结直肠癌中黑色素瘤抗原基因表达及启动子去甲基化状态的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     结直肠癌(coloretal carcinoma,CRC)是世界上常见的消化道恶性肿瘤。在西方经济发达的国家,结直肠癌的死亡率是仅次于肺癌,居第二位;近二十年来,结直肠癌在我国的发病率总体上呈上升趋势,并随着人类环境、饮食结构和生活方式的改变,结直肠癌的发病率还会继续上升,在中国恶性肿瘤中发病率和死亡率居第4~6位。尽管相对于其它肿瘤来说,结直肠癌的发病机制研究的比较深入,诊治技术和方法也有了很大提高,但仍未取得突破性进展,尤其是进展期结直肠癌的五年生存率仍未得到根本性提高。只有10%~15%的病人能获得早期诊断,大部分住院病人已处于进展期,目前治疗方法仍局限于外科手术和放化疗,总的临床疗效不佳。积极开展结直肠癌发生机制的研究,寻找新的包括肿瘤免疫治疗在内的多种高效特异的治疗手段对于结直肠癌的防治具有重要的现实意义。
     自上世纪90年代以来,随着T细胞识别机制的阐明,重组DNA技术的发展和肿瘤基因研究的深入,有关肿瘤抗原的性质、表位结构以及利用肿瘤抗原进行抗肿瘤治疗等研究都取得了很大的进展。研制和开发新型抗肿瘤疫苗已成为近年来国际上肿瘤免疫治疗的热点之一。在细胞癌变和肿瘤发生发展的早期非常有必要寻找一个新的分子生物学标记,以提高结直肠癌的早期诊断和治疗技术水平。同时,开展结直肠癌免疫治疗的前提是寻找针对结直肠肿瘤的特异性肿瘤抗原。在众多肿瘤相关抗原中,癌睾丸抗原(cancer/testis antigen,CTA)因其特异的表达模式,即在各种肿瘤组织中均有不同频率的表达,而在正常组织中仅限于睾丸的生殖细胞。因睾丸组织缺乏人类白细胞抗原(HLA)分子,是免疫豁免器官,不会因自体免疫反应对其它组织造成损害。因此,CTA适于作为特异性肿瘤免疫治疗的靶抗原。黑色素瘤抗原基因(melanoma antigen gene,MAGE)是CTA亚家族成员,因其在多种肿瘤细胞的特异性表达及在多种组织类型肿瘤细胞的广泛表达成为多肽疫苗研究的首选,其编码的抗原能被自体细胞毒性T淋巴细胞识别,诱导出对相应肿瘤细胞的特异性杀伤而达到肿瘤治疗的目的。因此,MAGE抗原肽是一种CTL(cytoxic T lymphocytes,CTL)介导的肿瘤特异性免疫治疗的理想靶分子。
     MAGE基因在转录水平与蛋白表达水平表达有时出现分离的现象,即表达mRNA的组织不一定同时表达蛋白。因此,了解同一组织中基因转录和蛋白表达水平上的分离现象十分必要,因判断以MAGE抗原为基础的肿瘤疫苗可行性的关键步骤是了解这种抗原能否在蛋白水平上表达。
     研究已表明,基因表达的调控主要通过遗传学(genetics)和表遗传学(epigenetics)两种机制实现。遗传学机制涉及到基因结构的改变,但只能解释肿瘤发病机制中的一部分原因,如基因突变、基因复制时的获得或丢失和染色体异常。还有许多具有重要的功能基因是通过表遗传学机制参与肿瘤的发生、发展。表遗传学是一种不涉及核苷酸序列变化可遗传的基因表达方式的改变,包括DNA甲基化和去甲基化、组蛋白乙酰化和去乙酰化。DNA甲基化是表遗传学的主要修饰形式,是目前研究最深入、最广泛的作用方式。DNA 5-胞嘧啶甲基化改变特别是启动子区CpG岛甲基化是导致基因组不稳定而引发肿瘤的重要机制。许多研究显示启动子5′CpG岛的超甲基化可使原来表达的基因沉默而导致肿瘤的发生,如肿瘤抑制基因、细胞循环调节基因、DNA错配修复基因。可以说启动子区CpG岛异常甲基化是肿瘤发生的早期事件。MAGE基因启动子区CpG岛的甲基化/去甲基化也是调控其表达的重要机制,并已在胃癌、黑色素瘤等肿瘤细胞和组织中观察到,但结直肠癌组织中MAGE基因表达与启动子的去甲基化是否有关,还没有得到完全证实。
     尽管MAGE基因的研究已有多年,但有关MAGE家族基因在结直肠癌中的表达研究不多,且多是针对欧美人群,针对中国人的研究很少,其表达频率的差异也很大。目前,MAGE基因在结直肠癌组织中的较为准确的表达还不是很清楚,其表达调控的机制也未得到完全证实,在从正常组织、腺瘤到癌组织的发展过程中,MAGE基因启动子去甲基化状态的变化尚未证实。为此,本课题就以下方面进行研究:
     1.应用RT-PCR和免疫组化技术研究MAGE-A1、-A3、-A4在结直肠癌细胞和组织中的表达,探讨其作为结直肠癌肿瘤免疫治疗的靶抗原以及作为免疫学检测的分子生物学标记物的可能性。
     2.应用甲基化特异性PCR(MSP)研究MAGE-A1、-A3基因启动子区CpG岛从正常粘膜→腺瘤→癌组织的去甲基化状态,探讨其去甲基化状态与基因表达的关系与临床病理特征的关系,寻找可能有助于结直肠癌早期诊断和具有生物学特征的分子标记物。
     材料和方法
     细胞株:HT-29,HCT116、SW116,购自中国医学科学院上海细胞库。标本采集:2006年7月~11月于广西医科大学第一附属医院结直肠外科行手术治疗的65例结直肠癌组织及相应的正常粘膜标本及行手术或纤维结肠镜腺瘤切除治疗的28例腺瘤标本。所有标本均经病理组织学证实。
     (1)提取结直肠正常粘膜和癌组织的总RNA,用RT-PCR法检测组织中MAGE-A1、-A3和-A4基因mRNA表达频率。
     (2)应用免疫组化技术(IHC),检测同一组织标本MAGE-A1、-A3和-A4蛋白的表达。
     (3)提取正常粘膜、腺瘤和癌组织的DNA,用甲基化特异性PCR(MSP)检测MAGE-A1、-A3基因启动子区CpG岛去甲基化的状态。
     统计学方法:应用SPSS13.0统计学软件进行数据分析。行×列配对计数资料采用Pearson X~2检验或Fisher确切概率法检验,相关性分析采用Spearman相关检验,一致性分析采用Kappa分析。P<0.05有统计学意义。
     结果
     1.RT-PCR结果:
     1.1细胞株中MAGE-A1、-A3、-A4基因mRNA表达分别为:MAGE-A1,HT-29(-),HCT116(-),SW116(+);MAGE-A3,HT-29(+),HCT116(+),SW116(-);MAGE-A4均为(-)。65例结直肠癌组织中其表达率分别为18.5%(12/65)、33.9%(22/65)和20%(13/65),53.8%(35/65)的标本至少表达一种抗原基因,相应的正常粘膜组织均未检测到基因的表达。
     1.2 CRC组织中MAGE-A1和-A3基因表达均与淋巴结转移有关(P=0.023,0.022),MAGE-A1表达与年龄有关(P=0.011),与性别、CEA、肿瘤大小和位置、组织分化程度、肿瘤浸润深度及TNM分期无关(P>0.05)。
     2.IHC结果:
     2.1结直肠癌组织MAGE-A1、-A3抗原定位于细胞质,MAGE-A4抗原主要定位于胞质,少部分定位于胞核。
     2.2 MAGE-A1、-A3、-A4蛋白的表达率分别为15.3%、29.2%、16.9%,正常组织未见表达。MAGE-A1、-A3和-A4蛋白表达均与患者的年龄、性别、CEA、肿瘤大小和位置、侵袭深度及TNM分期之间均无显著性差异(P>0.05),但MAGE-A3表达与有无淋巴结转移之间差异有显著性(P=0.004),且呈正相关(rs=0.392,P=0.001)。
     2.3 65例CRC组织中MAGE-A1基因mRNA阳性12例,蛋白表达9例(r=0.786,K=0.782>0.7,P均<0.01);MAGE-A3基因mRNA阳性22例,蛋白阳性18例(r=0.827,k=0.822>0.7,P均<0.01);MAGE-A4基因mRNA阳性13例,蛋白阳性11例(r=0.903,K=0.898>0.7,P均<0.01)。其中MAGE-A1和-A3各有1例mRNA阴性表达而蛋白呈阳性表达。三种基因的mRNA和蛋白表达均有很高的一致性,呈正相关。
     3.MSP结果
     3.1结肠癌细胞株MAGE-A1基因表达与甲基化:HT-29mRNA(-),M(+),U(-);HCT116 mRNA(-),M(+)、U(+);SW116 mRNA(+),M(-)、U(+)。MAGE-A3基因表达与甲基化:HT-29 mRNA(+),M(+),U(-);HCT116mRNA(+),M(-),U(+);SW116 mRNA(-),M(+),U(-)。
     3.2正常组织、腺瘤及癌组织MAGE-A1基因启动子去甲基化阳性率分别为1.5%(1/65)、14.3%(4/28)、29.2%(19/65);MAGE-A3基因去甲基化阳性率分别为4.6%(3/65)、28.6%(8/28)、47.7%(31/65)。正常组织中两个基因启动子去甲基化率均显著低于腺瘤和癌组织的去甲基化率(P<0.05),而腺瘤和癌组织之间比较则没有统计学意义(P>0.05)。
     3.3 MAGE-A1、-A3去甲基化状态分别与肿瘤分化程度、有无淋巴结转移有关(P=0.009,0.004;0.042,0.000),而与性别、肿瘤大小、位置、浸润深度和TNM分期无关(P>0.05);MAGE-A1基因启动子去甲基化状态与年龄有关(P=0.001)。
     3.4将癌组织标本按启动子去甲基化状态分为启动子去甲基化组和甲基化组。MAGE-A1启动子去甲基化组mRNA阳性表达率为57.9%(11/19),显著高于甲基化组的2.2%(1/46)(r=0.653,K=0.625>0.4,P均<0.01);MAGE-A3启动子去甲基化组的mRNA阳性表达率为64.5%(20/31)显著高于甲基化组的43%(2/46)(r=0.653,K=0.632>0.4,P均<0.01)。启动子去甲基化状态与基因表达均具有一致性,呈正相关。
     3.5将癌组织标本按启动子去甲基化状态分为启动子去甲基化组和甲基化组。MAGE-A1启动子去甲基化组的蛋白表达阳性表达率为47.4%(9/19)显著高于甲基化组的2.2%(1/46)(r=0.570,K=0.525>0.4,P均<0.01);MAGE-A3启动子去甲基化组的蛋白阳性表达率为54.8%(17/31)显著高于甲基化组的5.9%(2/34)(r=0.538,k=0.498>0.4,P均<0.01)。两个基因去甲基化水平与其蛋白表达均具有一致性,呈正相关。
     结论
     1.结直肠癌细胞株和组织中MAGE-A1、-A3、-A4基因在mRNA和蛋白水平均有表达。MAGE-A3在结直肠癌细胞株和组织中表达较高,具有作为结直肠癌肿瘤免疫治疗靶基因的可能。
     2.MAGE-A1、-A3基因mRNA表达与淋巴结转移有关,有淋巴结转移的结直肠癌可能伴随较高的表达,且MAGE-A3蛋白表达与有无淋巴结转移呈正相关。
     3.MAGE-A1、-A3基因启动子去甲基化阳性率在正常组织、腺瘤和癌组织中显著增高,在腺瘤和癌组织中差异无显著性,正常组织很少呈去甲基化状态。CRC中去甲基化状态均与mRNA和蛋白表达呈正相关。
     4.MAGE-A1、-A3启动子去甲基化状态与淋巴结转移、组织分化程度有关。MAGE-A3基因去甲基化阳性率较高,对预测淋巴结转移、判断组织分化可能有参考价值。
     5.MAGE-A1、MAGE-A3基因启动子去甲基化在结直肠癌发病早期就存在,贯穿在结直肠癌发生进展的全过程,与基因的转录表达有关,在细胞癌变和肿瘤的发生发展过程中可能起到一个重要的作用。
Background and objective
     Colorectal cancer(CRC)is one of the most common gastrointestinal malignancies that severely threatens the health of mankind.In western developed countries,CRC is the second cause of cancer-related death,only next to lung carcinoma.In China,the morbidity and mortality of CRC ranks from the 4~(th)to 6~(th)among all the cancer-related death.Furthermore,the mortality is still increasing,expecially in the urban and developed rural area of China,due to the changs of environment,construction of food and drink and life style.Although the wide research on the pathogenesis of CRC had been achieved,and the technology of diagnosis and therapy had substantial improvement,breaking progresses were not achieved.Especially the 5-year survial of advanced CRC does not improve significantly.Since only 10%~15%of patients are diagnosed at an early stages,most hospital cases are in the advanced stages.The theraputic approaches are often limited to surgical treatment,radiation and chemotherapy. Therefore,it is of great realistic significance to study the carcinogenesis of CRC and search the specific and more efficaciously therapeutic methods including immunotherapy for its prevention and treatment.
     Since the 1990s of last century,with the elucidation of T cell recogniazed mechanism,development of recombinant DNA technology and extreme research of tumor antigen,the study on the tumor antigen properties,epitope structure and anti-tumor therapy with carcinoma antigen has a significant progress.It is one of most studying domains and hot-spots of tumor immunotherapy to develop and manufacture a new anti-tumor vaccine internationally in recent years.In the meantime,it is extraordinarily necessary to search a new biomarker in the earlier period of colorectal malignant transformation for the enhancement of earlier diagnosis and treament.The premise of immunotherapy is to identify the specific tumor antigen to aim directly at CRC.Among the numerous tumor associated antigen to date,Cancer/testis antigen(CTA)was found tumorassociated antigens encoded in various tumors of different origin,but not in normal tissues other than testis which lacks of human leuocyte antigen(HLA) molecule and is an immune-privilegd organ,cancer vaccination of CTA is not expected to cause damage to normal tissues due to autoimmune responses.Thus, CTA could be properly used as targets in activation of specific tumor immunotherapy.MAGE(melanoma antigen gene)is subset of CTA,widely expressed in the same manner in a varity of multiple tumor cells and human cancer of different histological origin,recognized as a group of highly interesting targets for polypeptide vaccine,and they encode tumor antigen recognized specifically by cytotoxic T leucocytes and induce specific immune kill to corresponding tumor cells in tumorous therapy.Therefore,MAGE is highly attractive targets mediated by CTL for specific tumor immunotherapy.
     There is a discrepant phenomenon of expression between mRNA and protein in the same tissues with the same gene occasionaly,that is to say that the transcriptional expression of mRNA is not always accompanied with the expression of protein.Since the key step of the feasibility of tumor vaccine based on MAGE genes is observed whether their protein are expressed in the meantime,the function of any gene is embodied at the level of protein. Therefore,it is necessary to observe the discrepancy at the expression level of transcription and protein.
     It is well known that gene expression is regulated by two main mechanism, genetic and epigenetics regulation.Genetic alterations,once regarded as the only important regulatory model in vivo,are characterized as gene structure alterations including mutations,gain or loss of gene copies,and chromosmal aberrations.Genetic mechanism only explains the part of caues resulted in the neoplasm.However,many functional genes participate the tumorigenesis through the epigenetic modifications which have attracted more attentions recently.Epigenetics alterations modulate gene expression via base modifications in the genome without changes in the primary DNA sequence, such as DNA methylation and demethylation,histone acetylation and deacetylation.Aberrant DNA methylation is the main modifications and most extensive and extreme modes of action,also the most common epigenetic mechanism of gene regulation.DNA 5'-cytosine methylation alteration, especially in the promoter CpG islands,which results in genome instability,is the important mechanisms which initiates carcinogenesis.Many previous studies suggest that hypermethylation of the 5'-CpG islands silences genes expression including those of tumor suppressor genes,cell cycle regulatory genes and DNA mismatch repair genes in carcinogenesis.Abnormal DNA methylation of CpG islands is an early event in human carcinogenesis.Methylation/demethylation of the promoter CpG islands of MAGE genes is also recognizedas an important mechanism of the genes expression regulations.A correlation between some MAGEs expression and genome-wide hypomethylation has been observed in some types of human carcinomas,such as cells and tissues of gastric cancer, hepatocellular carcinoma and melonoma.However,it is not completely confirmed if this relationship is present in colorectal carcinomas.
     Notwithstanding there were many years on the research of MAGE genes, there were few studies on expression frequency about MAGE family in CRC and most is and mostly aim at foreigner,few studies aim at Chinese.The most different frequencies exist in expression of MAGEs.It is not completely confirmed that the mechanism of regulations of MAGEs in colorectal normal, adenoma and carcinomas.It is well unknown to the expression of MAGE genes in CRC tissues,and regulatory mechanism of expression.The demethylation ststus was not completely confirmed from normal,adenoma to cancerous tissues. The specific aims in this study include:
     1.Detect the expression of MAGE-A1、-A3 and -A4 genes in human CRC cell lines and tissues by immunohistochemical and RT-PCR analysis,and investigate the feasibility of genes encoding proteins used as a target for immunotherapy and immunological molecular markers in CRC
     2.Detect the demethylation status of their promoter CpG islands in MAGE-A1、-A3 genes from normal,adenoma and to cancer tissues,and their correlation with the expression of mRNA and protein in human cancer tissues. Explore the correlation between the demethylation status and clinicopathological features.Search the potential molecular marker used as an early diagnosis and biomarker of CRC.
     Materals And Methods
     Three CRC cell lines:HT-29,HCT116,SW116 were bought from Shanghai cell banks,Chinese Academy of Medical Sciences.Samples collecting:65 surgical CRC samples from patients undergoing surgery including cancer tissues and corresponding normal mucosa,respectively,and 28 resected samples of adenoma surgically or endoscopically,at department of colorectum,the first affiliated hospital of Guangxi Medical University from July to November in 2006 were investigated in this study.The diagnosis of all the cases was confirmed by pathological histology.
     (1)The expression of MAGE-A1、-A3 and -A4 genes was detected by RT-PCR.
     (2)The expression of MAGE-A1、-A3 and -A4 proteins was detected by immunohistochemistry in the same samples.
     (3)Demethylation status in promoter CpG islands of MAGE-A1、-A3 genes was performed by MSP.
     Statistical methods:The data were analyzed using statistical software SPSS version 13.0.Paired numerous data were done using Pearson x~2 or Fisher's exact test,corralation analysis Spearman corralated test.Kappa test was also used to compare the agreement.Statistical.significance was accepted at P<0.05.
     Results
     1.RT-PCR
     1.1 The expression frequency of MAGE-A1、-A3、-A4 genes mRNA in cell lines was detected.MAGE-A1:HT-29(-),HCT116(-),SW116(+);MAGE-A3, HT-29(+),HCT116(+),SW116(-);MAGE-A4(-)in three cell lines,respectively; and 18.5%(12/65),33.9%(22/65)and 20%(13/65)in CRC tissues,respectively, at least one MAGE gene expression was positive in 53.8%(35/65).Conversely, none of the corresponding adjacent non-tumorous tissues expressed any MAGE gene expression.
     1.2 The expression frequency of MAGE-1 and MAGE-3 was related to metastasis to lymph node(P=0.023;P=0.022),and MAGE-A1 related to age. The expression of the MAGE genes was not related to age(exception of MAGE-1),gender,CEA,tumor size and location,differentiated grade,the depth of invasion,and TNM stage(P>0.05).
     2.IHC
     2.1 MAGE-A1、-A3 antigens were located in cytoplasm,whereas MAGE-A4 was prevailingly observed in cytoplasm and minorly in nucleus.
     2.2 The protein expression of MAGE-A1、-A3、-A4 was positive observed in 15.3%,29.2%,and 16.9%out of the CRC tissues,respectively,while not observed in normal colorectal mucosal tissues.The expression of the genes had no relationship with age,gender,CEA,tumor size and location,differentiated grade,the depth of invasion,and TNM stage(P>0.05)out of CRC tissues. However,the expression of MAGE-A3 genes was significantly correlated with regional lymph node metastasis in CRC(P=0.004),moreover positive correlation(rs=0.392,P=0.001).
     2.3 Out of 65 cases,the mRNA expression of MAGE-A1 was 12 cases, while protein expresssion was 9 cases(r=0.786,κ=0.782>0.7,P<0.01),the mRNA expression of MAGE-A3 22 cases,while protein expresssion 18 cases (r=0.827,κ=0.822>0.7,P<0.01),the mRNA expression of MAGE-A4 13 cases, while protein expresssion 11 cases(r=0.903,κ=0.898>0.7,P<0.01). Interstingly,mRNA of 1case was positive while protein negative in MAGE-A1 and MAGE-A3,respectively.The mRNA expression was highly consistent with protein expression,moreover positive correlation.
     3.MSP
     3.1 The mRNA expression and demethylation of MAGE-A1 in CRC cell lines:HT-29 mRNA(-),M(+),U(-);HCT116 mRNA(-),M(+),U(+); SW116 mRNA(+),M(-),U(+).MAGE-A3 in CRC cell lines:HT-29 mRNA (+),M(+),U(-);HCT116 mRNA(+),M(-),U(+);SW116 mRNA(-),M(-)、U(+).
     3.2 The demethylation rate of MAGE-A1 promoter was observed 1.5%(1/65),14.3%(4/28),29.2%(19/65)in normal mucosal tissues,adenoma and CRC tissues,respectively.The demethylation rate of MAGE-A3 promoter was 4.6%(3/65),28.6%(8/28),47.7%(31/65)in normal mucosal tissues, adenoma and CRC tissues,respectively.The demthylation rate of the two genes in normal mucosa was significantly lower than that of the adenoma and CRC tissues(P<0.05),but the difference between the adenoma tissues and the CRC tissues was not statistically significant P>0.05).
     3.3 The demethylation status of MAGE-A1 and MAGE-A3 promoters had no relationship with gender,tumor size and location,the depth of invasion,and TNM stage(P>0.05).However,The demethylation status of MAGE-1 and MAGE-3 promoters was related to differentiated grade,metastasis to lymph node(P=0.009,0.004;0.042,0.000).In additional,MAGE-A1 related to age(P=0.001).
     3.4 Sixty five samples were divided into two groups according to demethylation status:demethylation group and methylation group.The mRNA expression rate of MAGE-A1 in promoter demethylation group was significantly higher than that of methylation group(r=0.653,κ=0.625>0.4, P<0.01),while MAGE-A3 was also identical(r=0.653,κ=0.632>0.4,P<0.01). The demethylation,status of the two genes was consistent with mRNA expression,moreover positive correlation.
     3.5 Sixty five samples were divided into two groups according to demethylation status:demethylation group and methylation group.The protein expression of MAGE-A1 in promoter demethylation group was significantly higher than that of methylation group(r=0.570,κ=0.525>0.4,P<0.01),while MAGE-A3 was also identical(r=0.538,κ=0.498>0.4,P<0.01).The demethylation status of the two genes was consistent with protein expression, moreover positive correlation.
     Conclusions
     1.The expression of MAGE-A1,-A3,-A4 was all found positive expression in CRC cell lines and tissues at mRNA and protein levels.The higher expression of MAGE-A3 was detected in in CRC cell lines and tissues,perhaps used as candidate of targeted gene for CRC.
     2.The expression frequency of MAGE-1 and MAGE-3 genes mRNA was related to metastasis to lymph node,suggesting that metastasis to lymph node was accompanied with higher expression of MAGE-A1,-A3 mRNA in CRC. The expression of MAGE-3 protein was positively related to metastasis to lymph node.
     3.The demethylation level of promoter of MAGE-A1,-A3 was significantly increased from normal tissues,adenoma to cancerous tissues, whereas,demethylation of the genes is quite rare in normal tissues.However, there was no significant difference of demethylation level of the two genes between adenoma and CRC tissues,but the demethylation status of the two genes was positively correlated with the expression of their mRNA and protein.
     4.Demethylation of both MAGE-A1 and MAGE-A3 in CRC was significantly correlated with lymph node metastasis and histological differentiation.Furthermore,there was a possible application with detection of the demethylation of MAGE-A3 in predicting lymph node metastasis and judging histological differentiation for its higher demethylation.
     5.Demethylation occurs in the early stage of carcinogenesis,throughout the total developing process of tumorigenesis as well as upregulating transcription of both MAGE-A1 and MAGE-A3,and perhaps plays an crucial role in malignant transformation of cell and the development of carcinogenesis in CRC.
引文
1.Ferlay J,Bray F,Pisani P,et al.Cancer incidence,mortality and prevalence worldwide.Version.1.0.IARC Cancer Base No.5.(IARC Press,Lyon,2001).
    2.Kerr D.Clinical development of gene therapy for colorectal cancer.Nat Rev Cancer,2003,3(8):615-622.
    3.Jemal A,Siegel R,Ward E,et al.Cancer statistics,2006.CA Cancer J Clin,2006,56(2):106-130.
    4.郑树,蔡善荣.中国大肠癌的病因学及人群防治研究.中华肿瘤杂志,2004,26(1):1-3.
    5.Pohl C,Hombach A,Kruis W.Chronic inflammatory bowel disease and cancer.Hepatogastroenterology,2000,47(31):57-70.
    6.Kirkin AF,Dzhandahugazyan KN,Zeuthen J.Caner/testis antigens:structural and immunobiological properties.Cancer invest,2002,20(2):222-236.
    7.Scanlan M,Gure AO,Jungblutn AA,et al.Cancer/testis antigen:an expanding family of targets for cancer immunotherapy.Immuno,2002,188:22-32.
    8.Van der Bruggen P,Traversari C,Chomez P,et al.A gene encoding an antigen recognized by cytolic T limphocytes on a human melanoma.Science,1991,254(5038):1643-1647.
    9.Yakirevich E,Sabo E,Dirnfeld M,et al.Morphometrical quantification of spermatogonial germ cells with the MA454 anti-MAGE-A4 antibody in the evaluation of testicular biopsies for Azoospermial.Appl Immunohistochem Mol Morphol,2003,11(1):37-44.
    10.Jung EJ,Kim MA,Lee HS,et al.Expression of family A melanoma antigen in human gastric carcinoma. Anticancer Res, 2005, 25(3B): 2105-2111.
    11. Luo G, Huang S, Xie X, et al. Expression of cancer-testis genes in human hepatocellular carcinomas. Cancer Immun, 2002,2:11.
    12. Haier J, Owzcareck M, Guller U, et al. Expression of MAGE-A cancer/testis antigens in esophageal squamous cell carcinomas. Anticancer Res, 2006,26(3B): 2281-2287.
    13. Kariyama K, Higashi T, Kobayashi Y, et al. Expression of MAGE-1 and -3 genes and gene products in human hepatocellular carcinoma. Br J Cancer, 1999, 81(6): 1080-1087.
    14. Vaughan HA, Svobodova S, Macgregor D, et al. Immunohistochemical and molecular analysis of human melanomas for expression of the human cancer-testis antigens NY-ESO-1 and LAGE-1. Clin Cancer Res, 2004, 10(24): 8396-8404.
    15. Weber J, Salgaller M, Samid D, et al. Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2'-deoxycytidine. Cancer Res, 1994,54(7): 1766-1771.
    16. De Smet C, Loriot A, Boon T. Promoter-dependent mechanism leading to selective hypomethylation within the 5' region of gene MAGE-A1 in tumor cells. Mol Cell Biol, 2004, 24(11): 4781-4790.
    17. Sigalotti L, Coral S, Nardi G, et al. Promoter methylation controls the expression of MAGE2, 3 and 4 genes in human cutaneous melanoma. J Immunother, 2002,25(1): 16-26.
    18. Honda T, Tamura G, Waki T, et al. Demethylation of MAGE promoters during gastric cancer progression. Br J Cancer, 2004, 90(4): 838-843.
    19. Hasgawa H, Mori M, Lieo H, et al. Expression Spectrum of melanoma antigen-encoding gene family members in colorectal. Arch Pathol Lab Med,1998,122(6):551.
    20.Koketsu S,Watanabe T,Kazama S,et al.What types of colorectal cancer overexpress the MAGE protein? Hepatogastroenterology,2004,51(60):1648-1652.
    21.Gospodarowicz MK,Miller D,Groome PA,et al.The process for continuous improvement of the TNM classification.Cancer,2004,100(1):1-5.
    22.Li M,Yuan YH,Han Y,et al.Expression profile of cancer-testis genes in 121 human colorectal cancer tissue and adjacent normal tissue.Clin Cancer Res,2005,11(5):1809-1814.
    23.魏国庆,林茂芳,黄河,等.巨细胞病毒对多发性骨髓瘤细胞系KM3细胞的感染及其对IL-6mRNA表达的影响.中华血液学杂志,2004,25(10):596-599.
    24.Imai Y,Shichijo S,Yamada A,et al.Sequence analysis of the MAGE gene family encoding human tumor-rejection antigens.Gene,1995,160(2):2872-2901.
    25.De Plaen E,Arden K,Traversari C,et al.Structure,chromosomal location,and expression of 12 genes of the MAGE family.Immunogenetics,1994,40(5):360-369.
    26.Scanlan MJ,Simpson AJ,Old LJ.The cancer/testis genes:review,standardization,and commentary.Cancer Immun,2004,4:1.
    27.Mori M,Inoue H,Mimori K,et al.Expression of MAGE genes in human colorectal carcinoma.Ann Surg,1996,224(2):183-188.
    28.Nishimura S,Fujita M,Terata N,et al.Expression of MAGE genes in colorectal carcinomas.Nihon Rinsho Meneki Gakkai Kaishi,1997,20(2):95-101.
    29. Yamamoto H, Miyake Y, Noura S, et al. Clinical significance of micrometastasis to lymph nodes in gastrointestinal tract cancers. Gan To Kagaku Ryoho, 2001,28(6): 776-783.
    30. Park MS, Park JW, Jeon CH, et al. Expression of melanoma antigen-encoding genes(MAGE) by common primers for MAGE-A1 to -A6 in colorectal carcinomas among Koreans. Korean Med Sci, 2002, 17(4): 497-501.
    31. Gerhardt A, Usener D, Keese M, et al. Tissue expression and sero-reactivity of tumor-specific antigens in colorectal cancer. Cancer Lett, 2004,208(2): 197-206.
    32. Brasseur F, Rimoldi D, Lienard D, et al. Expression of MAGE genes in primary and metastatic cutaneous melanoma. Int J Cancer, 1995, 63(3): 375-380.
    33. Alves PM, Levy N, Bouzourene H, et al. Molecular and immunological evaluation of the expression of cancer/testis gene products in human colorectal cancer. Cancer Immunol Immunother, 2007,56(6): 839-847.
    34. Chen PW, Murray TG, Uno T, et al. Expression of the MAGE genes in ocular melanoma during progression from Primary to metastatic disease. Clin Exp Metastasis, 1997,15(5): 509-518.
    35. Chen PW, Murray TG, Salgaller ML, et al. Expression of the MAGE genes in ocular melanoma cell lines. J Immunother, 1997,20(4): 265-275.
    36. Kim KH, Choi JS, Kim IJ, et al. Promoter hypomethylation and reactivation of MAGE-A1 and MAGE-A3 genes in colorectal cancer cell lines and cancer tissues. World J Gastroenterol, 2006,12(35): 5651-5657.
    37. Jungbluth AA, Stockert E, Chen YT, et al. Monoclonal antibody MA454 reveals a heterogeneous expression pattern of MAGE-1 antigen in formalin-fixed paraffin embedded lung tumours.Br J Cancer,2000,83(4):493-497.
    38.吴晓江,王歈,季加孚.胃癌中肿瘤/睾丸抗原的表达研究及NY-ESO-1蛋白的自身抗体检测.北京大学学报(医学版),2005,37(3):252-256.
    39.马鸣,俞莉章,那彦群.肾及膀胱肿瘤组织中MAGE基因及其产物的表达.北京大学学报(医学版),2004,36(2):159-163.
    40.Jungbluth AA,Busam KJ,Kolb D,et al.Expression of MAGE-antigens in normal tissue and cancer.Int J Cancer.2000;85(4):460-465.
    41.Van Baren N,Br.asseur F,Godelaine D,et al.Genes encoding tumor-specfic antigens are expressed in human myeloma cell.Blood,1999,94(4):1156-1164.
    42.Yoshida N,Abe H,Ohkuri T,et al.Expression of the MAGE-A4 and NY-ESO-1 cancer-testis antigens and T cell infiltration in non-small cell lung carcinoma and their prognostic significance.Int J Oncol,2006,28(5):1089-1098.
    43.Okada Y,Fujiwara Y,Yamamoto H,et al.Genetic detection of lymph node micrometastases in patients with gastric carcinoma by multiple-marker reverse transcriptase-polymerase chain reaction assay.Cancer,2001,92(8):2056-2064.
    44.Lin J,Lin L,Thomas DG,et al.Melanoma-associated antigens in esophageal adenocarcinoma:identification of novel MAGE-A10 splice variants.Clin Cancer Res,2004,10(17):5708-5716.
    45.Peng JR,Chen HS,Mou DC,et al.Expression of cancer/testis(CT)antigens in Chinese hepatocellular carcinoma and its correlation with clinical parameters.Cancer Lett,2005,219(2):223-232.
    46. Yakirevich E, Sabo E, Lavie O, et al. Expression of the MAGE-A4 and NY-ESO-1 cancer-testis antigens in serous ovarian neoplasms. Clin Cancer Res, 2003, 9(17): 6453-6460.
    47. Itoh K, Hayashi A, Nakao M, et al. Human tumor rejection antigens MAGE. Biochem Tokyo, 1996,119(3): 385-390.
    48. Salgaller ML, Weber JS, Koening S, et al. Generation of specfic anti-melanoma reactivity by stimulation of human tumor-infiltrating lymphocytes with MAGE-1 synthetic peptide. Cancer Immunol Immunother, 1994,39(2): 105-116.
    49. Schultz ES, Zhang Y, Knowles R, et al. A MAGE-3 peptide recognized on HLA-B35 and HLA-A1 by cytolytic T lymphocytes. Tissue Antigens, 2001,57(2): 103-109.
    50. Schultz ES, Chapiro J, Lurquin C, et al. The production of a new MAGE-3 peptide presented to cytolytic T lymphocytes by HLA-B40 requires the immunoproteasome. J Exp Med, 2002,195(4): 391-399.
    51. Duffour MT, Chaux P, Lurquin C, et al. A MAGE-A4 peptide presented by HLA-A2 is recognized by cytolytic T lymphocytes. Eur J Immunol, 1999, 29(10): 3329-3337.
    52. Yamasaki S, Okino T, Chakraborty NG, et al. Presentation of synthetic peptide antigen encoded by the MAGE-1 gene by granulocyte/ macrophage-colony-stimulating-factor-cultured macrophages from HLA-A1 melanoma patients. Cancer Immunol Immunother, 1995, 40(4): 268-271.
    53. Chen YT, Stockert E, Chen Y, et al. Identification of the MAGE-1 gene product by monoclonal and polyclonal antibodies. Proc Natl Acad Sci USA, 1994, 91(3): 1004-1008.
    54. Rimoldi D, Salvi S, Schultz-Thater E, et al. Anti-MAGE-3 antibody 57B and anti-MAGE-1 antibody 6C1 can be used to study different proteins of the MAGE-A family. Int J Cancer, 2000,86(5): 749-751.
    55. Kocher T, Schultz-Thater E, Gudat F, et al. Identification and intracellular location of MAGE-3 gene product. Cancer Res, 1995,55(11): 2236-2239.
    56. Landry C, Brasseur F, Spagnoli GC, et al. Monoclonal antibody 57B stains tumor tissues that express gene MAGE-A4. Int J Cancer, 2000, 86(6): 835-841.
    57. Busam KJ, Iversen K, Berwick M, et al. Immunoreactivity with the anti-MAGE antibody 57B in malignant melanoma: frequency of expression and correlation with prognostic parameters. Mod Pathol, 2000,13(4): 459-465.
    58. Bandic D, Juretic A, Sarcevic B, et al. Expression and possible prognostic role of MAGE-A4, NY-ESO-1, and HER-2 antigens in women with relapsing invasive ductal breast cancer: retrospective immunohistochemical study. Croat Med J, 2006,47(1): 32-41.
    59. Yoshida N, Abe H, Ohkuri T, et al. Expression of the MAGE-A4 and NY-ESO-1 cancer-testis antigens and T cell infiltration in non-small cell lung carcinoma and their prognostic significance. Int J Oncol, 2006, 28(5): 1089-1098.
    60. Akcakanat A, Kanda T, Tanabe T, et al. Heterogeneous expression of GAGE, NY-ESO-1, MAGE-A and SSX proteins in esophageal cancer: Implications for immunotherapy. Int J Cancer, 2006,118(1): 123-128.
    61. Dhodapkar MV, Osman K, Teruya-Feldstein J, et al. Expression of cancer/testis (CT) antigens MAGE-A1, MAGE-A3, MAGE-A4, CT-7, and NY-ESO-1 in malignant gammopathies is heterogeneous and correlates with site,stage and risk status of disease.Cancer Immun,2003,3:9.
    62.梁锐,王芳,王开昕,等.MAGE-A1,-A4基因在大肠肿瘤中的表达及临床意义.世界华人消化杂志,2005,13(5):657-661.
    63.Simpson AJ,Caballero OL,Jungbluth A,et al.Cancer/testis antigens,gametogenesis and cancer.Nat Rev Cancer,2005,5(8):615-625.
    64.Hasegawa H,Mori M,Haraguchi M,et al.Expression spectrum of melanoma antigen-encoding gene family members in colorectal carcinoma.Arch Pathol Lab Med,1998,122(6):551-554.
    65.Miyashiro I,Kuo C,Huynh K,et al.Molecular strategy for detecting metastatic cancers with use of multiple tumor-specific MAGE-A genes.Clin Chem,2001,47(3):505-512.
    66.Sugita Y,Wada H,Fujita S,et al.NY-ESO-1 expression and immunogenicity in malignant and benign breast tumors.Cancer Res,2004,64(6):2199-2204.
    67.Vaughan HA,Svobodova S,Macgregor D,et al.Immunohistochemical and molecular analysis of human melanomas for expression of the human cancer-testis antigens NY-ESO-1 and LAGE-1.Clin Cancer Res,2004,10(24):8396-8404.
    68.Napoletano C,Bellati F,Tarquini E,et al.MAGE-A and NY-ESO-1expression in cervical cancer:prognostic factors and effects of chemotherapy.Am J Obstet Gynecol,2008,198(1):99.e1-7.
    69.Wischnewski K,Pantel K,Schwarzenbach H.Promoter demethylation and histone acetylation mediate gene expression of MAGE-A1,-A2,-A3,and-A12 in Human Cancer Cells.Mol Cancer Res,2006,4(5):339-349.
    70.Japanese Gastric Cancer Association.Japanese Classification of Gastric Carcinoma.June 1999(The 13th Edition).
    71.Herman JG,Graff JR,Myohanen S,et al.Methylation-specific PCR:a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A, 1996,93(18): 9821-9826.
    72. Qiu G, Fang J, He Y. 5'CpG island methylation analysis identifies the MAGE-A1 and MAGE-A3 genes as potential markers of HCC. Clin Biochem, 2006,39(3): 259-266.
    73. Nie Y, Liao J, Zhao X, et al. Detection of multiple gene hypermethylation in the development of esophageal squamous cell carcinoma. Carcinogenesis, 2002,23(10): 1713-1720.
    74. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med, 2003,349(21): 2042-2054
    75. Glickman JF, Flynn J, Reich NO. Purification and characterization of recombinant baculovirus-expressed mouse DNA methyltransferase. Biochem Biophys Res Commun, 1997,230(2): 280-284.
    76. Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet, 2000,16(4): 168-174.
    77. Esteller M, Herman JG. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol, 2002,196(1): 1-7.
    78. Zochbauer-Muller S, Fong KM, Maitra A, et al. 5' CpG island methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Res, 2001, 61(9): 3581-3585.
    79. Song SH, Jong HS, Choi HH, et al. Transcriptional silencing of Cyclooxygenase-2 by hypermethylation of the 5'CpG island in human gastric carcinoma cells. Cancer Res, 2001, 61(11): 4628-4635.
    80. Ku JL, Kang SB, Shin YK, et al. Promoter hypermethylation downregulates RUNX3 gene expression in colorectal cancer cell lines. Oncogene, 2004,23(40): 6736-6742.
    81. Feinberg AP, Vogelstein B. Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun, 1983,111(1): 47-54.
    82. Fang JY, Zhu SS, Xiao SD, et al. Studies on the hypomethylation of c-myc, c-Ha-ras oncogenes and histopathological changes in human gastric carcinoma. J Gastroenterol Hepatol, 1996,11(11): 1079-1082.
    83. Van Der Bruggen P, Zhang Y, et al. Tumor-specific shared antigenic peptides recognized by human T cells. Immunol Rev, 2002,188: 51-64.
    84. De Smet C, De Backer 0, Faraoni I, et al. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc Natl Acad Sci USA, 1996,93(14): 7149-7153.
    85. De Smet C, Lurquin C, van der Bruggen P, et al. Sequence and expression pattern of the human MAGE2 gene. Immunogenetics, 1994, 39(2): 121-129.
    86. De Smet C, Lurquin C, Lethe B, et al. DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol, 1999,19(11): 7327-7335.
    87. De Backer O, Arden KC, Boretti M, et al. Characterization of the GAGE genes that are expressed in various human cancers and in normal testis. Cancer Res, 1999, 59(13): 3157-3165.
    88. Lethe B, Lucas S, Michaux L, et al. LAGE-1, a new gene with tumor specificity. Int J Cancer, 1998, 76(6): 903-908.
    89. Parks MS, Park JW, Jeon CH, et al. Expression of melanoma antigen-encoding genes(MAGE) by common primers for MAGE-A1 to -A6 in colorectal carcinomas among Korean. Korean Med Sci, 2002, 17: 497-501.
    90. Honda T, Tamura G, Waki T, et al. Demethylation of MAGE promoters during gastric cancer progression. Br J Cancer, 2004, 90(4): 838-843.
    91. Xiao J, Chen HS, Fei R, et al. Expression of MAGE-A1 mRNA is associated with gene hypomethylation in hepatocarcinoma cell lines. J Gastroenterol, 2005,40(7): 716-721.
    92. Coral S, Sigalotti L, Altomonte M, et al. 5-aza-2'-deoxycytidine-induced expression of functional cancer testis antigens in human renal cell carcinoma: immunotherapeutic implications. Clin Cancer Res, 2002, 8(8): 2690-2695.
    93. Sigalotti L, Fratta E, Coral S, et al. Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2'-deoxycytidine. Cancer Res, 2004, 64(24): 9167-9171.
    94. Esteller M. DNA methylation and cancer therapy: new developments and expectations. Curr Opin Oncol, 2005,17(1): 55-60.
    95. Gonzalgo ML, Hayashida T, Bender CM, et al. The role of DNA methylation in expression of the pl9/pl6 locus in human bladder cancer cell lines. Cancer Res, 1998,58(6): 1245-1252.
    96. Bariol C, Suter C, Cheong K, et al. The relationship between hypomethylation and CpG island methylation in colorectal neoplasia. Am J Pathol, 2003,162(4): 1361-1371.
    97. Lin CH, Hsieh SY, Sheen IS, et al. Genome-wide hypomethylation in hepatocellular Carcinogenesis. Cancer Res, 2001, 61(10): 4238-4243.
    98. Jang SJ, Soria JC, Wang L, et al. Activation of melanoma antigen tumor antigens occurs early in lung Carcinogenesis. Cancer Res, 2001, 61(21): 7959-7963
    99. Tamura G. Genetic and epigenetic alterations of tumor suppressor and tumor-related genes in gastric cancer.Histol Histopathol,2002,17(1):323-329.
    100.Suyama T,Ohashi H,Nagai H,et al.The MAGE-A1 gene expression is not determined solely by methylation status of the promoter region in hematological malignancies.Leuk Res,2002,26(12):1113-1118.
    101.Schuebel KE,Chen W,Cope L,et al.Comparing the DNA hypermethylome with gene mutations in human colorectal cancer.PLoS Genet,2007,3(9):1709-1723.
    1.Kerr D.Clinical development of gene therapy for colorectal cancer.Nat Rev Cancer,2003,3(8):615-622.
    2.Shu Z.Recent study on CRC in China:early detection and novel related gene.Chin Med,1997,110(2):309-310.
    3.Kirkin AF,Dzhandahugazyan KN,Zeuthen J.Caner/testis antigens:structural and immunobiological properties.Cancer invest,2002,20(2):222-236.
    4.Lucas S,De Smet C,Arden KC,et al.Identification of a new MAGE gene with tumor-specific expression by representational difference analysis. Cancer Res, 1998, 58(4): 743-752.
    5. Scanlan MJ, Gure AO, Jungbluth AA, et al. Cancer/testis antigen: an expanding family of targets for cancer immunotherapy. Immuno Review, 2002,188:22-32.
    6. van der Bruggen P, T raversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 1991,254 (5038): 1643-1647.
    7. Chomez P, De Baker O, Bertrand M, et al. An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res, 2001, 61(14): 5544-5551.
    8. Dabovic B, Zanaria E, Bardoni B, et al. A family of rapidly evolving genes from the sex reversal criticalre-gionin Xp12. Mamm Genome, 1995, 6(9): 571-580.
    9. Muscatelli F, Walker AP, Deplaen E, et al. Isolation and characterization of a new MAGE gene family in the Xp21.3 region. Proc Natl Sci USA, 1995, 92(11): 4987-4992.
    10. Lucas S, Deplaen E, Boon T. MAGE-B5, MAGE-B6, MAGE-C2 and MAGE-C3: four new members of the MAGE family with tumor-specific expression. Int J Cancer, 2000, 87(1): 55-60.
    11. Lucas S, Brasseur F, Boon T. A new MAGE gene with ubiquitous expression does not code for known MAGE antigens recognized by T cells. Cancer Res, 1999, 59(16): 4100-4103.
    12. De Smet C, Lurquin C, van der Bruggen P, et al. Sequence and pattern of expression of human gene MAGE-2. Immunogenetics, 1994, 39(2): 121-129.
    13. Gaugler B, Van den Eynde B, van der Bruggen P, et al. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med, 1994,179(3): 921-930.
    14. Imai Y, Shichijo S, Yamada A, et al. Sequence analysis of the MAGE gene family encoding human tumor-rejection antigens. Gene, 1995, 160 (2): 2872-2901.
    15. De Plaen E, Arden K, Traversari C, et al. Structure, chromosomal location,and expression of 12 genes of the MAGE family. Immunogenetics, 1994,40(5): 360-369.
    16. Hasgawa H, Mori M, Lieo H, etal. Expression Spectrum of melanoma antigen-encoding gene family members in colorectal. Arch Pathol Lab Med, 1998,122(6): 551.
    17. Ohman Forslund K, Nordqvist K. The melanoma antigen genes--any clues to their functions in normal tissues? Exp Cell Res, 2001,265(2): 185-194.
    18. Itoh K, Hayashi A, Nakao M, et al. Human tumor rejection antigens MAGE. J Biochem Tokyo, 1996,119(3): 385-390.
    19. Weber J, Salgaller M, Samid D, et al. Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2'-deoxycytidine. Cancer Res, 1994,54(7): 1766-1771.
    20. Mori M, Inoue H, Mimori K, et al. Expression of MAGE genes in human colorectal carcinoma. Ann Surg, 1996, 224(2): 183-188.
    21. Fujie T, Mori M, Ceo H, et al. Expression of MAGE and BAGE genes in Japanese breast cancers. Ann Oncol, 1997, 8(4): 369-372.
    22. Shichijo S, Yamada A, Sagawa K, et al. Induction of MAGE genes in lymphoid cells by the demethylating agent 5-aza-2'-deoxycyti-dine. Jpn J Cancer Res, 1996, 87(7): 751-756.
    23. De Smet C, Lurquin C, Lethe B, et al. DNA methylation is the primary silencing mechanism for a set of germ line and tumor-specific genes with a CpG-rich promoter.Mol Cell Biol,1999,19(11):7327-7335.
    24.Li J,Yang Y,Fujie T,et al.Expression of MAGE,GAGE and BAGE genes in Human gastric carcinoma.Clin Cancer Res,1996,2(9):1619-1625.
    25.Coral S,Sigalatti L,Altomonte M,et al.5-aza-2'-deoxytidine induced expression of functional cancer-testis antigens in human renal cell cancinoma:immunotherapeutic implications.Clin Cancer Res,2002,8(8):2690-2695.
    26.Sigalotti L,Coral S,Altomonte M,et al.Cancer testis antigens expression in mesothelioma:role of DNA methylation and bioimmunotherapeutic implications.Br J Cancer,2002,86(6):979-982.
    27.Honda T,Tamura G,Waki T,et al.Demethylation of MAGE promoters during gastric cancer progression.Br J Cancer,2004,90(4):838-843.
    28.Jang SJ,Sofia JC,Wang L,et al.Activation of melanoma antigen tumor antigens occurs early in lung carcinogenesis.Cancer Res,2001,61(21):7959-7963.
    29.De Smet C,Loriot A,Boon T.Promoter-dependent mechanism leading to selective hypomethylation within the 5'region of gene MAGE-A1 in tumor cells.Mol Cell Biol,2004,24(11):4781-4790.
    28.Cameron EE,Baellman KE,Myohanen S,et al.Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer.Nat Genet,1999,21(1):103-107.
    29.卢学春,楼方定,许周敏,等.去甲基化和组蛋白去乙酰化转移酶抑制剂对K562细胞增殖和肿瘤相关基因表达的影响.中国实验血液学杂志,2004,12(1):44-47.
    30.Silverman LR,Demakos EP,Peterson BL,et al.Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome:a study of the cancer and leukemia group B.J Clin Oncol,2002,20(10): 2429-2440.
    31. Becker JC, Gillitzer R, Brocker EB. A member of the melanoma antigen-encoding gene (MAGE) family is expressed in human skin during wound healing. Int J Cancer, 1994,58(3): 346-348.
    32. Inoue H, Mori M, Li J, et al. Human esophageal carcinomas frequently express the tumor-rejection antigens of MAGE genes. Int J Cancer, 1995, 63(4): 523-526.
    33. Quillien V, Raoul JL, Heresbach D, et al. Expression of MAGE genes in esophageal squamous-cell carcinoma. Anticancer Res, 1997, 17(1A): 387-391.
    34. Zambon A, Mandruzzato S, Parenti A, et al. MAGE, BAGE, and GAGE gene expression in patients with esophageal squamous cell carcinoma and adenocarcinoma of the gastric cardia. Cancer, 2001,91(10): 1882-1888.
    35. Liang Z, Sun ZY, Yuan YH, et al. The expression of 11 cancer/testis (CT) antigen genes in esophageal carcinoma. Zhonghua Zhong Liu Za Zhi, 2005, 27(9): 534-537.
    36. Haier J, Owzcareck M, Guller U, et al. Expression of MAGE-A cancer/ testis antigens in esophageal squamous cell carcinomas. Anticancer Res, 2006, 26(3B): 2281-2287.
    37. Nagashima H, Sadanaga N, Mashino K, et al. Expression of MAGE-B genes in esophageal squamous cell carcinomas. Jpn J Cancer Res, 2001, 92(2): 167-173.
    38. van der Bruggen P, Szikora JP, Boel P, et al. Autologous cytolytic T lymphocytes recognize a MAGE-1 nonapeptide on melanomas expressing HLA-Cw*1601. Eur J Immunol, 1994,24(9): 2134-2140.
    39. van der Bruggen P, Bastin J, Gajewski T, et al. A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3.Eur J Immunol,1994,24(12):3038-3043.
    40.张澎,和世岩,戴荣增,等.HLA分型在胃肠肿瘤患者中的分布.中国肿瘤生物治疗杂志,1999,6(3):215-218.
    41.Yoshioka S,Fujiwara Y,Sugita Y,et al.Real-time rapid reverse transcriptase-polymerase chain reaction for intraoperative diagnosis of lymph node micrometastasis:clinical application for cervical lymph node dissection in esophageal cancers.Surgery,2002,132(1):34-40.
    42.Toh Y,YamanaH,Shichijo S,et al.Expression of MAGE-1 gene by esophageal carcinomas.Jpn J Cancer Res,1995,86(8):714-717.
    43.Tahara K,Mori M,Sadanaga N,et al.Expression of the MAGE gene family in human hepatocellular carcinoma.Cancer,1999,85(6):1234-1240.
    44.Chen Ch,Huang GT,Lee HS,et al.High frequency of expression of MAGE genes in human hepatocellular carcinoma.Liver,1999,19(2):110-114.
    45.Kariyama K,Higashi T,Kobayashi Y,et al.Expression of MAGE-1 and-3genes and gene products in human hepatocellular carcinoma.Br J Cancer,1999,81(6):1080-1087.
    46.Mou DC,Cai SL,Peng JR,et al.Evaluation of MAGE-1 and MAGE-3 as tumor-specific makers to detect blood dissemination of hepatocellular carcinoma cells.Br J Cancer,2002,86(1):110-116.
    47.Miyamoto A,Fujiwara Y,Sakon M,et al.Development of a multiple-marker RT-PCR assay for detection of micrometastases of hepatocellular carcinoma.Dig Dis Sci,2000,45(7):1376-82.
    48.Suzuki K,Tsujitani S,Konishi I,et al.Expression of MAGE genes and survival in patients with hepatocellular carcinoma.Int J Oncol,1999,15(6): 1227-1232.
    49.牟东成,冷希圣,彭吉润,等.黑色素瘤抗原MAGE-B亚家族基因在肝细胞癌中的表达.中华肿瘤杂志,2004,26(1):40-42.
    50.Chen HS,Qin LL,Cong X,et al.Expression of tumor-specific cancer/testis antigens in hepatocellular carcinoma.Zhonghua Gan Zang Bing Za Zhi,2003,11(3):145-148.
    51.Luo G,Huang S,Xie X,et al.Expression of cancer-testis genes in human hepatocellular carcinomas.Cancer Immun,2002,2:11.
    52.Kobayashi Y,Higashi T,Nouso K,et al.Expression of MAGE,GAGE and BAGE genes in human liver diseases:utility as molecular markers for hepatocellular carcinoma.Hepatol,2000,32(4):612-617.
    53.Yang SZ,Dong JH,Li K,et al.Detection of AFP mRNA and melanoma antigen gene-1 mRNA as markers of disseminated hepatocellular carcinoma cells in blood.Hepatobiliary Pancreat Dis Int,2005,4(2):227-233.
    54.Chiriva-Internati M,Grizzi F,Wachtel MS,et al.Biological treatment for liver tumor and new potential biomarkers.Dig Dis Sci,2008,53(3):836-843.
    55.蔡胜利,赵海涛,冷希圣,等.黑色素瘤抗原-3基因在肝细胞癌中的研究.中华外科杂志,2000,38(9):693-696.
    56.Grizzi F,Franceschini B,Hamrick C,et al.Usefulness of cancer-testis antigens as biomarkers for the diagnosis and treatment of hepatocellular carcinoma.Transl Med,2007,5:3.
    57.Inoue H,Mori M,Honda M,et al.The expression of tumor-rejection antigen "MAGE" genes in human gastric carcinoma.Gastroenterology,1995,109(5):1522-1525.
    58.Katano M,Nakamura M,Morisaki T,et al.Melanoma antigen-encoding gene-1 expression in invasive gastric carcinoma: correlation with stage of disease. J Surg Oncol, 1997, 64(3): 195-201.
    59. Sadanaga N, Nagashima H, Mashino K, et al. Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas. Clin Cancer Res, 2001,7(8): 2277-2284.
    60. Kim YM, Lee YH, Shin SH, et al. Expression of MAGE-1,-2, and -3 Genes in gastric carcinoma and cancer cell lines derived from Korean patients. J Korean Med Sci, 2001,16(1): 62-68.
    61. Kuwahara A, Katano M, Nakamura M, et al. Expression of melanoma antigen-encoding gene-1 predicts lymph node involvement in early gastric carcinomas. Dig Dis Sci, 2001,46(2): 262-267.
    62. Brasseur F, Rimoldi D, Lienard D, et al. Expression of MAGE genes in primary and metastatic cutaneous melanoma. Int J Cancer, 1995, 63(3): 375- 380.
    63. Granelli P, Siardi C, Zennaro F, et al. Melanoma antigen genes 1 and 2 are differentially expressed in human gastric and cardial carcinomas. Scand J Gastroenterol, 2000,35(5): 528-33.
    64. Okada Y, Fujiwara Y, Yamamoto H, et al. Genetic detection of lymph node micrometastases in patients with gastric carcinoma by multiple-marker reverse transcriptase-polymerase chain reaction assay. Cancer, 2001, 92(8): 2056-2064.
    65. Jung EJ, Kim MA, Lee HS, et al. Expression of family A melanoma antigen in human gastric carcinoma. Anticancer Res, 2005, 25(3B): 2105-2111.
    66. Li J, Yang Y, Fujie T, et al. Expression of the MAGE gene family in human gastric carcinoma. Anticancer Res, 1997,17(5A): 3359-3563.
    67. Paz MF, Fraga MF, Avila S, et al. A systematic profile of DNA methylation in human cancer cell lines.Cancer Res,2003,63(5):1114-1121.
    69.陈雪华,刘炳亚,张冬青,等.MAGE-1、MAGE-3基因在胃癌和胃活检组织中的表达及意义.细胞与分子免疫学杂志,2004,20(3):310-313.
    70.Nishimura S,Fujita M,Terata N,et al.Expression of MAGE genes in colorectal carcinomas.Nihon Rinsho Meneki Gakkai Kaishi,1997,20(2):95-101.
    71.Park MS,Park JW,Jeon CH,et al.Expression of melanoma antigen encoding genes(MAGE)by common primers for MAGE-A1 to-A6 in colorectal carcinomas among Korean.Korean Med Sci,2002,17(4):497-501.
    72.Li M,Yuan YH,Han Y,et al.Expression profile of cancer-testis genes in 121 human colorectal cancer tissue and adjacent normal tissue.Clin Cancer Res,2005,11(5):1809-1814.
    73.Yamamoto H,Miyake Y,Noura S,et al.Clinical significance of micrometastasis to lymph nodes in gastrointestinal tract cancers.Gan To Kagaku Ryoho,2001,28(6):776-783.
    74.Gerhardt A,Usener D,Keese M,et al.Tissue expression and sero-reactivity of tumor-specific antigens in colorectal cancer.Cancer Lett,2004,208(2):197-206.
    75.Koketsu S,Watanabe T,Kazama S,et al.What types of colorectal cancer overexpress the MAGE protein? Hepatogastroenterology,2004,51(60):1648-1652.
    76.Kim KH,Choi JS,Kim IJ,et al.Promoter hypomethylation and reactivation of MAGE-A1 and MAGE-A3 genes in colorectal cancer cell lines and cancer tissues.World J Gastroenterol,2006,12(35):5651-5657.
    77.Scanlan MJ,Simpson AJ,Old LJ.The cancer/testis genes:review,standardization,and commentary.Cancer Immun,2004,4:1.
    78.Bariol C,Suter C,Cheong K,et al.The relationship between hypomethylation and CpG island methylation in colorectal neoplasia.Am J Pathol,2003,162(4):1361-1371.
    79.Alves PM,Levy N,Bouzourene H,et al.Molecular and immunological evaluation of the expression of cancer/testis gene products in human colorectal cancer.Cancer Immunol Immunother,2007,56(6):839-847.
    80.Miyashiro I,Kuo C,Huynh K,et al.Molecular strategy for detecting metastastic cancers with use of multiple tumor-specific MAGE-A genes.Clin Chem,2001,47(3):505-512.
    81.Kufer P,Zippelius A,Lutterbuse R,et al.Heterogeneous expression of MAGE-A genes in occult disseminated tumor cells:a novel multimarker reverse transcription-polymerase chain reaction for diagnosis of micrometastatic disease.Cancer Res,2002,62(1):251-261.
    82.Mecklenburg I,Weckermann D,Zippelius A,et al.A multimarker real-time RT-PCR for MAGE-A gene expression allows sensitive detection and quantification of the minimal systemic tumor load in patients with localized cancer.J Immunol Methods,2007,323(2):180-193.
    83.杨世忠,董家鸿,朱瑾,等.肝癌患者围手术期外周血黑色素瘤抗原-1mRNA和甲胎蛋白mRNA检测与术后复发的关系.中华医学杂志,2005,85(9):595-598.
    84.Jungbluth AA,Busam KJ,Kolb D,et al.Expreeeion of MAGE-antigens in normal tissue and cancer.Int J Cancer,2000,85(85):460-465.
    85.江继发,魏海明.检测肿瘤转移指标的临床意义.国外医学学·肿瘤学分册,1998,25(2):82-84.
    86.梁锐,王芳,王开昕,等.MAGE-A1,A4基因在大肠肿瘤中的表达及临床意义.世界华人消化杂志,2005,13(5):657-661.
    87.Simpson AJ,Caballero OL,Jungbluth A,et al.Cancer/testis antigens,gametogenesis and cancer.Nat Rev Cancer,2005,5(5):615-625.
    88.Jungbluth AA,Stockert E,Chen YT,et al.Monoclonal antibody MA454reveals a heterogeneous expression pattern of MAGE-1 antigen in formalin-fixed paraffin embedded lung tumours.Br J Cancer,2000,83(4):493-497
    89.李强,刘宁,李慧,等.荧光定量PCR法扩增MAGE-1、MAGE-3及AFP基因联合检测病人外微小转移.中华肝胆外科杂志,2007,13(1):13-17.
    90.马鸣,俞莉章,那彦群.肿瘤特异性抗MAGE基因的表达及意义.国外医学泌尿系统分册,2003,23(5):526-529.
    91.Marchand M,van Baren N,Weynants P,et al.Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1.Int J Cancer,1999,80(2):219-230.
    92.Markovic SN,Suman VJ,Ingle JN,et al.Peptide vaccination of patients with metastatic melanoma:improved clinical outcome in patients demonstrating effective immunization.Am J Clin Oncol,2006,29(4):352-360.
    93.吕斌,刘炳亚,张轶,等.MAGE-3抗原肽脉冲树突状细胞对小鼠胃癌移植瘤的免疫防护作用.中华医学杂志,2005,85(30):2120-2123.
    94.Sadanaga N,Nagashima H,Mashino K,et al.Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas.Clin Cancer Res,2001,7(8):2277-2284.
    95.Berard F,Blanco P,Davoust J,et al.Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells.J Exp Med,2000,192(11):1535-1544.
    96.Hao X,Shao Y,Ren X,et al.Induction of specific CTL by MAGE-3/CEA peptide-pulsed dendritic cells from HLA-A2/A24(+)gastrointestinal cancer patients. J Cancer ResClin Oncol, 2002, 128(9): 507-515.
    97. Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med, 1998, 4(3): 328-332.
    98. Serrano A, Tanzarella S, Lionello I, et al. Rexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2'-deoxycytidine treatment. Int J Cancer, 2001, 94(2): 243- 251.
    1.Van Speybroeck L.From epigenesis to epigenetics:the case of C.H.Waddington.Ann N Y Acad Sci,2002,981:61-81.
    2.Jablonka E,Lamb MJ.The changing concept of epigenetics.Ann N Y Acad Sci,2002,981:82-96.
    3.Holliday R.Epigenetics:a historical overview.Epigenetics,2006,1(2):76-80.
    4.Wolffe AP,Matzke MA.Epigenetics regulation through repression.Scince,1999,286(5439):481-486.
    5.Qian W,Hu LF,Chen F,et al.Infrequent MDM2 gene amplification and absence of gross WAF1 gene alterations in nasopharyngeal carcinoma.Eur J Cancer B Oral Oncol,1995,31B(5):328-332.
    6.张永彪,褚嘉祜.表观遗传学与人类疾病的研究进展.遗传,2005,27(3):466-472.
    7.Robertson KD.DNA methylation,methyltransferases,and cancer.Oncogene,2001,20(24):3139-3155.
    8.Jones PA,Takai D.The role of DNA methylation in mammalian epigenetics.Science,2001,293(5532):1068-1070.
    9.Sulewska A,Niklinska W,Kozlowski M,et al.DNA methylation in states of cell physiology and pathology.Folia Histochem Cytobiol,2007,45(3):149-158.
    10.董玉玮,侯进慧,朱必才,等.表观遗传学的相关概念和研究进展。生命的化学,2005,22(1):1-3.
    11.Ahmal I,Rao DN.Chemistry and biology of DNA methyltransferaaes.Cirt Rev Biochem Mol Biol,1996,31(5-6):361-380.
    12.Singal R,Cinder GD.DNA methylatlon.Blood,1999,93(12):4059-4070.
    13. Yoder JA, Soman NS, Verdine GL, et al. DNA (cytosine-5)-methyltransfera-ses in mouse cells and tissues studies with a mechanism-based probe. J Mol Biol, 1997,270(3): 385-395.
    14. Yoder JA. A candidate mammalian DNA methyltransferase related to pmtlp of fission yeast. Hum Mol Genet, 1998,7(2): 279-284.
    15. Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999,99(3): 247-257.
    16. Robert MF, Morin S, Beaulieu N, et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet, 2003,33(1): 61-65.
    17. Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5)methyltransferases. Nat Genet, 1998, 19(3): 219-220.
    18. Cooper DN, Krawczak M. Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Hum Genet, 1989, 83(2): 181-188.
    19. Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol, 1987,196(2): 261-282.
    20. Riggs AD, Jones PD. 5'-methylcytosme, gene regulation and cancer. Adv Cancer Res, 1984,40(1): 1-30.
    21. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci, 2006,31(2): 89-97.
    22. Cottrell S E. Molecular diagnostic applications of DNA methylation technology. Clin Biochem, 2004,37(7): 595-604.
    23. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet, 2002, 3(6): 415-428.
    24. Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet, 1997,13(3): 335-340.
    25.Baylin SB,Herman JG.DNA hypermethylation in tumorigenesis:epigenetics joins genetics.Trends Genet,2000,16(4):168-174.
    26.Florl AR,Lower R,Schmitz-Drager BJ,et al.DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas.Br J Cancer,1999,80(9):1312-1321.
    27.Bender J.Cytosine methylation of repeated sequences in eukaryotes:the role of DNA pairing.Trends Biochem Sci,1998,23(7):252-256.
    28.刘泽军,前川真人.DNA甲基化的3种可能转录机制.生命的化学,2002,22(1):35-36.
    29.Feinberg A P,Tycko B.The history of cancer epigenetic.Nat Rev Cancer,2004,4(2):143-153.
    30 Vachtenheim J,Horakova I,Novotna H.Hypomethylation of CCGG sites in the 3'-region of H-ras protooncogene is frequent and is associated with H-ras allele loss in non-small cell lung cancer.Cancer Res,1994,54(5):1145-1148.
    31.Ehrlich M,Hopkins NE,Jiang G,et al.Satellite DNA hypomethylation in karyotyped Wilms tumors.Cancer Genet Cytogenet,2003,141(2):97-105.
    32.Gen Tamura.Alterations of tumor suppressor and tumor-related genes in the development and progression of gastric cancer.World Journal of Gastroenterology,2006,12(2):192-198.
    33.Kato K,Kara A,Kuno T,et al.Aberrant promoter hypermethylation of p16and MGMT genes in oral squamous cell carcinomas and the surrounding normal mucosa.J Cancer Res Clin Oncol,2006,132(11):735-743.
    34.Pogribny I,Raiche J,Slovack M,et al.Dose-dependence,sex and tissue-specificity,and persistence of radiation-induced genomic DNA methylation changes.Biochem Biophys Res Commun,2004,320(4):1253-1261.
    35.Lin CH,Hsieh SY,Sheen IS,et al.Genome-wide hypomethylation in hepat-ocellular carcinogenesis.Cancer Res,2001,61(10):4238-4243.
    36.Bernardino J,Roux C,Almeida A,et al.DNA hypomethylation in breast cancer:an independent parameter of tumor progression? Cancer Genet Cytogenet,1997,97(2):83-89.
    37.Matsuzaki K,Deng G,Tanaka H,et al.The relationship between global methylation level,loss of heterozygosity,and microsatellite instability in sporadic colorectal cancer.Clin Cancer Res,2005,11(24 Pt1):8564-8569.
    38.Brooks JD,Weinstein M,Lin X,et al.CpG island methylation changes near the GSTP1 gene in prostatic intraepithelial neoplasia.Cancer Epidemiol Bio markers Prev,1998,7(6):531-536.
    39.Chan AO,Rashid A.CpG island methylation in precursors of gastrointestinal malignancies.Curr Mol Med,2006,6(4):401-408.
    40.Anupam K,Tusharkant C,Gupta SD,et al.Loss of disabled-expression is an early event in esophageal squamous tumorigenesis.World J Gastroenterol,2006,12(37):6041-6045.
    40.郭晓青,王士杰,张健慧.食管癌前病变组织p16及FHIT基因甲基化探讨.中国肿瘤临床,2005,32(10):554-557.
    42.Shivapurkar N,Stastny V,Suzuki M,et al.Application of a methylation gene panel by quantitative PCR for lung cancers.Cancer Letters,2007,247(1):56-71.
    43.Knudson AG.Hereditary cancer:two hits revisited.J Cancer Res Clin Oncol,1996,122(3):135-140.
    44.Jones PA,Laird PW.Cancer epigenetics comes of age.Nat Genet,1999,21(2):163-167.
    45.Cunningham JM,Christensen ER,Tester DJ,et al.Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability.Cancer Res,1998,58(15):3455-3460.
    46.Graff JR,Herman JG,Lapidus RG,et al.E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res, 1995, 55(22): 5195-5199.
    47. Loriot A, De Plaen E, Boon T, et al. Transient down-regulation of DNMT1 methyltransferase leads to activation and stable hypomethylation of MAGE-A1 in melanoma cells. J Biol Chem, 2006,281(15): 10118-10126.
    48. Rountree MR, Bachman KE, Herman JG, et al. DNA methylation, chromatin inheritance, and cancer. Oncogene, 2001,20(24): 3156-3165.
    49. Kennedy BK, Barbie DA, Classon M, et al. Nuclear organization of DNA replication in primary mammalian cells. Genes Dev, 2000, 14(22): 2855-2868.
    50. Kirkin AF, Dzhandahugazyan KN, Zeuthen J. Caner/testis antigens: structural and immunobiological properties. Cancer invest, 2002, 20(2): 222-236.
    51. Scanlan MJ, Gure AO, Jungbluth AA, et al. Cancer/testis antigen: an expanding family of targets for cancer immunotherapy. Immuno Review, 2002,188: 22-32.
    52. Jung EJ, Kim MA, Lee HS, et al. Expression of family A melanoma antigen in human gastric carcinoma. Anticancer Res, 2005,25(3B): 2105-2111.
    53. Qiu G, Fang J, He Y. 5'CpG island methylation analysis identifies the MAGE-A1 and MAGE-A3 genes as potential markers of HCC. Clin Biochem, 2006,39(3): 259-266.
    54. Wischnewski F, Pantel K, Schwarzenbach H. Promoter demethylation and histone acetylation mediate gene expression of MAGE-A1, -A2, -A3, and-A12 in human cancer cells. Mol Cancer Res, 2006,4(5): 339-349.
    55. Hersey P, Menzies SW, Coventry B, et al. Phase I/II study of immunotherapy with T-cell peptide epitopes in patients with stage IV melanoma. Cancer Immunol Immunother, 2005,54(3): 208-218.
    56. Weber J, Salgaller M, Samid D, et al. Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2'-deoxycytidine. Cancer Res, 1994, 54(7): 1766-1771.
    57. De Smet C, Loriot A, Boon T. Promoter-dependent mechanism leading to selective hypomethylation within the 5'region of gene MAGE-A1 in tumor cells. Mol Cell Biol, 2004,24(11): 4781-4790.
    58. Zhang J, Yu J, Gu J, et al. A novel protein-DNA interaction involved with the CpG dinucleotide at -30 upstream is linked to the DNA methylation mediated transcription silencing of the MAGE-A1 gene. Cell Res, 2004, 14(4): 283-294.
    59. Honda T, Tamura G, Waki T, et al. Demethylation of MAGE promoters during gastric cancer progression. Br J Cancer, 2004,90(4): 838-843.
    60. Kim KH, Choi JS, et al. Promoter hypomethylation and reactivation of MAGE-A1 and MAGE-A3 genes in colorectal cancer cell lines and cancer tissues. World J Gastroenterol, 2006,12(35): 5651-5657.
    61. Jung EJ, Kim MA, Lee HS, et al. Expression of family A melanoma antigen in human gastric carcinoma. Anticancer Res, 2005,25(3B): 2105-2111.
    62. Weiser TS, Ohnmacht GA, Guo ZS, et al. Induction of MAGE-3 expression in lung and esophageal cancer cells. Ann Thorac Surg, 2001, 71(1): 295-301.
    63. Suyama T, Ohashi H, Nagai H, et al. The MAGE-A1 gene expression is not determined solely by methylation status of the promoter region in hematological malignancies. Cancer Res, 2004, 64(24): 9167-9171.
    64. Toyota M, Itoh F, Imai K. DNA methylation and gastrointestinal malignancies: functional consequences and clinical implications. J Gastroenterol, 2000,35(10): 727-734.
    65. Palmisano WA, Divine KK, Saccomanno G, et al. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res, 2000, 60(21): 5954-5958.
    66. Verma M, Maruvada P, Srivastava S. Epigenetics and cancer. Crit Rev Clin Lab Sci, 2004,41(5-6): 585-607.
    67. Rivard GE, Momparler RL, Demers J, et al. Phase I study on 5-aza-2'-deoxy-cytidine in children with acute leukemia. Leuk Res, 1981, (6): 453-462.
    68. Kantarjian HM, O'Brien S, Cortes J, et al. Results of decitabine (5-aza-2'deoxycytidine) therapy in 130 patients with chronic myelogenous leukemia. Cancer, 2003, 98(3): 522-528.
    69. Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol, 2002, 20(10): 2429-2440.
    70. Schrump DS, Fischette MR, Nguyen DM, etal. Phase I study of decitabine-mediated gene expression in patients with cancers involving the lungs, esophagus, or pleura. Clin Cancer Res, 2006,12(19): 5777-5785.
    71. Suzuki T, Yoshida K, Wada Y, et al. Melanoma-associated antigen-A1 expression predicts resistance to docetaxel and paclitaxel in advanced and recurrent gastric cancer. Oncol Rep, 2007,18(2): 329-336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700