光电复合微纳传感器芯片及其在水环境重金属检测中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市的扩大和大规模工业的发展,重金属污染日益加剧。水环境中的重金属可通过食物链长期累积在生物体内不可降解,在极其微量的情况下也会对各种生态系统产生不同程度的危害。因此,水环境中重金属的现场实时检测意义重大。
     电化学方法作为一种直接分析技术,由于其快速、低耗、灵敏度高、易操作等优点,是电分析技术中最常用的实时在线检测手段。本文分析了基于溶出伏安法的电流型传感器—微纳电极阵列传感器的电化学伏安特性,介绍了离子敏电位型传感器—光寻址电位传感器的基本原理,针对传感器微型化、集成化和无线网络化这三个发展方向,设计了微电极阵列传感器和纳米带电极阵列传感器,并结合光寻址电位传感器,研制了光电复合微纳传感器芯片,开发了用于水环境重金属监测的无线传感器网络节点。研究工作受国家高技术研究发展计划(863计划)项目和国家重点基础研究发展计划(973计划)项目的支持。
     本文所做的主要工作和创新如下:
     1.基于半导体微加工技术设计了金微电极阵列传感器,阵列中相邻电极之间的距离与电极直径比为10:1;对传感器的电位工作范围、实际表面积及扩散层厚度进行了电化学表征;利用金微电极阵列传感器可直接检测纯水背景样本中的Pb2+和Cu2+,检测灵敏度分别为23nA/μg和12nA/μg,检出限分别为1.8pg/L和3.5μg/L。
     2.优化了金微电极阵列传感器镀汞后的测试条件,包括溶液的pH值、富集电位与富集时间及电位扫描速率;汞膜金微电极阵列传感器同时检测纯水背景样本中的Zn2+、Cd2+、Pb2+和Cu2+四种重金属元素,检测灵敏度分别为33nA/μg、19nA/μg、65nA/μg和23nA/μg,检出限分别为4.5μg/L、0.5μg/L、1.2μg/L和1.5μg/L;对海水背景样本中的Cd2+、Pb2+和Cu2+进行了有效测定,检测结果与国家标准分析方法—原子吸收光谱法的检测值相符。
     3.研制了纳米带电极阵列传感器,包含50个金工作电极和50个铂对电极;对传感器进行了表面表征和伏安特性测试,传感器特性良好;金纳米带电极阵列传感器直接检测纯水背景样本中的Pb2+和Cu2+,灵敏度分别为105nA/μg和88.5nA/μg,检出限为0.97μg/L和0.73μg/L;检测海水背景样本中pb2+和Cu2+的浓度值分别为9.47±0.78μg/L和5.41±0.57μg/L,与原子吸收光谱法的测定值10±0.6μg/L和5±0.4μg/L接近。
     4.探索了环境友好的铋膜敏感材料的伏安特性,采用铋膜金纳米带电极阵列传感器检测纯水背景样本中的Zn2+、Cd2+和Pb2+,检测灵敏度分别为17nA/μg、28nA/μg和154.4nA/μg,采用铋膜纳米带电极阵列传感器检测Cd2+和Pb2+的灵敏度最高;
     5.针对水环境重金属检测传感器集成化的发展方向,设计了光电复合微纳传感器芯片,将微电极阵列或纳米带电极阵列与光寻址电位传感器集成在同一硅基底上;基于复合芯片,搭建了测试流路系统,实现了无线传感器网络节点的功能;通过复合芯片检测纯水背景样本中的Zn2+、Pb2+和Cu2+获得的偏置电压与溶出峰电流值构建了对照工作表,建立了多元线性回归方程组,实现了复合芯片的自校准。
Contamination of aquatic environment by heavy metals gets more and more serious with the rapid development of industry. They can do harm to the whole ecological systems, including humans, even if they are present in extremely low concentrations. Some of them can not be metabolized in vivo, which means that once they enter the human body, they won't be degradable. Thus the development of in-situ and on-line heavy metals detection in aquatic environment is of great significance.
     Electrochemical sensors are one of the most useful electroanalytical techniques for heavy metals detection due to their fast, sensitivity, selectivity and simultaneously determination of various elements. In this paper, the voltammetric properties of micro and nano amperometric electrodes are analyzed, and the principle of light addressable potentiometric sensor (LAPS) is illustrated. Moreover, the miniaturization, integration and wireless sensor network are studied. As a result, microelectrode array (MEA) and nanoband electrode array are developed and improved. In addtition, micro-nano opto-electronic integrated sensor chips are present based on stripping voltammetry and potentiometric method. Besides, a node for wireless sensor network is established. This study is supported by the National High Technology Research Program (863Program) and the National Key Basic Research Program (973Program).
     The major work of this study is as follows:
     1) Au-MEA is fabricated based on the standard micro fabrication technology. The ratio of interelectrode distance to the electrode diameter of the MEA is10:1to get a collective current response while maintaining the excellent features of single microelectrodes. The electrochemical properties including detection potential window, real surface area and the length of diffusion layer are analyzed. The Au-MEA can be directly used for the detection of Pb2+and Cu2+in the pure water-background samples. The detection sensitivities are23nA/μg and12nA/μg, respectively, and the detection limits are1.8μg/L and3.5μg/L.
     2) Detection conditions including pH of the analyte solutions, preconcentration potential, preconcentration time and sweep rate are optimized for the mercury film Au-MEA. It can be utilized to simultaniously detect pure water-background samples of Zn2+, Cd2+, Pb2+and Cu2+. The detection sensitivities are33nA/μg,19nA/μg,65nA/μg and23nA/μg, respectively, and the detection limits are4.5μg/L,0.5μg/L,1.2μg/L and1.5μg/L. In addition, the mercury film Au-MEA is applied to the detection of Cd2+, Pb2+and Cu2+in sea water-background samples, where agreements are found with the standard analytical method (Atomic absorption spectrometry, AAS).
     3) A double-side nanoband electrode array, which consisted of50gold working electrodes and50platinum auxiliary electrodes is developed. Surface analysis and electrochemical behavior of Au nanoband electrode array are studied. The detection sensitivities for Pb2+and Cu2+in pure water-background samples are105nA/μg and88.5nA/μg, respectively, and the detection limits are0.97μg/L and0.73μg/L, which are both better than that of Au-MEA. Besides, the concentrations of Pb2+and Cu2+in sea water-background samples detected by Au nanoband electrode array are9.47±0.78μg/L and5.41±0.57μg/L, respectively, close to the values validated by AAS (10±0.6μg/L and5±0.4μg/L).
     4) The detection of Zn2+, Cd2+and Pb2+in pure water-background samples by enviorenmental friendly bismuth film Au nanoband electrode array is also studied. The sensitivities are17nA/μg,28nA/μg and154.4nA/μg, respectively, which for Cd2+and Pb2+are proved to be the best.
     5) Micro-nano opto-electronic integrated sensor chips are developed and studied. In these chips, MEAs or nanoband electrode array are intergrated with LAPS on a same silicon substrate. A node of wireless sensor network is supposed based on the integrated sensor chips and the flow system. Self-calibration model are established based on the multiple linear regression equation set, which is verified through the bias potentials and stripping currents of Zn2+, Pb2+and Cu2+obtained from the integrated sensor chips.
引文
[1]徐继刚,王雷,肖海洋,等.我国水环境重金属污染现状及检测技术进展[J].环境科学导刊,2010,29(5):104-108.
    [2]PAVLOGEORGATOS G, KIKILIAS V. The importance of mercury determination and speciation to the health of the general population [J]. Global Nest: the Int J,2003,4(2-3):107-125.
    [3]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方 法[M].北京:中国环境科学出版社,2002.
    [4]SANITA DI TOPPI L, GABBRIELLI R. Response to cadmium in higher plants [J]. Environmental and Experimental Botany,1999,41(2):105-130.
    [5]张世霞.水环境重金属污染的现状及其评价[J].中国科技信息,2009,8(13):78-79.
    [6]傅国伟.中国水土重金属污染的防治对策[J].中国环境科学,2012,32(2):373-376.
    [7]周怀东,彭文启等.水污染与水环境修复[M].化学工业出版社,2005.
    [8]王钦,丁明玉,张志洁,等.太湖不同湖区沉积物重金属含量季节变化及其影响因素[J].生态环境,2008,17(4):1362-1368.
    [9]李永华,姬艳芳,杨林生,等.采选矿活动对铅锌矿区水体中重金属污染研究[J].农业环境科学学报,2007,26(1):103-107.
    [10]H NINGER I, POTIN-GAUTIER M, DE GREGORI I, et al. Storage of aqueous solutions of selenium for speciation at trace level [J]. Fresenius'journal of analytical chemistry,1997,357(6):600-610.
    [11]GARDOLINSKI P C, HANRAHAN G, ACHTERBERG E P, et al. Comparison of sample storage protocols for the determination of nutrients in natural waters [J]. Water Research,2001,35(15):3670-3678.
    [12]POLYA D, LYTHGOE P, ABOU-SHAKRA F, et al. IC-ICP-MS and IC-ICP-HEX-MS determination of arsenic speciation in surface and groundwaters:
    preservation and analytical issues [J]. Mineralogical magazine,2003,67(2):247-261.
    [13]倪桦.离子色谱在水质检测中的几点体会[J].科技资讯,2009,29(1):003.
    [14]张思冲,周晓聪,张丽娟,等.X射线荧光光谱法测定沉积物中重金属[J].实验室研究与探索,2009,28(9):39-42.
    [15]AMINOT A, K ROUEL R. Assessment of heat treatment for nutrient preservation in seawater samples [J]. Analytica Chimica Acta,1997,351(1):299-309.
    [16]SABAN S B, DARLING R B. Multi-element heavy metal ion sensors for aqueous solutions [J]. Sensors and Actuators B:Chemical,1999,61(1):128-137.
    [17]TAILLEFERT M, LUTHER Ⅲ G W, NUZZIO D B. The application of electrochemical tools for in situ measurements in aquatic systems [J]. Electroanalysis, 2000,12(6):401-412.
    [18]PANELI M G, VOULGAROPOULOS A. Applications of adsorptive stripping voltammetry in the determination of trace and ultratrace metals [J]. Electroanalysis, 1993,5(5-6):355-373.
    [19]SKOGERBOE R, WILSON S, OSTERYOUNG J. Scheme for classification of heavy metal species in natural waters. Comments [J]. Analytical Chemistry,1980, 52(12):1960-1962.
    [20]BRETT C. Electrochemical sensors for environmental monitoring. Strategy and examples [J]. Pure and applied chemistry,2001,73(12):1969-1977.
    [21]STUMM W. Aquatic Chemistry; An Introduction Emphasizing Chemical Equilibria in Natural Waters by Werner Strumm and James J. Morgan [M]. New York, Wiley-Interscience,1970.
    [22]CLARK LC JR W R, GRANGER D, TAYLOR Z. Continuous recording of blood oxygen tensions by polarography [J]. J Appl Physiol,1953,6(3):189-193.
    [23]DENUAULT G. Electrochemical techniques and sensors for ocean research [J]. Ocean Science,2009,5(4):697.
    [24]BARD A J, FAULKNER L R. Electrochemical methods:fundamentals and applications [M]. Wiley New York,1980.
    [25]ECONOMOU A, FIELDEN P. Mercury film electrodes:developments, trends and potentialities for electroanalysis [J]. Analyst,2003,128(3):205-213.
    [26]VYSKOCIL V, BAREK J. Mercury electrodes-Possibilities and limitations in environmental electroanalysis [J]. Critical Reviews in Analytical Chemistry,2009, 39(3):173-188.
    [27]WANG J. Analytical electrochemistry [M]. Wiley-VCH,2006.
    [28]XIE X, ST BEN D, BERNER Z, et al. Development of an ultramicroelectrode arrays (UMEAs) sensor for trace heavy metal measurement in water [J]. Sensors and Actuators B:Chemical,2004,97(2):168-173.
    [29]HUANG X J, O'MAHONY A M, COMPTON R G. Microelectrode arrays for electrochemistry:approaches to fabrication [J]. Small,2009,5(7):776-788.
    [30]FEENEY R, KOUNAVES S P. Microfabricated ultramicroelectrode arrays: Developments, advances, and applications in environmental analysis [J]. Electroanalysis,2000,12(9):677-684.
    [31]BERDUQUE A, LANYON Y H, BENI V, et al. Voltammetric characterisation of silicon-based microelectrode arrays and their application to mercury-free stripping voltammetry of copper ions [J]. Talanta,2007,71(3):1022-1030.
    [32]PRIVETT B J, SHIN J H, SCHOENFISCH M H. Electrochemical sensors [J]. Analytical Chemistry,2008,80(12):4499.
    [33]RUDNITSKAYA A, LEGIN A, SELEZNEV B, et al. Detection of ultra-low activities of heavy metal ions by an array of potentiometric chemical sensors [J]. Microchimica Acta,2008,163(1-2):71-80.
    [34]门洪,邹绍芳,王平,等.脉冲激光沉积技术制备的薄膜传感器的研究[J].浙江大学学报:工学版,2005,39(4):600-604.
    [35]ARRIGAN D W. Nanoelectrodes, nanoelectrode arrays and their applications [J]. Analyst,2004,129(12):1157-1165.
    [36]XIAO L, DIETZE W, NYASULU F, et al. Ultramicroband array electrode.1. Analysis of mercury in contaminated soils and flue gas exposed samples using a gold-plated iridium portable system by anodic stripping voltammetry [J]. Analytical Chemistry,2006,78(14):5172-5178.
    [37]KOKKINOS C, ECONOMOU A, RAPTIS I, et al. Disposable microfabricated bismuth microelectrode arrays for trace metal analysis by stripping voltammetry [J]. Procedia Engineering,2011,25(1):880-883.
    [38]MUSAMEH M M, HICKEY M, KYRATZIS I L. Carbon nanotube-based extraction and electrochemical detection of heavy metals [J]. Research on Chemical Intermediates,2011,37(7):675-689.
    [39]LIU G, LIN Y, TU Y, et al. Ultrasensitive voltammetric detection of trace heavy metal ions using carbon nanotube nanoelectrode array [J]. Analyst,2005,130(7): 1098-1101.
    [40]LOHM LLER T, M LLER U, BREISCH S, et al. Nano-porous electrode systems by colloidal lithography for sensitive electrochemical detection:fabrication technology and properties [J]. Journal of Micromechanics and Microengineering, 2008,18(11):115011.
    [41]GARDNER R D, ZHOU A, ZUFELT N A. Development of a microelectrode array sensing platform for combination electrochemical and spectrochemical aqueous ion testing [J]. Sensors and Actuators B:Chemical,2009,136(1):177-185.
    [42]YOSHINOBU T, SCH NING M, OTTO R, et al. Portable light-addressable potentiometric sensor (LAPS) for multisensor applications [J]. Sensors and Actuators B:Chemical,2003,95(1):352-356.
    [43]JOTHIMUTHU P, WILSON R A, HERREN J, et al. Lab-on-a-chip sensor for detection of highly electronegative heavy metals by anodic stripping voltammetry [J]. Biomedical microdevices,2011,13(4):695-703.
    [44]DIAMOND D, COYLE S, SCARMAGNANI S, et al. Wireless sensor networks and chemo-/biosensing [J]. Chemical reviews,2008,108(2):652.
    [45]HANRAHAN G, PATIL D G, WANG J. Electrochemical sensors for environmental monitoring:design, development and applications [J]. Journal of Environmental Monitoring,2004,6(8):657-664.
    [46]SHIH J. Micro fabricated high-performance liquid chromatography (HPLC) system with closed-loop flow control [D],2008.
    [47]POTYRAILO R, MORRIS W. Multianalyte chemical identification and quantitation using a single radio frequency identification sensor [J]. Anal Chem,2007, 79(1):45-51.
    [1]ALLEN J B, LARRY R F. Electrochemical methods fundamentals and applications [J]. Department of Chemistry and Biochemistry University of Texas at Austin, John Wiley & Sons, Inc,2001.
    [2]STUMM W, MORGAN J J. Aquatic chemistry:chemical equilibria and rates in natural waters [J]. JOHN WILEY & SONS, NEW YORK, NY 10158(USA),1995.
    [3]巴德,福克纳,邵元华,等.电化学方法:原理与应用[M].化学工业出版社,2005.
    [4]ZANELLO P. Inorganic electrochemistry:theory, practice and application [M]. Royal Society of Chemistry,2003.
    [5]WANG J. Analytical electrochemistry [M]. Wiley-VCH,2006.
    [6]BARD A J, ABRUNA H D, CHIDSEY C E, et al. The electrode/electrolyte interface-A status report [J]. The Journal of Physical Chemistry,1993,97(28): 7147-7173.
    [7]WANG J. Stripping analysis [M]. Wiley Online Library,1985.
    [8]邹绍芳.重金属电化学传感器及其在海水检测中应用的研究[D];浙江:浙江大学,2006.
    [9]HARVEY D. Modern analytical chemistry [M]. McGraw-Hill Boston,2000.
    [10]ZOSKI C G. Ultramicroelectrodes:design, fabrication, and characterization [J]. Electroanalysis,2002,14(15-16):1041-1051.
    [11]YELTON W G, SIEGAL M P, PFEIFER K B. Functionalized Nanoelectrode Arrays for In-Situ Identification and Quantification of Regulated Chemicals in Water; proceedings of the Impacts of Global Climate Change, F,2005 [C]. ASCE.
    [12]鞠烷先.电分析化学与生物传感技术[M].科学出版社,2006.
    [13]BASHA C A, RAJENDRAN L. Theories of ultramicrodisc electrodes:Review article [J]. Int J Electrochem Sci,2006,1:268-282.
    [14]李毅.微纳集成传感器及其在重金属检测中应用的研究[D];杭州:浙江大学,2010.
    [15]ZHAO H X, CAI W, WAN H, et al.8.2.2 A High Spatial Resolution MEA for Voltammetric Analysis of Trace Metals in Water Pollution Based on Partial Least Squares Regression [J]. Tagungsband,2012,679-682.
    [16]ARRIGAN D W. Nanoelectrodes, nanoelectrode arrays and their applications [J]. Analyst,2004,129(12):1157-1165.
    [I7]XIE X, STUEBEN D, BERNER Z. The application of microelectrodes for the measurements of trace metals in water [J]. Analytical Letters,2005,38(14): 2281-2300.
    [18]DAVIES T J, BROOKES B A, FISHER A C, et al. A computational and experimental study of the cyclic voltammetry response of partially blocked electrodes. Part Ⅱ:Randomly distributed and overlapping blocking systems [J]. The Journal of Physical Chemistry B,2003,107(26):6431-6444.
    [19]XIAO L, STREETER I, WILDGOOSE G G, et al. Fabricating random arrays of boron doped diamond nano-disc electrodes:Towards achieving maximum Faradaic current with minimum capacitive charging [J]. Sensors and Actuators B:Chemical, 2008,133(1):118-127.
    [20]ZOU Z, JANG A, MACKNIGHT E, et al. Environmentally friendly disposable sensors with microfabricated on-chip planar bismuth electrode for in situ heavy metal ions measurement [J]. Sensors and Actuators B:Chemical,2008,134(1):18-24.
    [1]FIACCABRINO G C, KOUDELKA-HEP M. Thin-film microfabrication of electrochemical transducers [J]. Electroanalysis,1998,10(4):217-222.
    [2]邹绍芳.重金属电化学传感器及其在海水检测中应用的研究[D];浙江:浙江大学,2006.
    [3]赵会欣,李毅,蔡巍,等.水环境痕量重金属检测的电化学传感器的研究[J].仪表技术与传感器,2009,B11:158-161.
    [4]BURKE L, NUGENT P. The electrochemistry of gold:I The redox behaviour of the metal in aqueous media [J]. Gold Bulletin,1997,30(2):43-53.
    [5]BERDUQUE A, LANYON Y H, BENI V, et al. Voltammetric characterisation of silicon-based microelectrode arrays and their application to mercury-free stripping voltammetry of copper ions [J]. Talanta,2007,71(3):1022-1030.
    [6]JARZABEK G Y, BORKOWSKA Z. On the real surface area of smooth solid electrodes [J]. Electrochimica Acta,1997,42(19):2915-2918.
    [7]BOND A M, COOMBER D C, FELDBERG S W, et al. An experimental evaluation of cyclic voltammetry of multicharged species at macrodisk electrodes in the absence of added supporting electrolyte [J]. Analytical Chemistry,2001,73(2): 352-359.
    [8]ZHAO H-X, CAI W, HA D, et al. The Study on Novel Microelectrode Array Chips for the Detection of Heavy Metals in Water Pollution [J]. Journal of Innovative Optical Health Sciences,2012,5(01):1150002-1150008.
    [9]WANG J. Analytical electrochemistry [M]. Wiley-VCH,2006.
    [10]NICHOLSON R S. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics [J]. Analytical Chemistry,1965,37(11): 1351-1355.
    [11]MOUJAHID W, EICHELMANN-DALY P, STRUTWOLF J, et al. Microelectrochemical Systems on Silicon Chips for the Detection of Pollutants in Seawater [J]. Electroanalysis,2011,23(1):147-155.
    [12]BARD A J, FAULKNER L R. Electrochemical methods:fundamentals and applications [M]. Wiley New York,1980.
    [1]ARRIGAN D W. Nanoelectrodes, nanoelectrode arrays and their applications [J]. Analyst,2004,129(12):1157-1165.
    [2]付静.水环境重金属检测的电化学传感器的研究[D];浙江大学,2007.
    [3]GODINO N, BORRISE X, MUNOZ F X, et al. Mass transport to nanoelectrode arrays and limitations of the diffusion domain approach:theory and experiment [J]. The Journal of Physical Chemistry C,2009,113(25):11119-11125.
    [4]WEHMEYER K R, DEAKIN M R, WIGHTMAN R M. Electroanalytical properties of band electrodes of submicrometer width [J]. Analytical Chemistry,1985, 57(9):1913-1916.
    [5]MCDEVITT J T, CHING S, SULLIVAN M, et al. Fluid electrolyte solutions for electrochemistry at near liquid nitrogen temperatures [J]. Journal of the American Chemical Society,1989,111(12):4528-4529.
    [6]ZHAO H-X, CAI W, HA D, et al. The Characterization of a Double-Side Nanoband Electrode Array and Its Application to Heavy Metals Detection [J]. Sensor Letters,2011,9(2):801-806.
    [7]邹绍芳.重金属电化学传感器及其在海水检测中应用的研究[D];浙江大学,2006.
    [8]KISSINGER P T, HEINEMAN W R. Laboratory techniques in electroanalytical chemistry [M]. CRC press,1996.
    [9]AMATORE C. Electrochemistry at ultramicroelectrodes [J]. Physical Electrochemistry:Principles, Methods and Applications,1995,4:131-208.
    [10]HEINZE J. Ultramicroelectrodes in electrochemistry [J]. Angewandte Chemie International Edition in English,1993,32(9):1268-1288.
    [11]CASTON S L, MCCARLEY R L. Characteristics of nanoscopic Au band electrodes [J]. Journal of Electroanalytical Chemistry,2002,529(2):124-134.
    [12]MORRIS R B, FRANTA D J, WHITE H S. Electrochemistry at platinum bane electrodes of width approaching molecular dimensions:breakdown of transport equations at very small electrodes [J]. Journal of Physical Chemistry,1987,91(13): 3559-3564.
    [13]SABAN S, DARLING R B, YAGER P. Microband electrode arrays [M]. Google Patents.2000.
    [14]MOUJAHID W, EICHELMANN-DALY P, STRUT WOLF J, et al. Microelectrochemical Systems on Silicon Chips for the Detection of Pollutants in Seawater [J]. Electroanalysis,2011,23(1):147-155.
    [15]AOKI K. Theory of ultramicroelectrodes [J]. Electroanalysis,1993,5(8): 627-639.
    [16]WANG J, LU J, HOCEVAR S B, et al. Bismuth-coated carbon electrodes for anodic stripping voltammetry [J]. Analytical Chemistry,2000,72(14):3218-3222.
    [17]ZOU Z, JANG A, MACKNIGHT E, et al. Environmentally friendly disposable sensors with micro fabricated on-chip planar bismuth electrode for in situ heavy metal ions measurement [J]. Sensors and Actuators B:Chemical,2008,134(1):18-24.
    [18]HOCEVAR S B, OGOREVC B, WANG J, et al. A study on operational parameters for advanced use of bismuth film electrode in anodic stripping voltammetry [J]. Electroanalysis,2002,14(24):1707-1712.
    [19]XIE X, BERNER Z, ALBERS J, et al. Electrochemical behavior and analytical performance of an iridium-based ultramicroelectrode array (UMEA) Sensor [J]. Microchimica Acta,2005,150(2):137-145.
    [20]LIU G, LIN Y, TU Y, et al. Ultrasensitive voltammetric detection of trace heavy metal ions using carbon nanotube nanoelectrode array [J]. Analyst,2005,130(7): 1098-1101.
    [21]MAGHASI A T, HALSALL H B, HEINEMAN W R, et al. Detection of secretion from pancreatic islets using chemically modified electrodes [J]. Analytical biochemistry,2004,326(2):183-189.
    [1]WANG P, LIU Q. Biomedical sensors and measurement [M]. Springerverlag Berlin Heidelberg,2011.
    [2]王平,刘清君.生物医学传感与检测[M];杭州:浙江大学出版社,2010.
    [3]邹绍芳.重金属电化学传感器及其在海水检测中应用的研究[D];浙江:浙江大学,2006.
    [4]SCHOENING M J, KLOOCK J P. About 20 Years of Silicon-Based Thin-Film Sensors with Chalcogenide Glass Materials for Heavy Metal Analysis:Technological Aspects of Fabrication and Miniaturization [J]. Electroanalysis,2007,19(19-20): 2029-2038.
    [5]MOURZINA Y, YOSHINOBU T, SCHUBERT J, et al. Ion-selective light-addressable potentiometric sensor (LAPS) with chalcogenide thin film prepared by pulsed laser deposition [J]. Sensors and Actuators B:Chemical,2001,80(2): 136-140.
    [6]李毅.微纳集成传感器及其在重金属检测中应用的研究[D];杭州:浙江大学,2010.
    [7]ARIDA H A, KLOOCK J P, SCH NING M J. Novel organic membrane-based thin-film microsensors for the determination of heavy metal cations [J]. Sensors,2006, 6(4):435-444.
    [8]WANG J, LU J, KIRG Z O A, et al. Insights into the anodic stripping voltammetric behavior of bismuth film electrodes [J]. Analytica Chimica Acta,2001, 434(1):29-34.
    [9]BRETT C, GARCIA M, LIMA J F. On the suppression of zinc-copper interactions in square wave anodic stripping voltammetry in flowing solution by addition of gallium ions [J]. Analytica Chimica Acta,1997,339(1):167-172.
    [10]CHAN H, BUTLER A, FALCK D M, et al. Artificial neural network processing of stripping analysis responses for identifying and quantifying heavy metals in the presence of intermetallic compound formation [J]. Analytical Chemistry,1997,69(13): 2373-2378.
    [11]ARNOLD M A, MEYERHOFF M E. Ion-selective electrodes [J]. Analytical Chemistry,1984,56(5):20R-48R.
    [12]MD ISMAIL A B, SUGIHARA H, YOSHINOBU T, et al. A novel low-noise measurement principle for LAPS and its application to faster measurement of pH [J]. Sensors and Actuators B:Chemical,2001,74(1):112-116.
    [13]ARMANI D, LIU C, ALURU N. Re-configurable fluid circuits by PDMS elastomer micromachining; proceedings of the Micro Electro Mechanical Systems, 1999 MEMS'99 Twelfth IEEE International Conference on, F,1999 [C]. Ieee.
    [1]TERCIER M-L, BUFFLE J. Antifouling membrane-covered voltammetric microsensor for in situ measurements in natural waters [J]. Analytical Chemistry, 1996,68(20):3670-3678.
    [2]LEE H J, BERIET C, FERRIGNO R, et al. Cyclic voltammetry at a regular microdisc electrode array [J]. Journal of Electroanalytical Chemistry,2001,502(1): 138-145.
    [3]LI D, JIA J, WANG J. Simultaneous determination of Cd (Ⅱ) and Pb (Ⅱ) by differential pulse anodic stripping voltammetry based on graphite nanofibers-Nafion composite modified bismuth film electrode [J]. Talanta,2010,83(2):332-336.
    [4]TERCIER-WAEBER M L, CONFALONIERI F, KOUDELKA-HEP M, et al. Gel-integrated Voltammetric Microsensors and Submersible Probes as Reliable Tools for Environmental Trace Metal Analysis and Speciation [J]. Electroanalysis, 2008,20(3):240-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700