparged bubble columns[J]. AIChE J.,1990,36(10):1485-1499
    [32]门卓武,阙国和,Arsam B, Morsi B I.操作变量对大型浆态床反应器流体力学特性的影响[J].化工学报,2002,53(1):4-10
    [33]Li H, Prakash A. Influence of slurry concentrations on bubble population and their rise velocities in three-phase slurry bubble column. Pow. Technol.,2000,113(1-2):158-167
    [34]Fan L S, Yang G. Q, Lee D J. Some aspects of high-pressure phenomena of bubbles in liquids and liquid-solid suspensions[J]. Chem. Eng. Sci.,1997,54(21):4681-4709.
    [35]Fan L S, Matsuura A, Chern S S. Hydrodynamics characteristics of a gas-liquid-solid fluidized bed containing a binary mixture of particles[J]. AIChE J.,1985,31(11): 1801-1810
    [36]Daly JG, Patel JG, Bukur DB. Measurement of gas holdups and sauter mean bubble diameters in bubble column reactors by dynamic gas disengagement method[J]. Chem. Eng. Sci.,1992,47(13-14):3647-3654
    [37]Krishna R, Van Baten JM. Mass transfer in bubble columns[J]. Catal. Today,2003,79-80: 67-75
    [38]Behkish A, Men Z, Inga RJ, Morsi BI. Mass transfer characteristics in a large-scale slurry bubble column reactor with organic liquid mixtures[J]. Chem. Eng. Sci.,2002,16 (57): 3307-3324
    [39]Vandu C O, Krishna R. Volumetric mass transfer coefficients in slurry bubble columns operating in churn-turbulent flow regime [J]. Chem. Eng. Process,2004,43(8):987-995.
    [40]Oron A, Davis S H, Bankoff S G, Long-scale evolution of thin liquid films[J]. Rev. Mod. Phys.,1997,69(3):931-980
    [41]Alekseenko S V, Nakoryakov V E, Pokusaev B G, Wave Flow of Liquid Films[M]. New York:Beggel House,1994
    [42]Drosos E I P, Paras S V, Karabelas A J. Characteristics of developing free falling films at intermediate Reynolds and high Kapitza numbers[J]. Int. J. Multiphase Flow,2004, 30(7-8):853-876
    [43]Takahama H, Kato S. Longitudinal flow characteristics of vertically falling liquid films without concurrent gas flow[J]. Int. J. Multiphase Flow,1980,6(3):203-215
    [44]Karapantsios T D, Karabelas A J. Longitudinal characteristics of wavy falling films[J]. Int. J. Multiphase Flow,1995,21(1):119-127
    [45]Adomeit P, Renz U. Hydrodynamics of three-dimensional waves in laminar falling films[J]. Int. J. Multiphase Flow,2000,26(7):1183-1208
    [46]Oron A, Gottlieb O, Novbari E. Numerical analysis of a weighted-residual integral boundary-layer model for nonlinear dynamics of falling liquid films[J]. European Journal of Mechanics B/Fluids,2009,28(1):1-36
    [47]Trifonov Y Y, Tsvelodub O Y. Nonlinear waves on the surface of a falling liquid film. Part 1. Waves of the first family and their stability [J]. J. Fluid Mech.,1991,229:531-551
    [48]Nguyen L T, Balakotaiah V. Modeling and experimental studies of wave evolution on free falling films[J]. Phys. Fluids,2000,12(9):2236-2256
    [49]胡明辅,朱孝钦,吴新民.管壳式换热器流体诱导振动与防振[J].云南化工,2000,27(3):24-26
    [50]Paidoussis M P. Real-life experiences with flow-induced vibration[J]. Journal of Fluids and Structures,2006,22(6-7):741-755
    [51]符兴承,吴金星.管壳式换热器管束振动分析及防振措施[J].化学工业与工程技术,2003,24(3):26-28
    [52]Okajima A, Yasui S. Flow-induced streamwise oscillation of two circular cylinders in tandem arrangement[J]. Int. J. Heat Fluid Flow,2007,28(4):552-560
    [53]王沣浩,张联英.流体横掠波状圆柱的动特性研究[J].西安交通大学学报,2006,40(3): 360-364
    [54]Kondo Masaya, Anoda Yoshinari. Effects of flow velocity fluctuation around excited cylinder on cylinder oscillation. Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B.2002,68(665):86-93
    [55]Kawamura K, Yasuo A. Turbulence-induced tube vibration by parallel air-water two-phase jet flow[J]. JSME International Journal, Series C.2000, 1(43):1-10
    [56]吴宏涛.新型洗涤冷却室内洗涤冷却管振动及气液流动研究[D].上海:华东理工大学,2007
    [57]陈意心.气化炉洗涤冷却室内热质同时同时传递及气液分离过程研究[D].上海:华东理工大学,2008
    [58]刘霞.新型洗涤冷却室内部构件稳定性及液滴夹带问题的研究[D].上海:华东理工大学,2009
    [59]Mudawar I, Houpt R. Measurement of mass and momentum transport in wavy-laminar falling liquid films[J]. Int J Heat Mass Transfer,1993,36(17):4151-4162
    [60]林宗虎,郭烈锦,陈听髋,徐通模,李海青,杨瑞昌等著.能源动力中多相流热物理基础理论与技术研究[M].北京:中国电力出版社,2010
    [61]Sisoev G M, Matar O K, Lawrence C J. Absorption of gas into a wavy falling film[J]. Chem. Eng. Sci.,2005,60(3):827-838
    [62]Jayanti S, Hewitt G F. Hydrodynamics and heat transfer of wavy thin film flow[J]. Int. J. Heat Mass Transfer,1996,40(1):179-190
    [63]Rohsenow W M, Hartnett J P, Cho Y I. Handbook of heat transfer[M]. Third Edition, New York:The McGraw-Hill Companies, Inc.,1998
    [64]Bejan A, Kraus A D. Heat transfer handbook[M]. Hoboken, New Jersey:John Wiley & Sons, Inc.,2003
    [65]Modest M F. Radiative heat transfer[M]. Second Edition, San Diego:An Imprint of Elsevier Science,2003
    [66]Miyara A. Numerical analysis on flow dynamics and heat transfer of falling liquid films with interfacial waves[J]. Heat Mass Transfer,1999,35:298-306
    [67]李铁,李伟力,袁竹林.用不同辐射模型研究洗涤冷却管内传热传质特性[J].中国电机工程学报,2007,27(2):92-98
    [68]赵永志,顾兆林,李云等.水煤浆气化炉激冷室洗涤冷却管内流动与传热数学模拟[J].化工学报,2003,54(1):115-118
    [69]李云,顾兆林,郁永章,冯宵. TEXACO气化炉激冷室下降管传热传质过程模拟[J].化工学报,2000,28(4):22-24
    [70]王亦飞,卢瑞华,苏宜丰,梁钦锋,于遵宏.新型水煤浆气化炉内洗涤冷却管的温度分布[J].华东理工大学学报(自然科学版),2006,32(3):300-304
    [71]许杰.洗涤冷却室内流动及热质传递过程研究[D].上海:华东理工大学,2003
    [72]张同旺,何广湘,靳海波等.气液鼓泡床中气含率的实验研究[J].石油化工高等学校学报,2002,15(4):1-4
    [73]赵晓辉.新型洗涤冷却室内床层稳定性研究[D].上海:华东理工大学,2010
    [74]边清,唐晓津,王少兵,张占柱.气体分布器对浆态床环流反应器内流体流动特性影响的研究[J].齐鲁石油化工,2009,37(3):174-178
    [75]Schumpe A, Deckwer W D. Gas holdups, specific interfacial areas, and mass transfer coefficients of aerated carboxymethyl cellulose solutions in a bubble column[J]. Ind. Eng. Chem. Proc. Des. Dev.,1982,21(4):706-711
    [76]付碧华,王亦飞,林岚,许建良,王俭,罗春桃,王辅臣.洗涤冷却管出口处的射流深度和界面波动特性[J].化工学报,2011,62(7):1817-1823
    [77]Shawkat.M.E, Ching.C.Y, Shoukri.M. Bubble and liquid turbulence characteristics of bubbly flow in a large diameter vertical pipe. International Journal of Mutiphase Flow[J]. 2008,34(8):767-785
    [78]张德丰著.MATLAB小波分析[M].北京:机械工业出版社,2009
    [79]Fluent Inc., Fluent user guide. Fluent Inc.,2003
    [80]Welch, S.W. J.; Wilson, J. A volume of fluid based method for fluid flows with phase change[J]. J. Comput. Phys.,2000,160(2),662-682
    [81]Cerne G, Petelin S, Tiselj I. Coupling of the Interface Tracking and the Two-Fluid Models for the Simulation of Incompressible Two-Phase Flow[J]. J. Comput. Phys.,2001, 17(2):776-804
    [82]Brackbill J U; Kothe D B; Zemach C. A continuum method for modeling surface tension[J]. J. Comput. Phys.,1992,100(2):335-354
    [83]Smith T F, Shen Z F, Friedman J N. Evaluation of coefficients for the weighted sum of gray gases model[J]. Journal of heat transfer.1982,104:602-608
    [84]Coppalle A, Vervisch P. The total emissivities of high-temperature flames[J]. Combustion and Flame.1983,49(1-3):101-108
    [85]Ewards D K, Matavosian R. Scaling rules for total absorptivity and emissivity of gases[J]. Journal of heat transfer.1984,106(4):684-689
    [86]Kumar S P, Prasad B, Venkatarathnam G, Ramamurthi K, Murthy S S. Influence of surface evaporation on stratification in liquid hydrogen tanks of different aspect ratios[J]. Int. J. Hydrogen Energy,2007,32(12):1954-1960
    [87]Sokolichin A, Eigenberger G. Applicability of the standard κ-ε turbulence model to the dynamic simulation of bubble columns:Part Ⅰ.Detailed numerical simulations [J]. Chem. Eng. Sci.,1999,54(13-14):2273-2284
    [88]Launder B E, Spalding,D B. Mathematical Models of turbulence[M]. London:Academic press,1972
    [89]王福军.计算流体力学动力分析[M].北京:清华大学出版社,2004
    [90]Karimi G, Kawaji M. An experimental study of freely falling films in a vertical tube[J]. Chem. Eng. Sci.,1998,53(20):3501-3512
    [91]Ni J J, Yu G S, Guo Q H, Dai Z H, Wang F C. Modeling and comparison of different syngas cooling types for entrained-flow gasifier[J]. Chem. Eng. Sci.,2011,66,448-459

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700