儿童额顶叶工作记忆功能的fMRI和DTI联合应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分正常儿童额顶叶工作记忆功能的fMRI和DTI联合应用研究
     目的:联合应用BOLD—fMRI和DTI两种最新的磁共振成像技术,定位正常儿童工作记忆功能中额顶叶皮层的激活区域,并用量化的指标研究其激活强度与额顶叶各部位白质纤维束弥散特性之间的关系。
     材料与方法:健康志愿者12名,男女各6名,平均年龄11.4岁。以步进式视觉累加实验(PVSAT)作为刺激模式,对所有儿童进行BOLD—fMRI扫描,并以相同的定位及层厚进行DTI扫描。应用SPM2软件处理fMRI数据获得平均激活图,并用xjview软件获得每个激活区的解剖部位和激活像素数量。将DTI数据重建得到FA图,应用MRIcro软件将其与BOLD功能激活图叠加。在叠加图上选取左额顶白质兴趣区(ROI),应用DTV-Ⅱ.R1软件测量每个ROI的FA值。比较左侧额顶叶白质FA值与激活区FA值之间的大小。并对左侧额顶叶不同部位FA值与左前额叶背侧区(DLPFC)激活区像素数量的相关性进行统计学分析。
     结果:(1)额顶叶皮层为工作记忆功能最主要的激活区。其中双侧的顶下小叶区(BA40区),额下回(BA44及45区)可见激活,而优势半球(左侧)较对侧激活区大、像素多。左侧顶上小叶(BA7区),左侧扣带回(BA32区)左侧额上回、额中回、额下回(BA6、BA46、47区及BA9区)、左侧岛叶(BA13区)及右侧豆状核可见激活。(2)将脑激活图叠加于FA图,可见脑的激活像素几乎均位于各向异性程度低的区域。额顶叶白质FA值明显大于激活区域的FA值,差异有显著统计学意义(P<0.001)。(3)左额顶间白质FA值与左侧DLPFC激活区像素数量存在相关性(r=0.822,p=0.001),而左顶叶白质、左额叶白质及左侧半卵圆中心白质与左侧额上回激活区像素数量未见相关性。
     结论:工作记忆激活的BLOD信号主要位于额顶叶各向异性程度低的灰质皮层,其激活强度与皮层下的白质纤维成熟度有关。联合应用fMRI和DTI技术有助于研究工作记忆过程中的功能变化与解剖结构特性之间的关系。
     第二部分正常儿童与成人额顶叶工作记忆功能差异性的fMRI和DTI联合应用研究
     目的:联合应用BOLD—fMRI和DTI两种最新的磁共振成像技术,对比正常儿童与成人额顶叶工作记忆功能激活皮层部位及强度的差异,及其与额顶叶间白质纤维束成熟度的相关性。
     材料与方法:儿童组健康志愿者12名,男女各6名,平均年龄11.4岁;成人组健康志愿者12名,男女各6名,平均年龄22.4岁。以步进式视觉累加实验(PVSAT)作为刺激模式,对所有试验者进行BOLD—fMRI扫描,并以相同的定位及层厚进行DTI扫描。应用SPM2软件处理fMRI数据获得平均激活图,并用xjview软件获得每个激活区的解剖部位和激活像素数量。将DTI数据重建得到FA图,应用MRIcro软件将其与BOLD功能激活图叠加。在叠加图上选取左额顶白质兴趣区(ROI),应用DTV-Ⅱ.R1软件测量每个ROI的FA值。比较儿童组与成人组额顶叶工作记忆功能激活皮层部位及强度的差异;比较两组白质各兴趣区的FA值;并对左侧额顶叶不同部位FA值与左前额叶背侧区(DLPFC)激活区像素数量的相关性进行统计学分析。
     结果:(1)儿童组在顶叶,包括双侧的顶下小叶区(BA40区)及左侧顶上小叶(BA7区),激活较成人组更为显著。而在双侧额下回(BA44区),左侧额上回、额中回、额下回(BA6、BA46及BA9区)及右侧额上回(BA10区)、成人组激活较儿童组显著。差异具有统计学意义。(2)左额顶间白质、左顶叶白质及左额叶白质的FA值在儿童组均低于成人组,差异具有统计学意义。(3)儿童组左额顶间白质FA值与左侧DLPFC激活区像素数量存在相关性(r=0.822,p=0.001),而成人组两者较儿童组都有增高现象但未见相关性(r=0.186,p=0.563)。
     结论:额顶叶在儿童和成人都是工作记忆功能的主要激活区,其激活强度与皮层下的白质纤维成熟度有关。联合应用fMRI和DTI技术有助于研究脑的正常发育中结构与功能的相关性。
     第三部分学习障碍儿童额顶叶工作记忆功能的fMRI和DTI联合应用研究
     目的:联合应用BOLD—fMRI和DTI两种最新的磁共振成像技术,对比分析学习障碍(LD)儿童与正常儿童在进行工作记忆过程时额顶叶脑部激活区域强度以及白质纤维发育的差异,探索学习障碍的病因。
     材料与方法:LD儿童12名,男女各6名,配对选取与其同年龄、同性别的正常儿童作为对照组。以步进式视觉累加实验(PVSAT)作为刺激模式,对所有试验者进行BOLD—fMRI扫描,并以相同的定位及层厚进行DTI扫描。应用SPM2软件处理fMRI数据获得平均激活图,并用xjview软件获得每个激活区的解剖部位和激活像素数量。将DTI数据重建得到FA图,应用MRIcro软件将其与BOLD功能激活图叠加。在叠加图上选取左额顶白质兴趣区(ROI),应用DTV-Ⅱ.R1软件测量每个ROI的FA值。比较LD儿童组与对照组额顶叶工作记忆功能激活皮层部位及强度的差异;比较两组白质各兴趣区的FA值;并对左侧额顶叶不同部位FA值与左前额叶背侧区(DLPFC)激活区像素数量的相关性进行统计学分析。
     结果:(1)LD儿童组双侧额顶叶几乎所有区域激活较正常儿童组弱。差异具有统计学意义。(2)LD儿童组左额顶间白质、左顶叶白质及左额叶白质的FA值低于对照组,差异具有统计学意义。而左侧半卵圆中心白质的FA值LD组与对照组差异不具有统计学意义。(3)对照组儿童左DLPFC区激活像素数量与左额顶间白质FA值存在相关性(r=0.822,p=0.001),LD儿童组左DLPFC区激活像素数量与左额顶间白质FA值存在相关性(r=0.636,p=0.026)。
     结论:LD儿童额顶叶皮层激活及白质FA值均低于对照组,提示局部脑结构成熟度较低可能是其发病机理。
PartⅠCombined study of fMRI and DTI for working memory of normal children in fronto-parietal lobe
     Objective:To explore whether there is relation between brain activity of working memory and anisotropy of the fronto-parietal white matter in children by combining fMRI and DTI.
     Material and methods:Twelve healthy children aged 10-12 years were investigated. Brain activity of working memory was measured using the blood oxygen level-dependent (BOLD) contrast with functional magnetic resonance imaging(fMRI) during performance of paced visual serial addition test(PVSAT).The group studies were analyzed using SPM2. White matter was investigated using diffusion tensor imaging(DTI) and fractional anisotropy(FA) was calculated with the software of DTV-Ⅱ.The activity map were overlaid upon FA maps.The relation between BOLD response and FA values in frontoparietal lobe were statistically analyzed.
     Result:The fronto-parietal cortex is mainly region activated by a working memory task,including inferior parietal lobe bilaterally,the inferior frontal gyrus bilaterally,the left superior frontal gyrus,the left medial frontal gyrus and the anterior part of the cingulate gyrus.Overlay of fMRI maps upon FA maps revealed that activated voxels were almost exclusively in regions of low anisotropy.The correlation was found between FA values in fronto-parietal white matter and BOLD response in the dorsolateral prefrontal cortex(DLPFC).
     Conclusion:BOLD response occurs within the relatively isotropic cortical grey matter and correlated with the maturation of white matter.The combination of both techniques can help to demonstrate the relation working memory function and anatomic structure.
     PartⅡCombined study of fMRI and DTI for working memory of children and adults in fronto-parietal lobe
     Objective:To explore whether there is developmental differences between children and adults in brain activity of working memory and anisotropy of the fronto-parietal white matter by combining fMRI and DTI.
     Material and methods:Twelve healthy children aged 10-12 years and twelve healthy adults aged 21-24 years were investigated.Brain activity of working memory was measured using the blood oxygen level-dependent(BOLD) contrast with functional magnetic resonance imaging(fMRI) during performance of paced visual serial addition test(PVSAT). The group studies were analyzed using SPM2.White matter was investigated using diffusion tensor imaging(DTI) and fractional anisotropy(FA) was calculated with the software of DTV-Ⅱ.The activity map were overlaid upon FA maps.The relation between BOLD response and FA values in fronto-parietal lobe were statistically analyzed.
     Result:Children activeated more voxels than adults in parietal lobe bilaterally and less in frontal lobe bilaterally.The FA values in fronto-parietal white matter in adult were higher than these in children.The correlation was found between FA values in frontoparietal white matter and BOLD response in the dorsolateral prefrontal cortex(DLPFC) in children and no correlation in adult.
     Conclusion:BOLD response was correlated with the maturation of white matter.The combination of both techniques can help to demonstrate the relation working memory function and anatomic structure during development.
     PartⅢCombined study of fMRI and DTI for working memory of children with learning disorders in fronto-parietal lobe
     Obj ective:To examine brain activity of working memory and anisotropy of the frontoparietal white matter in children with learning disorders(LD) by combining fMRI and DTI.
     Material and methods:Twelve children with LD aged 10-12 years and twelve matched children as normal control were investigated.Brain activity of working memory was measured using the blood oxygen level-dependent(BOLD) contrast with functional magnetic resonance imaging(fMRI) during performance of paced visual serial addition test(PVSAT).The group studies were analyzed using SPM2.White matter was investigated using diffusion tensor imaging(DTI) and fractional anisotropy(FA) was calculated with the software of DTV-Ⅱ.The activity map were overlaid upon FA maps.The relation between BOLD response and FA values in fronto-parietal lobe were statistically analyzed.
     Result:Children with LD showed weaker activation in almost the entire frontoparietal lobe than matched children..The FA values in fronto-parietal white matter in children with LD were lower.The correlation was found between FA values in frontoparietal white matter and BOLD response in the dorsolateral prefrontal cortex(DLPFC) both in two groups.
     Conclusion:The weaker BOLD response of children with LD was possibly associated with the lower maturation of white matter in fronto-parietal lobe.
引文
1.Baddeley A.Working memory and language:an overview.J Commum Disord,2003,36(3):189-208.
    2.D' Esposito M,Detre JA,Alsop De.The neural basis of the central executive system of working memory.Nature,1995,378(6554):279-281.
    3.Baddeley A.Hitch GJ.Working memory.Recent advances in learning and motivation,1974,8(1):47-90.
    4.Baddeley A.The central executive:a concept and some misconception.J Int Neuropsychol Soc,1998,4(5):523-526.
    5.Baddeley A.The episodic buffer:a new component of working memory?Trends in Congnitive Sciences,2000,4(11):417-423.
    6.Cabeza,R,Nyberg L.Imaging cognition Ⅱ:an empirical review of 275PET and fMRI studies.J Cogn Neurosci,2000,12(1):1-47.
    7.卢又燃,耿道颖。工作记忆的功能磁共振研究进展。国外医学临床放射学分册,2005,28(4):222-225
    8.Diamond BJ,DeLuca J,Kim H,et al.The question of disproportionate impairments in visual and auditory information processing in multiple sclerosis.J Clin Exp Nouropsyschol 1997;19:34-42.
    9. Fernandez-Duque D, Posner MI. Brain imaging of attentional networks in normal and pathological states. J Clin Exp Neuropsychol 2001; 23(1):74-93.
    
    10. Newman SD, Just MA, Carpenter PA. The synchronization of the human cortical working memory network. Neurolmage, 2002, 15 (4):810-822.
    
    11. Honey GD, Bullmore ET, Sharma T. Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation. Neurolmage, 2000, 12(5);495-503.
    
    12. D' Esposito M, Postle BR, Rypma B. The role of lateral prefrontal cortex in working memory: evidence from eventrelated fMRI studies. International Congress Series, 2002, 1232(1):21-27.
    
    13. Ungerleider LG, Haxby JV. What and where in the human brain. Curr Opin Neurobiol, 1994, 4(2) : 157-165.
    
    14. Sala JB, Rama R, Courtney SM. Functional topography of a distributed neural system for spatial and nonspatial information maintenance in working memory. Neuropsychologia, 2003, 41 (2):341-356.
    
    15. Milham MP. Attentional control in the aging brain: insights from an stroop task. Brain Cogn, 2002, 49(3): 277-296.
    
    16. Prabhakaran V, Narayranan K, Zhao Z, et al. Intergration of diverse information in working memory within in the fronal lobe. Nat Neurosci,2000, 3 (1):85-90.
    
    17. Petrides M. Functional organization of the human frontal cortex for mnemonic processing: evidence from neuroimaging studies. Ann N Y Acad Sci, 1995, 769: 85-96.
    
    18. Barch DM, Braver TS, Nystrom LE, et al. Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia,1997, 35(10): 1373-1380.
    19. Heekeren HR, Marrett S, Bandettini PA, et al. A general mechanism for perceptual decision-making in the human brain. Nature, 2004, 431:859- 62.
    
    20. Thomas KM, King SW, Franzen PL, et al. A developmental functional MRI study of spatial working memory. Neuroimage, 1999, 10(3pal): 327-338.
    
    21. Beaulieu C. The basis of anisotropic water diffusion in the nervous system-a technical review. NMR Biomed 2002, 15: 435-455.
    
    22. Menon R, OgawaS, Hu S, et al. BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: Echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn. Reson. Med 1995, 33: 453-459.
    
    23. Werring DJ, Clark CA, Parker GJM, et al. A direct demonstration of both structure and function in the visual system: combining diffusion tensor imaging with functional magnetic resonance imaging. Neuroimage 1999, 9: 352-361.
    
    24. Friston, KJ, Holmes AP, Poline JB, et al. Analysis of fMRI time-series revisited. Neuroimage 1995, 2: 45- 53.
    
    25. Logothetis NK, Pauls J, Augath M, et al. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001,412:150-157.
    
    26. Toosy AT, Ciccarelli 0, Parker GJM, et al. Characterizing function- structure relationships in the human visual system with functional MRI and diffusion tensor imaging. Neuroimage 2004, 21: 1452 -1463.
    
    27. Olesen PJ, Nagy Z, Westerberg H, et al. Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network. Cognitive Brain Research 2003, 18: 48-57.
    
    28. Demerens C, Stankoff B, Logak M. , et al. Induction of myelination in the central nervous system by electrical activity. Proc. Natl. Acad. Sci. U. S. A. 1996, 93: 9887 - 9892.
    
    29. Stevens B, Porta S, Haak LL, et al. Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 2002, 36: 855 - 868.
    
    30. Stevens B, Tanner S, Fields RD, Control of myelinationby specific patterns of neural impulses. J. Neurosci. 1998,18: 9303 - 9311.
    1. Martin E, Marcar VL. Functional MR Imaging in Pediatrics, MRI Clinics of North America .2001, 9 (1): 231-246
    
    2. Ciesielski KT, Harris RJ, Cofer LF. Posterior brain pattern of ERPs related to the go/no-go task in children. Psychophysiology 2004a, 41: 882 - 892.
    
    3. Johnson MH, Mareschal D, Csibra G. The functional development and integration of the dorsal and ventral visual pathways: a neurocomputational approach. Handbook of Developmental Cognitive Neuroscience. MIT Press. 2001.
    
    4. Casey BJ, Thomas KM, Davidson MC, et al. Dissociating striate and hippocampus function developmentally with astimulus - response compatibility task. J Neurosci, 2002,22(19): 8647-8652.
    
    5. Nelson CA, Monk CS, Lin J, et al. Functional neuroanatomy of spatialworking memory in children. Dev Psychol, 2000, 36 (1): 109-116.
    
    6. Thomas KM, King SW, Franzen PL, et al. A developmental functional MRI study of spatial working memory. NeuroImage 1999,10,327 - 338.
    
    7. Gaillard DW, Sachs BC, Whitnah JR, et al. Developmental aspects of language processing:fMRI of verbal fluency in children and adults. Hum Brain Mapp, 2003, 18 (3):176 - 185.
    
    8. Klingberg T, Fossberg H, Westerberg H .Increased brain activity infrontal and parietal cortex underlies the development of visuospatialworking memory capacity during childhood. J Cogn Neurosci. 2002, 14(1):1-10.
    9. Olesen PJ, Nagy Z, Westerberg H, et al. Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto - parietal network. Cognitive Brain Research 2003, 18: 48-57.
    
    10. Takahashi T, Shirane R, Sato S, et al. Developmental Changes of Cerebral Blood Flow and Oxygen Metabolism in Chidren. AJNR 1999,20 (5) :917-922
    
    11. Brody BA, Kinney HC, Kloman AS, et al . Sequence of Central Nervous System Myelination in Human Infancy. J Neuropathol Exp Neurol 1987,46 (3) :283-301
    
    12. Rabinowicz T, de Courten-Myers GM, Petetot JM, et al. Human Cortex Development:Estimates of Neuronal Numbers Indicate Major Loss Late During Gestation. J Neuropathol Exp Neurol 1996, 55 (3) :320-328
    
    13. Van Der Veer R, Valsiner J. Understanding Vygotsky: A Quest for Synthesis. Blackwell, Oxford UK. Cambridge, USA. 1993.
    
    14. Rubia K, Overmeyer S, Taylor E, et al. Functional frontalisation with age: mapping neurodevelopmental trajectories with fMRI. Neurosci Biobehav Rev. 2000,24:13-19.
    
    15. Shmuelof L, Zohary E, et al. Dissociation between ventral and dorsalfMRI activation during object and action recognition. Neuron 2005,47:457-470
    
    16. Kristina T, Paul G, Robert L. et al. Developmental neural networks in children performinga Categorical N-Back Task. NeuroImage 2006 33 : 980-990
    
    17. Kwon H, Reiss A L, Menon V. Neural basis of protracted developmental changes invisuo-spatial working memory. PNAS 2002 99(20): 13336-13341.
    18. Poldrack RA. , Wagner AD, Prull MW, et al. Functional specialization for semantic andphonological processing in the left inferior prefrontal cortex. NeuroImage 1999 10:15-35.
    
    19. Gaillard WD, Balsamo L, Xu B, et al. Language dominance in partialepilepsy patients identified with an fMRI reading task. Neurology2002 59:256-265.
    
    20. Gaillard WD, Balsamo L, Ibrahim Z, et al. fMRI identifies regional specialization of neural networks for reading in young children. Neurology 2003 60:94-99.
    
    21. Staudt M, Grodd W, Niemann G, et al. Early left periventricular brain lesions induce right hemispheric organization of speech. Neurology 2001 57:122- 125.
    
    22. Petrides M. Functional organization of the human frontal cortex for mnemonic processing: evidence from neuroimaging studies. Ann N Y Acad Sci, 1995, 769: 85-96.
    
    23. Barch DM, Braver TS, Nystrom LE, et al. Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia, 1997, 35(10): 1373-1380.
    
    24. Heekeren HR, Marrett S, Bandettini PA, et al. A general mechanism for perceptual decision-making in the human brain. Nature, 2004, 431:859- 62.
    
    25. Duncan J. , Owen A. M. . Common regions of the human frontal loberecruited by diverse cognitive demands. Trends Neurosci. 2000 23: 475 - 483.
    
    26. Schneider JF, Liyasov KA, Hennig J, et al. Fast quantitative diffusion tensor imaging of cerebral white matter from the neonatal period to adolescence. Neuroradiology 2004, 46(4): 258-260.
    27.Peter M,Luxia L,James M.Evaluation of normal age-related changes in anisotropy during infancy and childhood as shown by diffusion tensor imaging.AJR 2002 179 6:1515-1522.
    28.肖江喜 郭雪梅 谢晟 等 应用扩散张量成像对正常儿童脑白质发育的初步研究中华放射学杂志 2005 39(12):1252-1255。
    29.Mukherjee P,Miller JH,Shimony JS,et al.normal brain maturation during childhood:developmental trends characterized with diffusiontensor MR imaging[J].Radiology,2001,221(2):349-358.
    30.Filippi CG,Lin DD,Tsiouris AJ,et al.Diffusion-tensor MR imaging in children with developmental delay:preliminary finding.Radiology,2003,229(I):44-50.
    31.Olesen PJ,Nagy Z,Westerberg H,et al.Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network.Cognitive Brain Research 2003,18:48-57.
    32.Betl MM,Vaidya CJ,gaillard WD:Functional imaging of developmental and adaptive changes in neurocognition.NeuroImage 2006,30:679-691.
    1.Hammill DD.On defining learning disabilities:An emerging consensus.Journal of Learning Disabilities,1990,23(2):74-84
    2.Martin CS,Romig CJ,Ririsci L.DSM-Ⅳ Learning Disorders in 10-to 12-Year-Old Boys With and Without a Parental History of Substance Use Disorders.Prevention Science,2000,1(2):107-113
    3.凌辉.父母养育方式与学习不良儿童行为问题及自我意识的相关研究.中国临床心理学杂志,2004 12(1):50-52
    4.Alloway TP,Susan E.Gathercole SE,et al.A structuralanalysis of working memory and related cognitive skillsin young children.Journal of Experimental Child Psychology,2004,87:85-106
    5.gaddeley A.Working memory and language:an overview.J Commum Disord,2003,36(3):189-208.
    6.Baddeley A.Hitch GJ.Working memory.Recent advances in learning and motivation,1974,8(1):47-90.
    7.Baddeley A.The central executive:a concept and some misconception.J Int Neuropsychol Soc, 1998, 4(5): 523-526.
    
    8. Baddeley A. The episodic buffer: a new component of working memory ? Trends in Congnitive Sciences, 2000, 4(11): 417-423. 10.
    
    9. Wilson KM, Swanson HL. Are mathematics disabilities due to a domain - general or a domain - specific working memory deficit ? Journal of Learning Disabilities, 2001, 34 (3) : 237 -248.
    
    10. De Jong PF. Working memory deficits of reading disabled chil2dren. Journal of Experimental Child Psychology, 1998, 70: 75 - 96.
    
    11. Poblano A, Valadez T, LourdesArias M, et al. Phonological and visuo - spatial working memory alerations in dyslexic children. Archives of Medical Research, 2000, 31: 493 - 496.
    
    12. Swanson H. L, Lee C. A subgroup analysis of workingmemory in children with reading disabilities : Domain - generalor domain - specific deficiency ? Journal of Learning Disabilities, 2001, 34(3):249 - 263.
    
    13. Passolunghi MC , Siegel LS. Short - term memory , workingmemory , and inhibitory control in children with difficulties in arithmetic problem solving. Journal of Experimental Child Psychology, 2001,80: 44-57.
    
    14. Keeler ML , Swanson HL. Does strategy knowledge influenceworking memory in children with mathematical disabilities? Journal of Learning Disabilities, 2001, 34(5) :418 - 434.
    
    15. Geary DC , Hoard MK, Byrd CJ , et al. Strategy choices in simple and complex addition : Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 2004,88:121-151.
    
    16. Bull R , Johnston RS , Roy JA. Exploring the roles of the visual- spatial sketch pad and central executive in children' s arithmetical skills : Views from cognition and developmental neuropsychology. Developmental Neuropsychology, 1999,15: 421-442.
    
    17. Bull R , Scerif G. Executive functioning as a predictor of children' s mathematics ability: Inhibition, switching, and working memory. Developmental Neuropsychology,2001,19(3):273-293.
    18.Passolunghi MC,Cornoldi C,De Liberto S.Working memory andintrusions of irrelevant information in a group of specific poor prob21em solvers.Memory and Cognition,1999,27,779-790.
    19.Swanson HL,Sachse LC.Mathematical problem solvingand working memory in children with learning disabilities:Bothexecutive and phonological processes are important.Journal of Experimental Child Psychology,2001,79:294-321.
    20.静进 王庆雄 陈学彬 等,非言语型学习障碍儿童选择注意功能的神经心理特性 中华儿科杂志 2004 42(9):705-707。
    21.张磊 金真 曾亚伟等 儿童注意缺陷多动障碍的功能磁共振成像研究 中华放射学杂志 2004 38(6):626-630。
    22.Karin K,Thomas L,Thomas D,et al.Impaired neural networks for approximate calculation in dyscalculic children:a functional MRI study Behavioral and Brain Functions 2006,31(2):1-17
    23.Levy LM,Reis IL,Grafman J:Metabolic abnormalities detectedby 1H-MRS in dyscalculia and dysgraphia.Neurology 1999,53:639-641.
    24.Dehaene S,Cohen L.Cerebral pathways for calculation:double dissociation between rote verbal and quantitative knowledge of arithmetic.Cortex,1997,33(2):219-250.
    25.肖江喜 郭雪梅 谢晟 等 应用扩散张量成像对正常儿童脑白质发育的初步研究中华放射学杂志 2005 39(12):1252-1255。
    26.Olesen PJ,Nagy Z,Westerberg H,et al.Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network.Cognitive Brain Research 2003,18:48-57.
    27.Berl MM,Vaidya CJ,Gaillard WD:Functional imaging of developmental and adaptive changes in neurocognition.NeuroImage 2006,30:679-691.
    1.Baddeley A.Working memory and language:an overview.J Commum Disord,2003,36(3):189-208.
    2.D' Esposito M,Detre JA,Alsop De.The neural basis of the central executive system of working memory.Nature,1995,378(6554):279-281.
    3.Baddeley A.Hitch GJ.Working memory.Recent advances in learning and motivation,1974,8(1):47-90.
    4.Baddeley A.The central executive:a concept and some misconception.J Int Neuropsychol Soc,1998,4(5):523-526.
    5.Baddeley A.The episodic buffer:a new component of working memory?Trends in Congnitive Sciences,2000,4(11):417-423.
    6.Cabeza,R,Nyberg L.Imaging cognition Ⅱ:an empirical review of 275 PET and fMRI studies.J Cogn Neurosci,2000,12(1):1-47.
    7.卢又燃,耿道颖。工作记忆的功能磁共振研究进展。国外医学临床放射学分册,2005,28(4):222-225
    8.Diamond BJ,DeLuca J,Rim H,et al.The question of disproportionate impairments in visual and auditory information processing in multiple sclerosis.J Clin Exp Nouropsyschol 1997;19:34-42.
    9.Fornandoz-Duquo D,Posnor MI.Brain imaging of attontional networks in normal and pathological states.J Clin Exp Nouropsychol 2001;23(1):74-93.
    10.Newman SD,Just MA,Carpenter PA.The synchronization of the human cortical working memory network.NouroImago,2002,15(4):810-822.
    11.Honey GD,Bullmoro ET,Sharma T.Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation.NeuroImage,2000,12(5);495-503.
    12.D' Esposito M,Pestle BR,Rypma B.The role of lateral prefrontal cortex in working memory:evidence from eventrelated fMRI studies.International Congress Series,2002,1232(1):21-27.
    13.Wngerleider LG,Haxby JV.What and where in the human brain.Curr Opin Neurobiol,1994,4(2):157-165.
    14.Sala JB,Rama R,Courtney SM.Functional topography of a distributed neural system for spatial and nonspatial information maintenance in working memory.Neuropsychologia,2003,41(2):341-356.
    15.Milham MP.Attentional control in the aging brain:insights from an stroop task.Brain Cogn,2002,49(3):277-296.
    16.Prabhakaran V,Narayranan K,Zhao Z,et al.Intergration of diverse information in working memory within in the fronal lobe.Nat Neurosci,2000,3(1):85-90.
    17. Martin E, Marcar VL. Functional MR Imaging in Pediatrics, MRI Clinics of North America .2001, 9 (1): 231-246
    
    18. Ciesielski KT, Harris RJ, Cofer LF. Posterior brain pattern of ERPs related to the go/no-go task in children. Psychophysiology 2004a, 41: 882 - 892.
    
    19. Johnson MH, Mareschal D, Csibra G. The functional development and integration of the dorsal and ventral visual pathways: a neurocomputational approach. Handbook of Developmental Cognitive Neuroscience. MIT Press. 2001.
    
    20. Takahashi T, Shirane R, Sato S, et al. Developmental Changes of Cerebral Blood Flow and Oxygen Metabolism in Chidren. AJNR 1999,20 (5) :917-922
    
    21. Brody BA, Kinney HC, Kloman AS, et al . Sequence of Central Nervous System Myelination in Human Infancy. J Neuropathol Exp Neurol 1987,46 (3) :283-301
    
    22. Rabinowicz T, de Courten-Myers GM, Petetot JM, et al. Human Cortex Development:Estimates of Neuronal Numbers Indicate Major Loss Late During Gestation. J Neuropathol Exp Neurol 1996, 55 (3) :320-328
    
    23. Van Der Veer R, Valsiner J. Understanding Vygotsky: A Quest for Synthesis. Blackwell, Oxford UK. Cambridge, USA. 1993.
    
    24. Rubia K, Overmeyer S, Taylor E, et al. Functional frontalisation with age: mapping neurodevelopmental trajectories with fMRI. Neurosci Biobehav Rev. 2000,24:13-19.
    
    25. Shmuelof L, Zohary E, et al. Dissociation between ventral and dorsalfMRI activation during object and action recognition. Neuron 2005,47:457-470
    26.Kristina T,Paul G,Robert L.et al.Developmental neural networks in children performinga Categorical N-Back Task.Neuroimage 2006 33:980-990
    27.Kwon H,Reiss A L,Menon V.Neural basis of protracted developmental changes invisuo-spatial working memory.PNAS 2002 99(20):13336-13341.
    28.Thomas KM,King SW,Franzen PL,et al.A developmental functional MRI study of spatial working memory.NeuroImage 1999,10,327-338.
    29.Poldrack RA.,Wagner AD,Prull MW,et al.Functional specialization for semantic andphonological processing in the left inferior prefrontal cortex.NeuroImage 1999 10:15-35.
    30.Gaillard WD,Balsamo L,Xu B,et al.Language dominance in partialepilepsy patients identified with an fMRI reading task.Neurology2002 59:256-265.
    31.Gaillard WD,Balsamo L,Ibrahim Z,et al.fMRI identifies regional specialization of neural networks for reading in young children.Neurology 2003 60:94-99.
    32.Staudt M,Grodd W,Niemann G,et al.Early left periventricular brain lesions induce right hemispheric organization of speech.Neurology 2001 57:122-125.
    33.Hammill DD.On defining learning disabilities:An emerging consensus.Journal of Learning Disabilities,1990,23(2):74-84
    34.Martin CS,Romig CJ,Kirisci L.DSM- Ⅳ Learning Disorders in 10-to 12-Year-Old Boys With and Without a Parental History of Substance Use Disorders.Prevention Science,2000,1(2):107-113
    35.凌辉.父母养育方式与学习不良儿童行为问题及自我意识的相关研究.中国临床心理学杂志,2004 12(1):50-52
    36.Alloway TP,Susan E.Gathercole SE,et al.A structuralanalysis of working memory and related cognitive skillsin young children. Journal of Experimental Child Psychology, 2004, 87:85- 106
    
    37. Wilson KM, Swanson HL. Are mathematics disabilities due to a domain - general or a domain - specific working memory deficit ? Journal of Learning Disabilities, 2001, 34 (3) : 237 -248.
    
    38. De Jong PF. Working memory deficits of reading disabled chil2dren. Journal of Experimental Child Psychology, 1998, 70: 75 - 96.
    
    39. Poblano A, Valadez T, LourdesArias M, et al. Phonological and visuo - spatial working memory alerations in dyslexic children. Archives of Medical Research, 2000, 31: 493 - 496.
    
    40. Swanson H. L, Lee C. A subgroup analysis of workingmemory in children with reading disabilities : Domain - generalor domain - specific deficiency ? Journal of Learning Disabilities, 2001, 34(3):249 - 263.
    
    41. Passolunghi MC , Siegel LS. Short - term memory , workingmemory , and inhibitory control in children with difficulties in arithmetic problem solving. Journal of Experimental Child Psychology, 2001,80: 44-57.
    
    42. Keeler ML , Swanson HL. Does strategy knowledge influenceworking memory in children with mathematical disabilities? Journal of Learning Disabilities, 2001, 34(5) :418 - 434.
    
    43. Geary DC , Hoard MK, Byrd CJ , et al. Strategy choices in simple and complex addition : Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 2004,88:121-151.
    
    44. Bull R , Johnston RS , Roy JA. Exploring the roles of the visual- spatial sketch pad and central executive in children' s arithmetical skills : Views from cognition and developmental neuropsychology. Developmental Neuropsychology, 1999,15: 421-442.
    45. Bull R , Scerif G. Executive functioning as a predictor of children' s mathematics ability: Inhibition, switching, and working memory. Developmental Neuropsychology, 2001,19 (3):273-293.
    
    46. Passolunghi MC, Cornoldi C, De Liberto S. Working memory andintrusions of irrelevant information in a group of specific poor prob21em solvers. Memory and Cognition, 1999, 27, 779-790.
    
    47. Swanson HL, Sachse LC. Mathematical problem solvingand working memory in children with learning disabilities: Bothexecutive and phonological processes are important. Journal ofExperimental Child Psychology, 2001,79:294 - 321.
    [1]Diamond B J,DeLuca J,Kim H,et al.The question of disproportionate impairments in visual and auditory information processing in multiple sclerosis.J Clin Exp Neuropsyschol 1997;19:34-42.
    [2]Lazer on RH,Rombouts SA,de Sonneville L,et al.A paced visual serial addition test for fMRI.J Neurol Sci.2003 Sep 15;213(1-2):29-34.
    [3]Fernandez-Duque D,Posner MI.Brain imaging of attentional networks in normal and pathological states.J Clin Exp Neuropsychol 2001;23(1):74 -93.
    [4]Hanakawa T,Honda M,Okada T,et al.Differential activity in the premotor cortex subdivisions in humans during mental calculation and verbal rehearsal tasks:a functional magnetic resonance imaging study.Neuroscience Letters,2003,347:199
    [5]Fan J,Snodgrass J G,Bilder RM.Functional magnetic resonance imaging of source versus item memory[J].Neuroreport,2003,14(17):2275-2281.
    [6]Burbauda P,Camusb O,Guehl D,et al.Functional magnetic resonance imaging study of mental subtraction in human subjects.Neuroscience Letters,1999,273(3):195-199.
    [7]McDermott KB,Buckner RL,Petersen SE,et al.Set- and code-specific activation in the frontal cortex:an fMRI study of encoding and retrieval of faces and words[J].J Cogn Neurosci,1999,11(6):631-640.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700