不同脉宽激光致光学薄膜元件损伤特性和机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从理论分析、数值模拟及实验研究方面对脉宽为fs、ns、ms激光致光学薄膜元件的损伤特性和机理进行研究。
     在脉宽为ms激光对增透膜和反射膜元件损伤实验的基础上,建立了改进型缺陷分析模型,结合热应力分析得到的结果显示,增透膜损伤由表面缺陷主导,反射膜损伤由内部缺陷主导;进而定义了积分吸收比参量η,并提出当叩<1时,薄膜元件损伤与增透膜类似,当η>1时,薄膜元件与反射膜损伤类似。
     建立了脉宽为ns激光辐照光学薄膜元件的一维半无限大模型,结合薄膜系统电场分布,提出了激光辐照多层薄膜元件温度场的数学解法;计算和实验验证结果显示,多层介质反射膜具有分层破坏特性,单层金属膜损伤阈值随膜层厚度递增进而保持不变;所提出的数学解法较常用的有限元算法具有计算快、运算量小、可适合大尺寸模型等特点。
     采用fs激光辐照金属膜的双温热传导和介质膜电离理论,结合薄膜中实际电场分布,得到了金属、介质及金属-介质薄膜元件损伤阈值分析方法;研究结果表明,金属-介质薄膜反射元件在超短脉宽激光系统中的应用更具有优势;而金属膜层的材料和厚度均对损伤有影响,且适当增加金属膜层厚度或引入高热导率的附加层均能有效提高元件的损伤阈值。
     对fs、ns与ms激光致光学薄膜元件的损伤形貌、阈值及机理进行了研究。结果表明:fs激光损伤金属膜需采用双温热传导模型且损伤阈值与脉宽无关,ns与ms激光可使用单温热传导模型且损伤阈值与脉宽遵循τ1/2规律;百皮秒至纳秒脉宽之间为双温模型向单温模型的过渡阶段;fs激光损伤介质膜主要表现为电离击穿,而ns与ms激光损伤以热效应为主导;脉宽为十皮秒到纳秒之间时,电离击穿与热效应共同作用;热效应分析结果进一步显示,ms激光比ns激光损伤范围广、破坏大,且对缺陷不敏感。
     本文结果可为研究ms激光致光学薄膜元件的损伤提供理论与实验基础,为求解ns激光作用于光学薄膜的温度场提供一种方法,进而为fs激光系统中高性能的光学薄膜元件设计提供辅助手段。文中涉及的不同脉宽激光致光学薄膜元件的损伤比较结果可为工业或军事应用中选择激光器提供参考。
The damage characteristics and mechanisms of optical film components induced by pulsed lasers at different regimes (fs, ns, ms) are theoretically investigated, as well as numerical simulations and experiments.
     An improved model consist of surface defects and subsurface defects is proposed to describe the millisecond laser damage based on the damage experiments of two different kinds of optical coatings (AR and HR coatings). The thermal and stress analysis shows that AR is damaged by surface defects and HR by subsurface defects. To go further, the integrated absorption rate between films and substrate (η) is used to decide which kind of the defects actually dominates the laser damage for thin films of different structures. The results show that when η<1, surface defects dominate, otherwise subsurface defects dominate.
     A one-dimensional semi-infinite model for nanosecond laser interaction with optical film components is built. The temperature profile in the component is solved by a matrix system from Laplace transform of heat transfer equations, while considering about the electric field distribution in the film. The solving results are compared to that of numerical method which is widely acceptable as well as the experimental ones. The results show that our solution method can be applicable to the analysis of laser damage as well as works fast and be useful to big a big size of model.
     An approach for the theoretical evaluation of the femtosecond damage threshold in optical interference coatings that combine metal and dielectric films is presented. The model that is used combines a matrix formalism to describe the film system to the two temperature model that describes the energy transfer and the temperatures of electrons and lattice in a solid submitted to a laser irradiation at the femtosecond time scale. With this approach the thermal consequences due to the ultrafast absorption of the metal film can be evaluated in the multilayer stack. Some applications are presented for the case of broadband mirrors for ultrashort pulses. Particularly the impact of the metal film (element, thickness) and the design on the laser induced damage threshold is studied.
     Much significant information is derived from comparison of damage morphologies and damage thresholds among three kinds of lasers (femtosecond laser, nanosecond laser and millisecond laser). The results show that one temperature model should be used in femtosecond laser damage of metal films while two temperature model should be used in nanosecond and millisecond lasers. Femtosecond laser cause breakdown of dielectrics while nanosecond and millisecond lasers also cause thermal damage. There are some scale range of laser pulse length in which the damage mechanism for metals change from1-T model to2-T model, and the damage for dielectrics change from breakdown to thermal effects. Moreover, it is found that millisecond laser damage film substrate seriously and is less sensitive to defects than nanosecond laser.
     The research results in this paper can be a basis of going further study of damage properties of millisecond laser with optical film components, provide a method to solve heat transfer equations in nanosecond regime more quickly, as well as helping design metal/metal-dielectric mirrors with high damage resistance performance. Moreover, the results of comparison between three lasers can provide a reference for selecting appropriate lasers in an appropriate industrial area or military area.
引文
[1]陆建,倪晓武,贺安之.激光与材料相互作用物理学.北京:机械工业出版社,1996.
    [2]Ready J F. Effect of high-power laser radiation.1st ed. New York:Academic Press Inc, 1971.
    [3]尚惠春,吴检宝.激光加工物理学基础.第一版.吉林:吉林科学技术出版社,1987.
    [4]孙承纬,陆启生,范正修,陈裕泽,李成富,关吉利,关崇文.激光辐照效应.第一版.北京:国防工业出版社,2002.
    [5]刘剑.毫秒级脉冲激光辐照脆性材料的热-力学效应:南京理工大学;2011.
    [6]郑启光.激光先进制造技术.武汉:华中科技大学出版社,2002.
    [7]王家金.激光加工技术.北京:中国计量出版社,1992.
    [8]李力均.现代激光加工及其设备.北京:北京理工大学出版社,1993.
    [9]朱企业.激光精密加工.北京:机械工业出版社,1990.
    [10]王惠文,生命科学.激光与生命科学.北京:北京理工大学出版社,1995.
    [11]朱菁.激光医学.上海:上海科学技术出版社,2003.
    [12]陈明哲.现代实用激光医学.北京:科学技术文献出版社,2006.
    [13]阎吉祥.激光武器与战争.北京:国防工业大学出版社,1997.
    [14]陆启生.激光武器的发展前景.国防科技参考,1999,(4):4-7.
    [15]陆彦文,陆启生.军用激光技术.北京:国防工业出版社,1999.
    [16]陈笑.高功率激光与水下物质相互作用过程与机理研究:南京理工大学;2004.
    [17]贺洪波.高功率激光薄膜的损伤研究:中国科学院上海光学精密机械研究所;2004.
    [18]戴罡.毫秒脉冲激光致薄膜光学元件损伤特性测试与数值分析:南京理工大学;2010.
    [19]Walker T, Guenther A, Nielsen P. Pulsed laser-induced damage to thin-film optical coatings--Part Ⅰ:Experimental. IEEE Journal Of Quantum Electronics,1981,17(10): 2041-2052.
    [20]Walker T, Guenther A, Nielsen P. Pulsed laser-induced damage to thin-film optical coatings--Part Ⅱ:Theory. IEEE Journal Of Quantum Electronics,1981,17(10): 2053-2065.
    [21]Epstein E. Scattering electrons by phonons in a strong radiation field. Sov. Phys. Solid State,1969,11:2732-2738.
    [22]孙金英.长脉冲激光作用于光学介质薄膜的热应力损伤研究;2007.
    [23]黄才华.多孔薄膜激光诱导损伤机制研究:武汉理工大学;2010.
    [24]潘英俊,封君.强激光对光学薄膜的损伤机理.半导体光电,1997,18(1):61-65.
    [25]周益春,段祝平,解伯民,黄晨光,杨治星.激光破坏机理研究的一个新进展.力学学报,1995,27(3):277-293.
    [26]Guenther A H, McIver J K. Further studies on thermal aspects of inclusion-dominated processes in laser-induced thin film damage. In: Optical Thin Films and Applications; 1990; The Hague, Netherlands:SPIE; 1990. p.66-71.
    [27]Lange M R, McIver J K, Guenther A H. Pulsed laser damage in thin film coatings: Fluorides and oxides. Thin Solid Films,1985,125(1-2):143-155.
    [28]Glass A J, Guenther A H. Damage in laser materials. Applied Optics,1972,11(4): 832-840.
    [29]邓洪祥.高功率激光作用下光学薄膜的场损伤研究:电子科技大学;2007.
    [30]Carslaw H S, Jaeger J C. Conduction of heat in solids.2nd ed. Oxford:Clarendon Press,1959.
    [31]Hopper R, Uhlmann D. Mechanism of inclusion damage in laser glass. Journal Of Applied Physics,1970,41(10):4023-4037.
    [32]苏雷.光学材料和薄膜激光热效应损伤研究:西安电子科技大学;2009.
    [33]Bonneau F, Combis P, Rullier J L, Vierne J, Bertussi B, Commandre M, Gallais L, Natoli J Y, Bertron I, Malaise F, Donohue J T. Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica. Applied Physics B-lasers and Optics,2004,78(3):447-452.
    [34]Bonneau F, Combis P, Rullier J L, Commandre M, During A, Natoli J Y, Pellin M J, Savina M R, Cottancin E, Pellarin M. Observation by photo thermal microscopy of increased silica absorption in laser damage induced by gold nanoparticles. Applied Physics Letters,2003,83(19):3855-3857.
    [35]Bonneau F, Combis P, Rullier J L, Vierne J, Pellin M, Savina M, Broyer M, Cottancin E, Tuaillon J, Pellarin M, Gallais L, Natoli J V, Perra M, Bercegol H, Lamaignere L, Loiseau M, Donohue J T. Study of UV laser interaction with gold nanoparticles embedded in silica. Applied Physics B-lasers and Optics,2002,75(8):803-815.
    [36]赵强,范正修.多层介质膜的体吸收与界面吸收的研究.光学学报,1989,9(7): 630-634.
    [37]赵强,范正修.光学薄膜界面吸收对温度场的影响.光学学报,1996,(06).
    [38]龚辉,李成富.激光对光学薄膜损伤的热冲击效应.中国激光,1996,23(3):245-248.
    [39]周维军.激光辐照短波通截止膜的温升规律和损伤效应研究:中国工程物理研究院:2005.
    [40]罗福,杜祥琬.光斑尺寸对K9玻璃近红外激光损伤阈值的影响.爆炸与冲击,2002,22(001):61-65.
    [41]凌秀兰,黄伟,张云洞.节瘤缺陷对薄膜热力损伤的有限元分析.光电工程,2005,32(04):16-23.
    [42]赵强,范正修,王之江.激光对光学薄膜加热过程的数值分析.光学学报,1999,19(08):1019-1023.
    [43]窦如凤.长脉冲激光致介质薄膜损伤机理与阈值测量研究:南京理工大学;2009.
    [44]赵元安.脉冲激光对光学薄膜的损伤机理及测试技术研究:中国科学院上海光学精密机械研究所;2005.
    [45]胡海洋.光学薄膜强激光热力耦合损伤研究:中国科学院上海精密机械研究所;2001.
    [46]陈习权.光学薄膜在激光作用过程中的热吸收与热应力的研究:电子科技大学;2006.
    [47]Papernov S, Schmid A W, Krishnan R, Tsybeskov L. Using colloidal gold nanoparticles for studies of laser interaction with defects in thin films. In: Laser-Induced Damage in Optical Materials:2000; 2001; Boulder, CO, USA:SPIE; 2001. p.146-154.
    [48]Papernov S, Schmid A W, Rigatti A L, Oliver J B, Howe J D. Damage behavior of HfO2 monolayer film containing gold nanoparticles as artificial absorbing defects. In: Laser-Induced Damage in Optical Materials:2005; 2005; Boulder, CO, USA:SPIE; 2005. p.59911D-59917.
    [49]Papernov S, Schmid A W. Using gold nanoparticles as artificial defects in thin films: What have we learned about laser-induced damage driven by localized absorbers? In: Laser-Induced Damage in Optical Materials:2006; 2006; Boulder, CO, USA:SPIE; 2006. p.64030D-64026.
    [50]Ekici O, Harrison R K, Durr N J, Eversole D S, Lee M, Ben-Yakar A. Thermal analysis of gold nanorods heated with femtosecond laser pulses. Journal of Physics D: Applied Physics,2008,41(18):185501.
    [51]Scherer G, Hopper R, Uhlmann D. Crystallization behavior and glass formation of selected lunar compositions. Journal Of Applied Physics,1990, (41):4023-4028.
    [52]倪晓武,陆建,贺安之,王平秋,马孜,周九林.高功率激光对光学介质薄膜破坏机理的研究进展.激光技术,1994,18(06):348-351.
    [53]Ni X W, Lu J, He A Z, Ma Z, Zhou J L. The study of laser-produced plasma on dielectric thin films. Optics Communications,1989,74(3-4):185-189.
    [54]Ni X W, Lu J, He A Z, Ma Z, Zhou J L. Plasma detection of laser field interaction with optical thin films. Optics Communications,1992,90(4-6):270-272.
    [55]Gallais L, Mangote B, Commandre M, Melninkaitis A, Mirauskas J, Jeskevic M, Sirutkaitis V. Transient interference implications on the subpicosecond laser damage of multidielectrics. Applied Physics Letters,2010,97(5):051112-051113.
    [56]Rainer F, P. D F, C. S M. Laser induced damage in optical materials. In:SPIE; 1993:9-22.
    [57]Guenther A H, Mciver J K. The role of thermal conductivity in the pulsed laser damage sensitivity of optical thin films. Thin Solid Films,1988,163:203-214.
    [58]范正修,汤雪飞.光学薄膜的温度场设计.光学学报,1995,15(04):463-467.
    [59]Deng H, Gan F. Laser induced damage in optical materials:1981. NBS Spec. Publ., 1983, (638):456.
    [60]Hong-Ying Z, Shi-Gang W.飞秒激光作用下薄膜破坏的力学过程.物理学报,2007,56(9):5314-5317.
    [61]袁磊,赵元安,贺洪波,范正修,邵建达.单脉冲飞秒脉冲激光对单层和高反光学薄膜的损伤.光子学报,2008,27(03):417-420.
    [62]夏志林,郭培涛,薛亦渝,黄才华,李展望.短脉冲激光诱导薄膜损伤的等离子体爆炸过程分析.物理学报,2010,59(5):3523-3530.
    [63]Wang X, Shen Z, Lu J, Ni X. Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes. Journal Of Applied Physics,2010, 108(3):033103.
    [64]Wang X, Zhu D, Shen Z, Lu J, Ni X. Surface damage morphology investigations of silicon under millisecond laser irradiation. Applied Surface Science,2010,257(5): 1583-1588.
    [65]Liu G, Zhou M, Hu G, Liu X, Jin Y, He H, Fan Z. Calculation of temperature fields with a film-substrate interfacial layer model to discuss the layer-pair number effects on the damage thresholds of LaF3/MgF2 high reflectors at 355nm. Applied Surface Science,2010,256(13):4206-4210.
    [66]Zhao Q, Wu Z, Thomsen M, Han Y, Fan Z. Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation. In: Laser-Induced Damage in Optical Materials:1997; 1998; Boulder, CO, USA:SPIE; 1998. p.491-498.
    [67]Zhao Q, Fan Z X, Wang Z J. Role of interface absorption in laser-induced local heating of optical coatings. Optical Engineering,1997,36(5):1530-1536.
    [68]Palmier S, Neauport J, Baclet N, Lavastre E, Dupuy G. High reflection mirrors for pulse compression gratings. Optics Express,2009,17(22):20430-20439.
    [69]庞云霞,杭凌侠,陈智利,马保吉.基于WLI原理K9基片的亚表层损伤检测.应用光学,2007,28(006):773-777.
    [70]徐世珍,吕海兵,田东斌,蒋晓东,袁晓东,祖小涛,郑万国.酸蚀深度对熔石英三倍频激光损伤阂值的影响.强激光与粒子束,2008,20(005):760-764.
    [71]Papernov S, Schmid A W. Localized absorption effects during 351nm, pulsed laser irradiation of dielectric multilayer thin films. Journal Of Applied Physics,1997,82: 5422-5432.
    [72]Papernov S, Schmid A W. Damage behavior of SiO2 thin films containing gold nanoparticles lodged at predetermined distances from the film surface. In: Laser-Induced Damage in Optical Materials:2002:SPIE; 2002.
    [73]Dai G, Chen Y, Lu J, Shen Z, Ni X. Analysis of laser induced thermal mechanical relationship of HfO2/SiO2 high reflective optical thin film at 1064 nm. Chinese Optics Letters,2009,7(7):601-604.
    [74]Apfel J H. Optical coating design with reduced electric field intensity. Applied Optics, 1977,16(7):1880-1885.
    [75]He H-B, Hu H-Y, Tang Z-P, Fan Z-X, Shao J-D. Laser-induced damage morphology of high-reflective optical coatings. Applied Surface Science,2005,241(3-4):442-448.
    [76]Gao W, Zhan M, Fan S, Shao J, Fan Z-X. Laser-induced damage of Ta2O5/SiO2 narrow-band interference filters under different 1064 nm Nd:YAG laser modes Applied Surface Science,2005,250(1-4):195-202.
    [77]Hu H, Fan Z, Luo F. Laser-induced damage of a 1064-nm ZnS/MgF2 narrow-band interference filter. Applied Optics,2001,40(12):1950-1956.
    [78]Papernov S, Schmid A. Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation. Journal Of Applied Physics,2002,92:5720-5728.
    [79]Kudryashov S I, Allen S D, Papernov S, Schmid A W. Nanoscale laser-induced spallation in SiO2 films containing gold nanoparticles. Applied Physics B-lasers and Optics,2006,82:523-527.
    [80]Bertussi B, Natoli J Y, Commandre M, Rullier J L, Bonneau F, Combis P, Bouchut P. Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film. Optics Communications,2005,254(4-6):299-309.
    [81]Papernov S, Schmid A W. Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects. Journal of Applied Physics,2005,97(11):114906.
    [82]Ji Z, Wu S. FEM simulation of the temperature field during the laser forming of sheet metal. Journal of Materials Processing Technology,1998,74(1):89-95.
    [83]Crank J, Nicolson P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Advances in Computational Mathematics,1996,6(1):207-226.
    [84]Yilbas B, Arif A, Karatas C, Raza K. Laser treatment of aluminum surface:Analysis of thermal stress field in the irradiated region. Journal of Materials Processing Technology,2009,209(1):77-88.
    [85]Kang S H, Im Y T. Three-dimensional thermo-elastic-plastic finite element modeling of quenching process of plain-carbon steel in couple with phase transformation. International Journal of Mechanical Sciences,2007,49(4):423-439.
    [86]刘庄,吴肇基,吴景之,张毅.热处理过程的数值模拟.北京:科学出版社,1996.
    [87]Zienkiewicz O C. The Finite Element Method.3rd ed. London:McGraw-Hill Inc., 1977.
    [88]唐晋发,顾培夫,刘旭,李海峰.现代光学薄膜技术.浙江大学出版社,2006.
    [89]刘明强,李斌成.光学薄膜样品的温度场和形变场分析.物理学报,2008,57(6).
    [90]范正修,胡海洋,罗福.1064 nm窄带干涉滤光片激光破坏研究.光学学报ACTA OPTIC A SINICA,2001,21(7).
    [91]Lee C S, Koumvakalis N, Bass M. A theoretical model for multiple-pulse laser-induced damage to metal mirrors. Journal Of Applied Physics,1983,54(10): 5727-5731.
    [92]Furusawa K, Takahashi K, Kumagai H, Midorikawa K, Obara M. Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti: sapphire laser. Applied Physics A:Materials Science & Processing,1999,69(7):S359-S366.
    [93]Gudde J, Hohlfeld J, Miiller J G, Matthias E. Damage threshold dependence on electron-phonon coupling in Au and Ni films. Applied Surface Science,1998, 127-129(0):40-45.
    [94]Weber. M J. HANDBOOK OF OPTICAL MATERIALS. Boca Raton, London, New York, Washington, D.C.:CRC PRESS,2002.
    [95]http://refractiveindex.info/?group=CRYSTALS&material=HfO2.
    [96]Ghosh G. Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Optics Communications,1999,163(1):95-102.
    [97]Hansen S, Shlyaptseva A, Faenov A Y, Skobelev I, Magunov A, Pikuz T, Blasco F, Dorchies F, Stenz C, Salin F. Hot-electron influence on L-shell spectra of multicharged Kr ions generated in clusters irradiated by femtosecond laser pulses. Physical Review E,2002,66(4):046412.
    [98]Zhang Z, VanRompay P, Nees J, Pronko P. Multi-diagnostic comparison of femtosecond and nanosecond pulsed laser plasmas. Journal of applied physics,2002, 92(5):2867-2874.
    [99]Sakabe S, Hashida M, Tokita S, Namba S, Okamuro K. Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse. Physical Review B,2009,79(3):033409.
    [100]Carley R, Heesel E, Fielding H. Femtosecond lasers in gas phase chemistry. Chem. Soc. Rev.,2005,34(11):949-969.
    [101]Pritchina E A, Gritsan N P, Burdzinski G T, Platz M S. Study of Acy1 Group Migration by Femtosecond Transient Absorption Spectroscopy and Computational Chemistry. The Journal of Physical Chemistry A,2007,111(42):10483-10489.
    [102]Kobayashi T, Kato T, Matsuo Y, Kurata-Nishimura M, Hayashizaki Y, Kawai J. Wavelength-dependent fragmentation and clustering observed after femtosecond laser ablation of solid C. The Journal of chemical physics,2007,127(11):111101.
    [103]Venkatakrishnan K, Tan B, Stanley P, Lim L, Ngoi B K A. Femtosecond pulsed laser direct writing system. Optical Engineering,2002,41(6):1441-1445.
    [104]Stratakis E, Ranella A, Fotakis C. Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications. Biomicrofluidics,2011, 5(1):013411.
    [105]Morikawa J, Hayakawa E, Hashimoto T, Buividas R, Juodkazis S. Thermal imaging of a heat transport in regions structured by femtosecond laser. Optics express,2011, 19(21):20542-20550.
    [106]Pustovalov V, Jean B. Theoretical investigations of the processes of selective laser interaction with melanin granules in pigmented tissues for laser applications in medicine. Laser physics,2006,16(7):1011-1028.
    [107]Dausinger F, Nolte S. Introduction to Femtosecond Technology. Femtosecond Technology for Technical and Medical Applications,2004,96:1-5.
    [108]Sharp P, Manivannan A, Xu H, Forrester J. The scanning laser ophthalmoscope—a review of its role in bioscience and medicine. Physics in medicine and biology,2004, 49(7):1085-1086.
    [109]陈安民.飞秒激光辐照金属超快动力学过程研究:吉林大学;2012.
    [110]Strickland D, Mourou G. Compression of amplified chirped optical pulses. Optics Communications,1985,55(6):447-449.
    [111]Rethfeld B, Sokolowski-Tinten K, Von Der Linde D, Anisimov S. Timescales in the response of materials to femtosecond laser excitation. Applied Physics A:Materials Science & Processing,2004,79(4):767-769.
    [112]Ibrahim W M G, Elsayed-Ali H E, Shinn M D, Bonner C E. Femtosecond damage threshold of multi-layer metal films. In:Laser-Induced Damage in Optical Materials: 2002 and 7th International Workshop on Laser Beam and Optics Characterization: SPIE; 2003:55-65.
    [113]Corkum P B, Brunel F, Sherman N K, Srinivasan-Rao T. Thermal Response of Metals to Ultrashort-Pulse Laser Excitation. Physical Review Letters,1988,61(25): 2886-2889.
    [114]Anisimov S I, Kapeliovich B L, Perel'man T L. Electron emission from metal surfaces exposed to ultra-short laser pulses. Sov. Phys. JETP,1974,39:375-377.
    [115]Chichkov B N, Momma C, Nolte S, von Alvensleben F, Tunnermann A. Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics A:Materials Science & Processing,1996,63(2):109-115.
    [116]Wellershoff S S, Hohlfeld J, Giidde J, Matthias E. The role of electron-phonon coupling in femtosecond laser damage of metals. Applied Physics A:Materials Science & Processing,1999,69(7):99-107.
    [117]Lin Z, Zhigilei L V, Celli V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Physical Review B, 2008,77(7):075133.
    [118]Hohlfeld J, Wellershoff S S, Giidde J, Conrad U, Jahnke V, Matthias E. Electron and lattice dynamics following optical excitation of metals. Chemical Physics,2000, 251(1-3):237-258.
    [119]Ren Y, Chen J K, Zhang Y. Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers. Journal of Applied Physics,2011,110(11): 113102-113107.
    [120]Macleod H A. Thin-Film Optical Filters. Bristol and Philadelphia:IOP. Publishing, 2001.
    [121]Wellershoff S S, Hohlfeld J, Gudde J, Matthias E. The role of electron-phonon coupling in femtosecond laser damage of metals. Applied Physics A:Materials Science & Processing,1999,69(Suppl.):S99-S107.
    [122]Kruger J, Dufft D, Koter R, Hertwig A. Femtosecond laser-induced damage of gold films. Applied Surface Science,2007,253(19):7815-7819.
    [123]Dai Y, He M, Bian H, Lu B, Yan X, Ma G. Femtosecond laser nanostructuring of silver film. Applied Physics A:Materials Science & Processing,2012,106(3):567-574.
    [124]Byskov-Nielsen J, Savolainen J-M, Christensen M, Balling P. Ultra-short pulse laser ablation of metals:threshold fluence, incubation coefficient and ablation rates. Applied Physics A:Materials Science & Processing,2010,101(1):97-101.
    [125]赵刚.飞秒脉冲激光对固体材料热损伤的研究:四川大学;2007.
    [126]Jasapara J, Nampoothiri A V V, Rudolph W, Ristau D, Starke K. Femtosecond laser pulse induced breakdown in dielectric thin films. Physical Review B,2001,63(4): 045117.
    [127]Stuart B C, Feit M D, Rubenchik A M, Shore B W, Perry M D. Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses. Physical Review Letters, 1995,74(12):2248-2251.
    [128]Bloembergen N. Laser-induced electric breakdown in solids. Quantum Electronics, IEEE Journal of,1974,10(3):375-386.
    [129]Jia T, Sun H, Li X, Feng D, Li C, Xu S, Li R, Xu Z, Kuroda H. The ultrafast excitation processes in femtosecond laser-induced damage in dielectric omnidirectional reflectors. Journal of applied physics,2006,100(2):023103.
    [130]Balciunas T, Melninkaitis A, Tamosauskas G, Sirutkaitis V. Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water. Optics letters, 2008,33(1):58-60.
    [131]Ashcroft N W, Mermin N D. Solid State Physics. Belmont:Brooks Cole,1976.
    [132]Mero M, Liu J, Rudolph W, Ristau D, Starke K. Scaling laws of femtosecond laser pulse induced breakdown in oxide films. Physical Review B,2005,71(11):115109.
    [133]Mangote B, Gallais L, Commandre M, Mende M, Jensen L, Ehlers H, Jupe M, Ristau D, Melninkaitis A, Mirauskas J, Sirutkaitis V, Kicas S, Tolenis T, Drazdys R. Femtosecond laser damage resistance of oxide and mixture oxide optical coatings. Opt. Lett.,2012,37(9):1478-1480.
    [134]朱耀南.光学薄膜激光损伤阂值测试方法的介绍和讨论.激光技术,2006,30(5):532-535.
    [135]Gallais L, Capoulade J, Natoli J Y, Commandre M, Cathelinaud M, Koc C, Lequime M. Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering. Applied Optics,2008, 47(13):C107-C113.
    [136]Wang B, Qin Y, Ni X, Shen Z, Lu J. Effect of defects on long-pulse laser-induced damage of two kinds of optical thin films. Applied Optics,2010,49(29):5537-5544.
    [137]Stolz C J, Ristau D, Turowski M, Blaschke H. Thin film femtosecond laser damage competition. In: Laser-Induced Damage in Optical Materials:2009:SPIE; 2009:75040S.
    [138]Martin S, Hertwig A, Lenzner M, Kruger J, Kautek W. Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses. Applied Physics A: Materials Science & Processing,2003,77(7):883-884.
    [139]Liu J. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Optics Letters,1982,7(5):196-198.
    [140]GALLAIS L. ENDOMMAGEMENT LASER DANS LES COMPOS ANTS OPTIQUES:METROLOGIE, ANALYSE STATISTIQUE ET PHOTO-INDUITE DES SITES INITIATEURS:AIX_MARSEILLE III; 2002.
    [141]11254-1 I D. Optical and optical instruments-lasers and laser related equipment-test methods for laser induced damage threshold of optical surface-part 1:1 to 1 test. In; 1995.
    [142]16601 G T.光学表面激光损伤阈值测试方法-第1部分:1对1测试.In;1996.
    [143]Gallais L, Mangote B, Zerrad M, Commandre M, Melninkaitis A, Mirauskas J, Jeskevic M, Sirutkaitis V. Laser-induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range. Applied Optics,2011,50(9): C178-C187.
    [144]Gallais L, Capoulade J, Wagner F, Natoli J Y, Commandr M. Analysis of material modifications induced during laser damage in SiO2 thin films. Optics Communications,2007,272(1):221-226.
    [145]Yao J, Fan Z, Jin Y, Zhao Y, He H, Shao J. Investigation of damage threshold to TiO2 coatings at different laser wavelength and pulse duration. Thin Solid Films,2008, 516(6):1237-1241.
    [146]Li S H, He H B, Ling X L, Tao C X, Zhao Y A, Fan Z X. Temperature field analysis of single-layer TiO2 films. Applied Optics,2009,48(28):5380-5385.
    [147]Wang B, Zhang H, Qin Y, Wang X, Ni X, Shen Z, Lu J. Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers. Applied Optics,2011,50(20):3435-3441.
    [148]Li S H, He H B, Li D W, Zhou M, Ling X L, Zhao Y A, Fan Z X. Temperature field analysis of TiO2 films with high-absorptance inclusions. Applied Optics,2010,49(3): 329-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700