隙控式全射流喷头理论及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隙控式全射流喷头是国家863计划项目“新型喷滴灌系统关键设备的研制与产业化开发(项目号:201MAA224010)”主要研究内容之一。
     由于全射流喷头独特的“附壁”工作原理,使得喷头具有结构简单、水力性能优秀、多功能的特点,适应了喷头多功能及节能的发展趋势。因此,对全射流喷头进行射流附壁理论、性能试验及可靠性试验等方面的全面、深入、系统的研究,建立全射流喷头设计方法,具有重要的理论研究意义及实用推广价值。
     本文从自由紊动射流理论及附壁流动理论出发,计算分析射流元件内附壁点位置及射流核心区长度,指导喷头作用区系统的设计;研究运转控制理论,设计喷头运转控制系统,并对运转控制系统进行动力学分析,推导获得最大驱动力矩的结构尺寸;总结影响喷头性能的主要尺寸,进行大量对比试验,并结合正交试验,分析各种水力性能要求下的最佳尺寸组合;采用CFD软件对射流元件在直射、正向附壁和反向附壁等运行状态下进行二维、三维数值模拟,并将模拟结果与理论分析、试验结果进行对比。通过以上对隙控式全射流喷头较为深入系统的研究,初步建立了喷头的设计方法。
     主要研究内容和研究成果有:
     (1)介绍了隙控式全射流喷头的工作原理及结构特点,制定了1个系列6种规格喷头的设计参数。全射流喷头性能参数的制定高于国家《旋转式喷头》标准的要求。设计了喷头射流元件的稳流系统、水封系统、信号接收及输送系统、作用区系统,并研制了全射流喷头独特的反向机构。
     (2)分别使用附壁点模型与控制面模型,推导出附壁半径,以及对应各种位差时的附壁距离的计算过程和方法。首次编程对全射流喷头10PXH、30PXH射流元件的附壁半径、附壁距离进行了初步计算。并利用木村模型对核心区域的流动进行了分析。
     (3)研究全射流喷头运转控制理论,指出实现稳定切换状态关键尺寸的设计要求。设计喷头附壁控制运转系统,分别阐述具体运行参数,即信号接嘴位置、导水管长度、间隙C宽度等结构尺寸的设计原理。对喷头转动力矩进行分析,推导出全射流喷头的附壁驱动力及力矩、摩擦阻力及力距计算公式。首次利用附壁射流中心线方程及动量方程推导了理论状态下,附壁力矩最大值与结构尺寸之间的关系。并由刚体转动定律得出全射流喷头的力矩公式,及全射流喷头转角公式。
     (4)建立了基于RS485总线的分布式测试水量分布测试系统。试验研究工作压力、主要水力尺寸对水力性能的影响。进行了各种结构参数对喷头水力性能影响的正交试验。得到了射程、水量分布、频率、附壁力矩等最优情况下的最佳结构参数组合。
     (5)研制完成了测试全射流喷头工作稳定性的耐久性试验台和耐磨损试验台,进行了隙控式全射流喷头的耐久性试验研究和耐磨损试验研究。试验表明,隙控式全射流喷头耐久性能好,已安全运转2000小时以上,耐磨性能还需进一步深入研究。
     (6)采用三维非定常N-S方程作为控制方程,利用标准κ-ε紊流模型封闭雷诺时均方程,并利用VOF方法求解追踪自由表面的形状和位置,采用PISO算法耦合速度压力场,首次对喷头射流元件内部流动的不同运行状态进行了二维、三维数值模拟,初步揭示了内部流动的一般规律。为了验证数值模拟的准确性,对二维、三维数值模拟结果与试验结果及理论分析结果进行了比较。
     (7)在大量理论计算和试验研究的基础上,初步建立隙控式全射流喷头的设计方法,给出了作用区长度、位差,出口盖板左右位差的计算公式。
The research on fluidic sprinkler controlled by clearance was one of the main contents of China National High-tech Program (No. 2004AA2Z4010)"Development and Industrialization of key equipment in new irrigation system".
     The fluidic sprinkler was characteristic of simple structure, good hydraulic performances, and multi-function, which adapted to the trend of multi-function and energy-saving of sprinkler. So, establishing the design method of the fluidic sprinkler by complete, deep and systemic research on wall-attachment jet theory, performance experiment and reliability test, was of not only great significant for theoretical study, but also of practical value for wide application.
     Based on the theories of free turbulence jet and wall attachment jet, wall attachment point and core area length in the jet component were calculated and analyzed to guide the design of working area system of the sprinkler. Running control system of the sprinkler was designed based on the theory of running control. A dynamic analysis of running control system was conducted to deduce the structure size, which can get maximum driving moment. The main geometrical parameters that influenced the hydraulic performance of the sprinkler were summarized, and a great deal contrast tests were tried out. The best-combined geometrical parameters for different hydraulic demands were analyzed by orthogonal experiments. Under different running state of the fluidic element, CFD software was applied to simulate the inner flow. The results of numerical simulation, theoretical analysis, and the experimental data were compared with each other. Based on the systematically study of mentioned above, design method of the fluidic sprinkler was established preliminarily for the first time.
     The main research contents and results were as follows:
     (1) The working principle and structural characteristics of fluidic sprinkler were introduced. Design parameters of one series including six types were established, with the higher target than the national standard "rotating sprinkler". Each system of the fluidic component, such as steady flow system, liquid seal system, signal incepting and transporting system, working area system had been designed. The unique reverse structure was also put forward.
     (2) The processes and methods of calculating wall-attachment radius, wall attachment distance varied with the offset ratio were derivated using Attachment Point Model and Control Volume Model respectively. The source program was written and applied to calculate the wall-attachment radius and the distance of fluidic component typed 10PXH and 30PXH preliminarily. The flow in the core area of fluidic component was analyzed by M. Kimura's model for the first time.
     (3) Based on the research of running-controlled theory of complete fluidic sprinkler, design request of key sizes was put forward to realize stable switch.Wall-attachment controlling and running system of the sprinkler was designed. The design principle of running parameters, such as the location of signal tube, the length of the pipe, the width of gap C, were set forth respectively. The driving moment of the sprinkler was analyzed, and the calculating equations of wall-attachment driving force and moment, friction force and moment were put forward for the first time.The theoretical relationship between the maximum wall-attachment moment and geometrical sizes was deduce using centerline equation of wall-attachment jet flow and momentum equation.Moment equation and angle equation of fluidic sprinkler were educed using rigid body rotating theory.
     (4) A auto-testing system of sprinkler rainfall distribution based on distributional RS485 bus was established in this paper. The influence to hydraulic performance caused by working pressure and major hydraulic sizes was studied by experiment.The best combination of geometrical sizes according to different performance requests, such as range, water distribution, frequency and wall-attachment moment et.al, was achieved by the orthogonal experiments.
     (5) Durable test-beds and fretting test-beds were developed to research the stability of fluidic sprinkler, and durable test and fretting test were done. The test result indicated that the lasting long performance of fluidic sprinkler was good because of the safety-running period of 2000 hours. Wearing characteristics will be lucubrated in the future.
     (6)3-Demesion transient N-S equation was used as control equation, k-εequation model was used to close Reynolds time-averaged equation. VOF method was used to track the shape and location of free face, and PISO method was used to couple the velocity field and pressure field. By the 2-D and 3-D numerical simulations of the flow in sprinkler component under different states, the preliminary flow law of the sprinkler was revealed for the first time. In order to testify the accuracy of numerical simulation, the results of theoretical analysis, experiments and numerical simulations were compared with each other.
     (7) Design method of the fluidic sprinkler was summarized based on the theoretical calculations and experimental studies. The calculating formulas of the length and offset ratio of working area, the left and right offset ratio of export cover were recommended.
引文
[1]水利部农村水利司.中国灌溉排水发展中心编著.节水灌溉工程实用手册[M].北京:中国水利水电出版社,2005
    [2]许迪,康绍忠.现代节水农业技术研究进展与发展趋势[J].高技术通讯,2002,(12):103-108
    [3]康绍忠.关于建设国家节水灌溉试验与监测网络的建议[J].中国农村水利水电,2002,(12):18-21
    [4]康绍忠,李永杰.21世纪我国节水农业发展趋势及其对策[J].农业工程学报,1997,(12):1-7
    [5]李英能.对我国喷灌技术发展若干问题的探讨[J].节水灌溉,2000,(1):1-3
    [6]李英能.我国节水灌溉的现状与发展[J].水利水电科技进展,1998,(1):2-7
    [7]金宏智.我国节水灌溉设备的现状与展望[J].中国机电工业,2001,(4):7-9
    [8]殷春霞,许炳华.我国喷灌发展五十年回顾[J].中国农村水利水电,2003,(2):9-11
    [9]许志方,董文楚.论我国喷微灌发展前景和实施建议[J].节水灌溉,2004,(3):1-4
    [10]王留运,叶清平,岳兵.我国微灌技术发展的回顾与预测[J].节水灌溉,2000,(3):3-7
    [11]水利部.《2005年全国水利发展统计公报》[R].2005
    [12]国家发展改革委、科技部会同水利部、建设部和农业部.中国节水技术政策大纲[R].2005
    [13]陈大雕,林中卉编著.喷灌技术(第二版)[M].北京:科学出版社,1992
    [14]李宗尧.节水灌溉技术[M].北京:中国水利水电出版社,2004
    [15]水利部农村水利司,中国灌溉排水发展中心编著.节水灌溉工程实用手册[M].北京:中国水利水电出版社,2005
    [16]李世英.喷灌喷头理论与设计[M].北京:兵器工业出版社,1995
    [17]蒋定生,金兆森.摇臂式喷头设计原理[M].北京:水利出版社.1981
    [18]谢福祺,张世芳,顾子良等.PSF-50型反馈式流控喷头的原理与分析[J].江苏工学院学报,1983,(2):13-20
    [19]杨诗通,谢福祺.PSF-50型喷头步进稳定性的研讨[J].排灌机械,1984,(2):16-18
    [20]干浙民.PSBZ型自控式全射流喷头的研究[J].节水灌溉,1982,(03):5-8,17
    [21]干浙民,谢福祺.对PSZ型全射流喷头元件的分析[J].农业机械学报,1985,(2):87-91
    [22]韩小杨.双击同步全射流喷头的研制[J].节水灌溉,1991(2):38-40
    [23]韩小杨,孙才华,沈方兴等.双击同步全射流喷头[P],中国专利:90200784,1990
    [24]许迪,龚时宏.专家“会诊”国产节灌产品质量问题[N].中国灌溉排水发展中心,2004-1-8.
    [25]龚时宏,许迪.节水灌溉市场需要什么[N].中国灌溉排水发展中心,2004,04
    [26]刘婴谷.中国加入WTO后的喷(微)灌设备市场[J].中国农村水利水电,2002,(2):64-67
    [27]李英能.加入WTO我国节水灌溉设备发展前景[J].中国农村水利水电,2001,(10):59-62
    [28]马学良,赵其恒,田贺红等.国内外设施农业节水灌溉设备技术[J].节水灌溉,1999,(2):4-6
    [29]兰才有,冯大明.从雨鸟园林灌溉喷头看我国的差距[J].节水灌溉,1998,(3):36-37
    [30]金宏智,李光永.国外节水灌溉技术与设备的发展趋勢--美国第24届国际灌溉展览会观感[J].节水灌溉,2004,(3):46-48
    [31]喻黎明.国内外几种主要喷头水力性能测试与评价[D],西北农林科技大学硕士学位论文,2002
    [32][俄]Б.М.列别捷夫著.喷灌机械理论和构造[M].姚兆生,汪泰临译.北京:中国农业出版社.1981
    [33][俄]А.П.伊沙耶夫著.喷灌机的水力学[M].蒋定生译.西北水土保持生物土壤研究所.1976
    [34]许一飞,许炳华编著.喷灌机械原理.设计.应用[M].北京:中国农业机械出版社,1989
    [35]水电部科技情报所等.国外喷灌技术[M].北京:水利电力出版社,1977
    [36]王福星.摇臂式喷头的力学原理[J].喷灌技术,1980(1):
    [37]王福星.摇臂式喷头导流器参数的理论公式和经验公式[J].黑龙江省水利科学研究所,1982
    [38]王福星.摇臂式喷头的运动和力学分析[J].黑龙江省水利科学研究所,1980
    [39]干浙民,杨生华.旋转式喷头射程的试验研究及计算公式[J].农业机械学报,1998(10)145-149
    [40]脱云飞,杨路华,柴春岭,等.喷头射程理论公式与试验研究[J].农业工程学报,2006,(1):23-26
    [41]张社奇,刘淑明,韩维生,等.改变喷头喷洒轨迹的力学途径[J].西北农林科技大学学报,2001,29(4):118-121
    [42]樊桂林,梁芝兰.摇臂式喷头摇臂应力分布的试验研究[J].排灌机械,1995,(2):34-36
    [43]李久生.喷洒水滴直径测试方法的研究[J].排灌机械,1993,(2):45-47
    [44]李萍.卷盘式喷灌机喷头水力损失研究[D].吉林农业大学硕士学位论文,2006
    [45]李小平.喷灌系统水量分布均匀度研究[D].武汉大学博士学位论文,2005
    [46]李英能,李久生,郭志新等.节能异形喷嘴水力性能的研究及其研制[J].灌溉排水,1990,(3):43-50
    [47]韩文霆.变量喷洒可控域精确灌溉喷头及喷灌技术研究[D].西北农林科技大学博士学位论文.2003
    [48]冯浩,汪有科,吴普特等.非圆形喷洒域喷头[P].中国专利:01265799,2001
    [49]李红,谢福祺,郎涛等.全射流喷头的研究现状及发展趋势[J].中国农村水利水电,2004,(3):90-92
    [50]成都科技大学.LSP-40型流控步进式射流喷头的研制[J].节水灌溉,1984(2):18-19
    [51]黄志斌.超位差单反馈射流喷头元件的设计与机理[J].农业机械学报,1984,(2):45-51
    [52]黄志斌.PSZ型自反馈式射流喷头的研究[J].江苏大学学报(自然科学版),1981,(2):28-31
    [53]黄志斌,张世芳.自反馈式射流喷头的设计[J].江苏大学学报(自然科学版),1985,(2):35-38
    [54]康绍忠.2020年的中国农业水土工程科学技术[N].中国农业水问题研究中心,2004-04
    [55]李英能.我们节水农业技术的新进展和对今后发展的探讨[R].中国灌溉排水发展中心.2004-5
    [56]刘贤赵,康绍忠.我们节水型农业技术的发展方向[J].中国人口·资源与环境,2001,(2):73-76
    [57]吴景社,李久生,李英能等.21世纪节水农业中的高新技术重点研究领域[J].农业工程学报,2000,(1):9-13
    [58)康绍忠,蔡焕杰,冯绍元.现代农业与生态节水的技术创新与未来研究重点[J].农业工程学报,2004,(1):1-6
    [59]李久生,康国义,黄修桥等.喷灌系统关键设备研制与产业化进展[EB/OL].[2006-07-20]
    [60]王景雷,吴景社,齐学斌等.节水灌溉评价研究进展[J].水科学进展,2002,(4):521-525
    [61]朱兴业,袁寿其,李红等.全射流喷头产业化开发中的问题及其改进.排灌机械2006,(6):P24-27
    [62]JB/T7867-1997,《旋转式喷头》[S]
    [63]GBJ85-85],《喷灌工程技术规范》[S]
    [64]严海军,金宏智.圆形喷灌机非旋转喷头流量系数的研究[J].灌溉排水学报,2004,(2):55-58
    [65]郄志红,练继建,吴鑫淼等.喷灌水量分布的遗传神经网络模拟与组合均匀度计算[J].灌溉排水学报,2003,(3):61-63
    [66]门宝辉,梁川.喷头水力性能评价的属性识别模型及应用[J].节水灌溉,2002,(5):5-6
    [67]刘海军,康跃虎.喷灌动能对土壤入渗和地表径流影响的研究进展[J].灌溉排水,2002,(2).71-74
    [68]Tarjuelo,J.M.,Montero,J.,Carrion,P.A.Irrigation uniformity with medium size sprinklers.Part Ⅱ:influence of wind and other factors on water distribution.Transactions of the ASAE,Trans ASAE v 42 Jun1999 p 677-689
    [69]Bdggs,Brian K.,Fomstrom,K.James,Pochop,Larry.Design and maintenance factors affecting application uniformity of low pressure center-pivot irrigation systems.Irdg Drain Say Threatened Resour Search Solutions Proc Irdg Drain Ses Water Forum 92.p 257-262
    [70]许炳华,曹万健,郭荣良.中灌ZPY组合式长喷管金属摇臂喷头的设计特点和性能[J].喷灌技术,1994,(2):53-54
    [71]谢福琪,李红,汤跃等.全射流喷头[P].中国专利:ZL03222424.9,2004
    [72]Li Hong.Research on a New Kind of Fluidic Sprinkler[J].2004 CIGR International Conference,Beijing
    [73]朱兴业,袁寿其,李红等.对PSF30型全射流喷头的分析[J],节水灌溉2005,(6):17-19
    [74]朱兴业,袁寿其,李红等.全射流喷头的原理及实验研究[J],排灌机械2005,(2):23-26
    [75]李红,袁寿其,谢福琪等.隙控式全射流喷头性能特点及与摇臂式喷头的比较研究[J],农业工程学报2006(5):82-85
    [76]袁寿其,李红,汤跃等.PXH隙控式全射流喷头理论、设计方法及产品研制[R].江苏省科技厅鉴定材料,2005
    [77]袁寿其,王庆安,蓝新民等.新型喷滴灌系统的研制及产业化开发[R].国家高技术研究(863)项目鉴定资料,2005
    [78]李红,袁寿其,谢福琪等.自吸式射流喷头反向装置[P].中国发明专利:200410066136.9,2004
    [79]余常昭.紊动射流[M].北京:高等教育出版社,1993
    [80]原田正一,尾崎省太郎(陆润林、郭荣译).射流工程学[M].科学出版社.1977
    [81]C.Bourque,B.G.,Newman.Reattachment of a Two-dimensional Incompressible Jet to Adjacent Flat Plate[J],The Aeronautical Quarterly,Vol.11,1960
    [82]平浚.射流理论基础及应用[M].北京:宇航出版社.1995
    [83]R.A.Sawyer.The Flow due to a Two-dimensional Jet Issuing Parallel to a Flat Plate[J].J.of Fluid Mechanics,Vol.9,1960
    [84]社河内 敏彦.喷流工学-基础上应用[M].日本:森北出版株式会社,2004
    [85]罗惕乾,流体力学[M](第二版).北京:机械工业出版社,2003
    [86]薛胜雄.高压水射流技术工程[M].合肥:合肥工业大学出版社,2006
    [87]薛胜雄.高压水射流技术与应用IM].北京:机械工业出版社,1998
    [88]陈庆光,徐忠,张永建.湍流冲击射流流动与传热的数值研究进展[J].力学进展,2002,(1):92-108
    [89]王晓敏等译.高压水射流技术译文集[M].煤炭工业出版社1982
    [90]卢晓江,何迎春,赖维编.高压水射流清洗技术及应用[M].北京.化学工业出版社2006
    [91]J.Hoch.L.M.Jiji.Two-dimensional turbulent offset jet boundary interaction.Journal of Fluids Engineering[J].1981,103.154-161
    [92]J.R.R.Pelfrey,J.A.Liburdy.Mean flow characteristics of a turbulent offset jet[J].Journal of Fluids Engineering,108(1985)82-88
    [93]Alain Triboix,Danisl Marchal.Stability analysis of the mechanism of jet attachment to walls[J].International Journal of Heat and Mass Tranfer 45(2002)2769-2775
    [94]Heung Bok Song,Soon Hyun Yoon,Dae Hee Lee.Flow and heat transfer characteristics of a two-dimensional oblique wall attaching offset jet[J].International Journal of Heat and Mass Transfer,43(2002) 2395-2404
    [95]DAE SEONG K/M,SOON HYUN YOON,DAE HEE LEE.Flow and heat transfer measurements of a wall attaching offset jet[J].International Journal of Heat Mass Transfer,1996,39(14):2907-2913
    [96]J.T.Holland,J.A.Liburdy.Measurements of the thermal characteristics of heated offset jets [J].International Journal of Heat Mass Transfer,1990,(1):69-78
    [97]Zhou Mingde.Some recent progress in studies on active control of wall-jet flows[J].Transactions of Nanjing University of Aeronautics,1994,(2):119-131
    [98]熊青山,王小建,秦亮,等.深宽比、控制道对射流切换性能影响的试验研究[J].凿岩机械气动工具,2005,(4):20-24
    [99]廖振方,邓晓刚,李军.涡腔式自激振荡射流喷洒装置[J].重庆大学学报,2002,(12):1-3
    [100]熊青山,王小建,秦亮,等.深宽比、控制道对射流切换性能影响的试验研究[J].凿岩机械气动工具,2005,(4):20-24
    [101]李刚,杨敏,黄儒钦.隧道施工环境中有限空间附臂射流的试验研究[J].西南交通大学学报,2000,(2):138-140
    [102]余常照,李春华.圆形断面自由湍动射流卷吸的实验研究[J].气动实验与测量控制,1996,(1):31-38
    [103]娄德仓,吕盘明.关于自由射流计算的两点考虑[J].工程热物理学报,2005,26(增刊):53-56
    [104]董志勇编著.射流力学[M].北京:科学出版社,2005
    [105]陶文铨.数值传热学[M](第2版).西安交通大学出版社,2004
    [106]章梓雄,董曾南.粘性流体力学[M].清华大学出版社,1999
    [107]周瑞章,俞丽和.控制流道下双稳元件中的射流附壁点位置的研究.力学季刊,1981,(1):28-33
    [108]彭见曙.利用激光多普勒测速仪(LDV)测量科安达流的附壁点位置[J].北京工业大学学报,1984(2):53-59
    [109]林永,张乐强.Visual Basic 610用户编程手册[M].北京:人民邮电出版社,1999
    [110]张宏林.Visual Basic 610编程实例[M].北京:人民邮电出版社,1999
    [111]李红,陈超,任志远等.全射流喷头水力尺寸对运转可靠性的影响[J].中国农村水利水电,2007(1):22-24
    [112]袁寿其,朱兴业,李红等.全射流喷头重要结构参数对水力性能的影响[J].农业工程学报2006(10):113-116
    [113]任志远.隙控式全射流喷头设计及试验研究[D].江苏大学硕士学位论文,2005
    [114]朱兴业.全射流喷头内部流场数值模拟[D].江苏大学硕士学位论文,2005
    [115]熊青山,王小建,秦亮,等.深宽比、控制道对射流切换性能影响的试验研究[J].凿岩机械气动工具,2005,(4):20-24
    [116]廖振方,邓晓刚,李军.涡腔式自激振荡射流喷洒装置[J].重庆大学学报,2002,(12):1-3
    [117]栾军编著.现代试验设计优化方法[M].上海:上海交通大学出版社,1995
    [118]任露泉.试验优化设计与分析[M].北京:高等教育出版社,2003
    [119]王广智,罗金耀,燕在华.喷微灌灌水技术特性参数研究[J].节水灌溉.1994,(4):20-22
    [120]汤跃,袁寿其,李红等.喷灌喷头水量分布特性自动测试系统[J].农业机械学报2006(6): 69-72
    [121]汤跃,袁寿其,李红等.基于分布式总线的喷头水量分布的自动测量[J].农业工程学报2006(4):112-115
    [122]侯素娟.喷头微机测试系统的研究[J].排灌机械,1995,(2):30-33
    [123]王也仿.可编程控制器应用技术[M].北京:机械工业出版社,2004
    [124]Dawit Zerihum,Zhi Wang,Suman Ritual,et al.Analysis of surfance irrigation performance terms and indices[J].Agricultural water Management 1997,34:25-46
    [125]U.S.Dept.of Agriculture.Methods for evaluation irrigation systems[R].US Government printing Office,1969
    [126]Charles M Burt,Robert Ewalker,Stuart Wstyles.Irrigation system evaluation manual[M].California Dept.of Water Resources and Dept.of Agriculture Eng,June,1988
    [127]John D.Valiantzas.Hydraulic Analysis and OptimumDesign of Multidiameter Irrigation Laterals[J].Journal of Irrigation and Drainage Engineering,2002,3/4:78-86
    [128]Darrell W.DeBoer.Drop and Energy Characteristics of a Rotating Spray-Plate Sprinkler[J].Journal of Irrigation and Drainage Engineering,2002,6:137-146
    [129]罗金耀,陈大雕,等.节水灌溉综合评价理论与模型应用研究[J].节水灌溉,1998,(5):1-5
    [130]罗金耀,陈大雕,等.节水灌溉工程模糊综合评价研究[J].灌溉排水,1998,(2):16-21
    [131]周世峰.喷灌工程学[M].北京:北京工业大学出版社.2004
    [132]李久生.喷洒水滴分布的数学模型研究[J].水利学报,1991,(3):48-55
    [133]李久生.评水滴直径的测试方法[M].喷洒水滴分布规律及喷头雾化状况的研究,1991
    [134]徐向舟,张红武,朱明东.雨滴粒径的测量方法及其改进研究[J].中国水土保持,2004,(2):22-25
    [135]高昌珍,王治国,侯新明,等.滤纸法新雨滴取样器的试验研究[J].中国水土保持科学,2003,1(1):99-102
    [136]李红,任志远,袁寿其等,喷头喷洒雨滴粒径试验改进研究[J].农业机械学报2005,(10):50-53
    [137]李红,任志远,袁寿其等.高度对色斑法测量雨滴粒径影响的试验研究[J].中国农村水利水电.2006(1):16-17,19
    [138]陈振宇,高志强,苗果园,等.ZY-2型喷头水力性能及喷头组合试验[J].山西农业科学,1999,(2):41-46
    [139]项可风,吴启光编著.试验设计与数据分析[M].上海:上海科学技术出版社,1989
    [140]吴翊编著.应用数理统计[M].北京:国防科技大学出版,1998
    [141]李红,袁寿其,谢福琪等.隙控式全射流喷头性能特点及与摇臂式喷头的比较研究[J].农业工程学报2006(5):82-85
    [142]李红,袁寿其,谢福褀等.自循环式喷头耐磨损试验装置[P].中国发明专利,200510039177.3
    [143]李红,任志远,谢福琪等.全射流喷头的磨损试验[J].农业机械学报,2006(12):94-97
    [144]李英能,黄修挢,刘新民等.常用喷头对喷灌水源含沙量要求的试验研究[J].节水灌溉,1991(2):10-17
    [145]Pieter Wesseling.Principles of computational fluid dynamics[M].北京:科学出版社,2006
    [146]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000
    [147]王福军.计算流体动力学分析-CFD软件应用原理与应用[M].北京:清华大学出版社,2004
    [148)韩占忠,王敬,兰小平.流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004
    [149]赵清华,梁玉祥.轴对称射流研究进展[J].四川化工与腐蚀控制,2003,(3):43-46
    [150]陈庆光,徐忠,张永建.轴对称湍流冲击射流场的数值预测[J].动力工程,2002,(6):2015-2019
    [151]陈庆光,徐忠,张永建.两种差分格式和两种湍流模型在轴对称冲击射流数值计算中的比较[J].空气动力学学报,2003,(1):82-89
    [152]陈庆光,徐忠,张永建.湍流冲击射流流动与传热的数值研究进展[J].力学进展,2002,(1):92-108
    [153]李根生,宋剑,双射流流动特性数值模拟和PIV实验研究[J].自然科学进展,2004,(2):1464-1468
    [154]杨中华,槐文信.采用RNG紊流模型计算静止环境中圆形负浮力射流[J].水科学进展,2004.(6):760-764
    [155]M.Burger,G.Klose,G.Rottenkolber.A combined eulerian and lagrangian method for prediction of evaporating sprays[R].2001,AEME Design Engineering Technical Conferences
    [156]Pratik Bhattacharjee,Eric Loth.Simulations of laminar and transitional cold wall jets[J].International Journal of Heat and Fluid Flow,25(2004) 32-43
    [157]Gu,Ruochuan.Modeling two-dimensional turbulent offset jets[J].Journal of Hydraulic Engineering,v 122,n 11,Nov,1996,p 617-623
    [158]Uwe Reisch,Rosemarie Meuer.CFD-simulation of the flow through a fluidic element[J].Aerosp.Sci.Technol.4(2000) 111-123
    [159]Marie-Francoise Scibilia.Variation of transition characteristics in a wall jet[J].Journal of Thermal Science,2003,12(2):167-170
    [160]Pratik Bhattacharjee,Eric Loth.Simulations of laminar and transitional cold wall jets[J].International Journal of Heat and Fluid Flow,25(2004) 32-43
    [161]Kanna,P.Rajesh.Numericalsimulation of two-dimensional laminar incompressible offset jet flows[J].International Journal for Numerical Methods in Fluids,v 49,n 4,Oct 10,2005,p 439-464
    [162]冀晓辉,刘伟.静止式气波制冷机流场的数值模拟[J].流体机械,2005,(2):62-65
    [163]胥海伦,陈海焱,毕海权.基于康达效应的超微粉气流分级数值模拟研究[J].西南科技大学学报,2005,(1):42-45
    [164]Anantharamaiah,N.,Vahedi Tafreshi,H.;Pourdeyhimi,B.Numerical simulation of the formation of constricted waterjets in hydroentangling nozzles - effects of nozzle geometry[J].Chemical Engineering Research & Design,v 84,nA3,March 2006:231-238
    [165]袁寿其,朱兴业,李红等.全射流喷头内部流场计算流体动力学数值模拟[J].农业机械学报,2005,(10):46-49
    [166]徐勇,杨树兴,莫波.射流元件控制通道的三维数值模拟[J].计算力学学报,2002,(2):31-35
    [167]H.M.Lubcke,Th.Rung,F.Thiele.Prediction of the spreading mechanism of 3D turbulent wall jets with explicit Reynolds-stress closures[J].International Journal of Heat and Fluid Flow,24(2003) 434-443
    [168]C.W.Hirt,B.D.Nichols:J.Comput.Phys.39,201(1981)
    [169]李志勤,李洪,李嘉等.溢流丁坝附近水面的实验研究与数值模拟[J].水利学报2003,(8):53-57
    [170]王晓松,陈璧宏.尾水河道冲击射流数值模拟研究[J].大连理工大学学报,2000,(1):106-108
    [171]罗永钦,刁明军,邓军等.闸孔出流水气二相流三维数值模拟[J].西南民族大学学报(自然科学版),2006,(3):600-604
    [172]D.L.Youngs:'Tune-dependent Multi-material Flow with Large Fluid Distortion'.In:Numerical Methods for Fluid Dynamics,ed.By K.W.Morton,M.J.Baines(Academic,New York 1982) p:273
    [173]R.I.Issa.Solution ofthe implicitly discredited fluid flow equations by operator-splitting[J].J.Comput.Phys.,1986,62:40-65
    [174]R.I.Issa,A.D.Gosman,P.Watkins:J.Comput.Phys.93,388(1991)
    [175]Leschziner M.A.&Rodi W.Calculation of Annular and Twin Paraller Jets Using Various Discretization Schems and Turbulence-model Variations[J].J.Fluids Eng.,1981(103):352-360
    [176]W.Rodi,Turbulence models and their applications in hydraulics-A state of the art review,IAHR,delft,The Netherlands,1980
    [177]H.K.Versteeg,W.Malalasekera,An Introduction to Computational Fluid Dynamics:The Finite Volume Method[M].Wiley,New York,1995
    [178]Mo Bo,Yang Cai-xia.Method of testing of dynamic forces on digital jet elements[J].Journal of Beijing Institute of Technology,2002,11(4):393-396
    [179]Yao Xiao-xian,Mo Bo,Li Heng-biao.Design of the testing system for jet elements[J].Journal of Beijing Institute of Technology,2002,11(3):225-228

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700