江西冷水坑斑岩型银铅锌矿床成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
江西冷水坑银铅锌矿床是国内外少见的最具代表性的斑岩型银铅锌矿床。与斑岩型铜(钼)矿床不同,国外并不存在公认的斑岩型铅锌矿床。目前,斑岩型铜(钼)矿床的研究程度已经很高,而对于斑岩型银铅锌矿床而言还比较低,至今仍没有开展过深入系统的研究工作,且对于两种斑岩型矿床产生成矿元素Ag-Pb-Zn与Cu-Mo差异的原因,至今未明。
     本文以板块构造理论为指导,在野外调查和前人工作成果基础上,采用现代矿床学研究方法,多种学科相结合,应用先进的测试方法和技术,对斑岩型银铅锌矿床的构造控制、含矿岩浆起源及形成机制、成矿物质来源、成矿流体系统、矿化系统等方面进行了较为系统的研究工作。
     冷水坑银铅锌矿区地处扬子板块与华南板块拼接带南侧,华南褶皱带武夷隆起区北西部,浪岗—月凤山火山盆地内,区域上受NE向加里东期鹰潭—安远大断裂和EW向广丰—萍乡深断裂带的复合控制。含矿花岗斑岩展布严格受区域性北东向大型走滑断裂—耳口-湖石断裂控制,侵位于侏罗系打鼓顶组及鹅湖岭组下段火山岩中。含矿斑岩为碱长花岗斑岩,属于钙碱性岩石系列,起源于该区武夷区基底变质岩,由上地壳物质重熔形成,属于S型花岗岩,并有少量下地壳物质参与。冷水坑矿区含矿斑岩SHRIMP锆石U—Pb年代学显示,成岩年龄为162Ma,形成于中侏罗世燕山中期,处于华北板块与华南板块碰撞造山晚期环境。
     与典型的斑岩型铜(钼)矿床不同,矿区大量发育与矿化密切相关的“氢交代”蚀变以及大量的碳酸盐化蚀变,蚀变分带由岩体内向外分别为:绿泥石绢云母化带、绢云母化碳酸盐化和碳酸盐化绢云母化带。蚀变作用表现形式以全岩蚀变和选择交代蚀变为主;斑岩型矿体主要为银矿体、铅锌矿体、金矿体、铜矿体等,以银矿体、铅锌矿体为主,金矿体及铜矿体分布零散。矿体多呈透镜状产于花岗斑岩前缘带、主体带及接触带附近,部分产于岩体近根部带及外带火山岩中,产状与花岗斑岩产状一致。矿石类型以银矿石、铅锌矿石、铜矿石、铁锰银矿石、铁锰铅锌矿石为主,构造类型为浸染状、细脉状、细脉浸染状、脉状、块状,矿石矿物主要为闪锌矿、方铅矿、黄铁矿、螺状硫银矿、自然银、黄铜矿、菱锰铁矿、磁铁矿、硫银锡矿、深红银矿、自然金等。矿化主要发生在中低温阶段,且具有一定的分带性,自岩体内向外发育铜金矿化-铅锌矿化-银铅锌矿化,并与蚀变分带相对应。从成矿早阶段到晚阶段成矿流体的温度、盐度不断降低,且有大气水不断加入,成矿流体与成矿物质主要来源于斑岩岩浆体系。
     含矿斑岩绢云母Ar-Ar同位素测年得出,冷水坑银铅锌矿的成矿时间为162Ma,与含矿斑岩形成时间一致,成岩成矿关系密切。通过与斑岩型铜(钼)矿床进行综合对比,认为产生斑岩型矿床不同矿化特点的原因在于含矿斑岩岩浆的起源地及源区性质的差异,这也是导致两种矿床含矿斑岩特征、围岩蚀变系统、成矿流体体系等差异的根源,最终建立冷水坑矿区成矿模型。
The Lengshuikeng porphyry silver-lead-zinc deposit in Jiangxi province is the most representative one which is very rare in world wide. It is different from the porphyry copper(molybdenum) deposits for that the porphyry silver-lead-zinc deposit is not a common recognition one. Research on the porphyry copper(molybdenum) deposit is very matured, but it is quite weak regarding to research on the porphyry silver-lead-zinc deposits. The key problem is that the reasons for different mineralization between Ag-Pb-Zn and Cu-Mo elements, which remain unknown until now.
     Based on previously published data on the Lengshuikeng deposit, the author carried on field investigation and studies on deposit geochronology, lithogeochemistry, isotopic geochemistry and inclusion geochemistry of the deposit. The dissertation discusses aspect of structure control on the Lengshuikeng porphyry deposits, the origin of Cu-beared magmas and mechanism of ore-forming materials and evolution of the ore forming.
     The porphyry silver, lead, zinc deposit in Lengshuikeng is located in southern of splicing belt of the Yangtz and the South China tectonic plate, where suited in Langgang-Yuefengshan volcanic basin of northwest Wuyi upwelling area in south of China. The district were controlled by compound fault that Northeast big fault of Yingtan-Anyuan and East to west deep fault of Guangfeng-Pingxiang in Caledonian epoch. Distribution of ore-bearing granite-porphyry were strictly controlled by Erkou-Hushi fault, which is a big Northeast strike-slip fault in the district, and the granite-porphyry were emplaced in volcanic rocks which was located in bottom member of Daguling group and Erhuling group in Jurassic system. The chronology study of zircon U-Pb by SHRIMP to ore-bearing granite-porphyry show that the diagenetic age was 162Ma, in middle of Yanshan epoch of Jurassic system, when was in late of collision to orogenic tectonic surrounding. The ore-bearing porphyry is alkali-feldspar granite-porphyry, which belong to calc-alkalic rock. The research on trace elements and rare earth elements show that the ore-bearing granite-porphyry, intrusive vein rock and the surrounding rock-volcanic rocks of late Jurassic system, all of them origin from remelting of crustal rocks, so they were granite of sedimentary style, it is obvious different from typical ore-bearing granite of the porphyry copper. Research on characteristics of isotope of Pb, Sr, Nd, O, Hf system of ore-bearing granite-porphyry show that rocks origin from metamorphic rocks in basement of Wuyi district, which formed by remelting of upper crustal material. Difference from typical porphyry copper(Molybdenum) deposit, the ore field have much alteration of hydrogen metasomatism which relative to mineralization and carbonation alteration, the mineralization mainly occured in middle-low temperature stage.
     The mineralizing fluid of porphyry silver, lead, zinc deposit in Lengshuikeng belong to CaSO_4 (MgCl_2) -NaCl-KCl-H_2O magmatic hydrothermal system, the fluid system have characteristics of middle-low temperature and middle-low salinity. The mineralizing fluid composition of isotope of hydrogen oxygen, carbon oxygen, sulfur and lead show that the fluid origin from magmas of granite-porphyry, there are meteoric water mixed during the mineralization, the ore-forming material mainly came from magmas system of porphyry rocks.
     Study on chronology of sericite by Ar-Ar method show that the metallogenetic epoch of the deposits was 162Ma, it is same as the chronology of ore-bearing porphyry rocks and the time of mineralization maybe continued limit to 27Ma. By analysis the characteristics of mineralization, ore-control factor, geophysical and geochemical prospecting index, the author primary summarized the prospecting model of porphyry silver, lead, zinc deposit in Lengshuikeng mine field.
     Synthesis contrast to the porphyry silver, lead, zinc deposit in Lengshuikeng with the most of porphyry copper(Molybdenum) deposit in the world, the author think that the reason for occurring different mineralization of porphyry ore deposit is that the source of porphyry magma and character of the source is different, which is also the key factor for the difference of character of ore-bearing porphyry rocks, alteration system of surrounding rocks and mineralizing fluid of two kind porphyry ore deposit.
引文
陈繁荣,裘愉卓.1995.江西贵溪冷水坑多金属矿床成矿过程流体地球化学模拟及其地质意义[J].地球化学(增刊),24(1):24-32.
    陈江峰,江博明.1999.钕锶铅同位素示踪和中国东南大陆地壳演化.见:郑永飞,化学地球动力学,北京:科学出版社,262-287.
    陈克荣,陈武,周建平,等.1988.江西冷水坑火山-侵入杂岩体岩石化学及地球化学特征.岩石矿物学杂志,6(1):18-28.
    陈培荣,周新民,张文兰.2004.南岭东段燕山早期正长岩-花岗岩杂岩的成因和意义.中国科学(D 辑),36(6):493-503.
    陈武,周建平.1988.江西冷水坑斑岩型银铅锌矿床矿化特征.矿物岩石,8(2):84-91.
    陈武,周建平.1988.江西冷水坑斑岩型银铅锌矿床矿化特征.矿物岩石,8(2):84-91.
    邓绍明.1991.江西贵溪冷水坑古火山岩区隐爆碎屑岩类型及成因探讨.江西地质科技,18(1):28-32.
    董绍芳.1994.江西冷水坑含金斑岩及金矿化特征.江西地质,8(1):14-20.
    范宏瑞,谢奕汉,王英兰.1998.扫描电镜下流体包裹体子矿物的鉴定.地质科技情报,17(增刊):111-117.
    郭春丽,王登红,陈毓川,王彦斌,陈郑辉,刘善宝.2007.赣南中生代淘锡坑钨矿区花岗岩锆石SHRIMP 年龄及石英脉Rb-Sr年龄测定,矿床地质,26(4):432-442.
    侯增谦,高永丰,曲晓明,等.2004.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报,20(2):239-248.
    侯增谦,莫宜学,高永丰,等.2003.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩.矿床地质,22(1):1-12.
    侯增谦,曲晓明,黄卫,等.2001.冈底斯斑岩铜矿带有望成为西藏第二条玉龙铜矿带.中国地质,28(10):27-40.
    华仁民,李晓峰,陆建军,等.2000.德兴大型铜金矿集区构造环境和成矿流体研究进展.地球科学进展,15(5):525-533.
    黄定堂.2001.江西银山铜多金属矿床地质特征及其成因分析.江西地质,15(2):102-107.
    黄振强.1992a.冷水坑碳酸盐型银矿床成因探讨.江西地质,6(1):1-8.
    黄振强.1992b.冷水坑银矿区的发现与评价.江西地质,6(4):309-314.
    黄振强.1993.冷水坑银矿区成矿条件及矿床特征.贵金属地质,2(4):284-291.
    江西地质矿产局.1982.江西省区域地质志.北京:地质出版社.
    江西省地矿局912大队.1988.江西省贵溪县银路岭银铅锌矿区勘探地质报告(内部资料).
    江西省地矿局912大队.1988.江西省贵溪县鲍家银铅锌矿区祥查地质报告(内部资料).
    江西地质矿产勘查开发局九一二地质队.2004江西省贵溪县下鲍家银铅锌矿区祥查地质报告(内部资料).
    黎彤.1976.化学元素的地球丰度.地球化学,3:167-174.
    李华芹,路远发,王登红,陈毓川,杨红梅,郭敬,谢才富,梅玉萍,马丽艳.2006.湖南骑田岭芙蓉矿区成岩成矿时代的厘定及其地质意义.地质论评,52(1):113-121.
    李龙,郑永飞,周建波.2001.中国大陆地壳铅同位素演化的动力学模型.岩石学报,17(1):61-68.
    李舒.1996.中国银矿床主要类型及矿床特征.地震出版社.
    李兆鼐,权恒,李之彤.2003.中国东部中新生代火成岩及其深部过程.北京:地质出版社,1-357.
    凌洪飞,徐士进,沈渭洲,王汝成,林雨萍.1998.格宗、东谷岩体Nd、Sr、Pb、O同位素特征及其与扬子板块边缘其它晋宁期花岗岩对比.岩石学报,14(3):269-277.
    刘显凡,战新志,高振敏,等.1999.云南六合深源包体与富碱斑岩成岩成矿的关系.中国科学《D辑),29:413-420.
    刘讯,申世亮.1991.江西冷水坑银铅锌矿区构造地球化学的若干问题.大地构造与成矿学,15(1):41-54.
    卢换章,范宏瑞,倪培,欧光习,沈昆,张文淮.2004.流体包裹体.科学出版社.
    吕志成,戴自希,芮宗瑶.2004.国内外铅锌矿床成矿理论与找矿方法.中国地调局发展研究中心.
    罗诒爵.1985.冷水坑斑岩型铅锌矿床地质特征.矿床地质,4(4):15-24.
    罗治爵.1991.冷水坑斑岩型银铅锌矿床围岩蚀变特征。江西地质,5(1):3-10.
    毛景文,王志良.2000.中国东部大规模成矿时限及其动力学背景的初步探讨.矿物岩地球化学通报,19(4):403-405.
    毛景文,谢桂青,李晓峰,张作衡,王义天,王志良,赵财胜,杨富全,李厚民.大陆动力学演化与成矿研究:历史与现状-兼论华南地区在地质历史演化期间大陆增生与成矿作用.矿床地质,24(3):193-205.
    孟祥金,侯增谦,董光裕,等.2007.江西金溪熊家山钼矿床特征及其Re-Os年龄.地质学报,81(7):946-951.
    莫宣学,赵志丹,Don J DEPAOLO,周肃,董国臣2006.青藏高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示:Sr-Nd同位素证据.岩石学报,22(4):795-803.
    南京地矿所.1989.浙闽赣中生代火山岩区火山旋回火山构造岩石系列及演化(研究报告).中国地质科学院南京地质矿产研究所所刊(增刊),第六号.
    裴荣富.1995.中国矿床模式.北京:地质出版社.
    齐进英.1987.江西冷水坑斑岩类型及其矿化特征.岩石学报,(1):40-49.
    钱鹏,陆建军.2005.德兴铜矿花岗闪长斑岩物质来源的微量元素研究.地质找矿论丛,20(2):75-79.
    邱瑞照,李廷栋,周肃,邓晋福,肖庆辉,耿树方.2006.中国大陆岩石圈物质组成及演化.地质出版社.
    芮宗瑶,黄崇轲,齐国明,等,1984,中国斑岩铜(钼)矿床.北京:地质出版社.
    沈渭洲,凌洪飞,李武显.2000.中国东南部花岗岩类的Nd模式年龄与地壳演化.中国科学(D 辑),30(5):471-478.
    宋彪,张玉海,万渝生.2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,48(增刊):26-30.
    唐仁鲤,罗怀松.1995.西藏玉龙斑岩铜(钼)矿带地质.北京:地质出版社.
    涂光炽等.1989.中国铅锌矿床.见:《中国矿床》编委会,中国矿床(上册).北京:地质出版社.116-204.
    王安城.1991.冷水坑斑岩银铅锌矿银的赋存状态及富集规律.江西地质,5(3):227-237.
    王强,赵振华,简平,等,2004.德兴花岗闪长斑岩SHRIMP锆石U-Pb年代学和Sr-Nd同位素地球化学.岩石学报,20(2):315-324.
    魏明秀.1997.江西冷水坑斑岩银矿床的蚀变碳酸盐矿物与银矿化关系.矿产与地质,11(57):39-45.
    吴利仁,李秉伦.1991.中国东部中生代两大类斑岩型矿床.北京:科学出版社.
    徐文炘,肖孟华,陈民扬.2001.江西冷水坑银铅锌矿床同位素地球化学研究.矿物岩石地球化学通报,20(4):370-372.
    徐文炘,肖孟华,陈民扬.2002.江西冷水坑银多金属矿床同位素地球化学研究.地质论评,48(增刊):193-196.
    严学信,赵志刚,何细荣.2007.贵溪冷水坑银矿区银元素富集规律研究.资源调查与环境,28(1):46-53.
    杨存来.1993.江西冷水坑铅锌银矿床地球化学异常特征及找矿模型.物探与化探,17(3):173-181.
    杨明桂,王发宁,曾勇.2002.赣东北地区的成矿环境与成矿作用.资源调查与环境,23(2):122-129.
    杨明桂,王昆.1994.江西省地质构造格架及地壳演化.江西地质,8(4):239-251.
    尧杰.2003.银露岭矿区矿体地质特征及地质工作的几点新认识.有色金属:55(2):11-12.
    叶庆同.1987.赣东北铅锌矿床成矿系列和成矿机理.北京:北京科学技术出版社.
    张理刚.1985.稳定同位素在地质科学中的应用-金属活化热液成矿作用及找矿.西安:陕西科学出版社.
    张理刚.1989.成岩成矿理论及找矿.北京:北京工业大学出版社.
    张乾.1990.山东香夼斑岩型铅锌矿床的地球化学特征及成因探讨.地质找矿论丛,5(2):12-20.
    张文淮,陈紫英.1993.流体包裹体地质学.地质出版社.
    朱训,黄崇轲,芮宗瑶,等.1983.德兴斑岩铜矿.北京:地质出版社.
    Amelin Y,Lee DC,Halliday AN,Pidgeon RT.1999.Nature of the Earths earliest crust from hafnium isotopes in single detrital zircons,Nature,399:252-255.
    Armbrus W J.1977.Geology of the EI Abra porphyry copper deposit,Chile.Econ.Geol.,72:1065-1085.
    Arribas A J, Hedenquist J W, Itaya T, et al., 1995. Contemporaneous formation of adjacent porphyry and epithermal Cu-Au deposits over 300 ka in northern Luzon, Philippines.Geology, 23: 337-340.
    Babcock R C J, Ballantyne G H, Phillips C H. 1995. Summary of the geology of the Bingham District, Utah. Arizona Geological Society Digest, 20:316—335.
    Beane R E, Titley S R. 1981. Porphyry copper deposits: Part II: Hydrothermal alteration and mineralization. Econ. Geol., 75th Anniv:235—269.
    Bodnar R J. 1995. Fluid-inclusion evidence for a magmatic source for metals in porphyry copper deposits. In: J F H Thompson(ed.). Magmas, fluids, and ore deposits. Mineralogical Association of Canada Short Course Series, Mineralogical Association of Canada, 23:139-152.
    Blichert-Toft J, Albarede F, Kornprobst J.1999.lu-Hf isotope systematics of garnet pyroxenites from Beni Bousera,Morocco:Implications for asalt origin. Science, 283:1303~1306.
    Blichert-Toft J, Frei R. 2001. Complex SnrNd and Lu-Hf isotope systematics in metamorphic garnets from the Isa suoracrustal belt, west Greenland. Geochim. Cosmochim. Cosmochim. Acta, 65:3177-3167.
    Camus F, Silltioe R H, Petersen R. 1996. Andean copper deposits: new discoveries, mineralization style and metallogeny. Society of Economic Geologists Special Publication 5,5:198.
    Clark G H. 1990. Panaguna copper-gold deposit. Hughes F E (ed.). Geology of the Mineral Deposits of Australia and Papua New Guinea. Australian:Australian Institute of Mining and Metallurgy, 1807-1816.
    Cline I S,BondnarR J. 1991. Caneconomic porphyry copper minerlization be generated by a pypical talc—alkaline melt? Journal of Geophysical Research,96 :8113—8186.
    Compston W, Williams I S , Kirschvink J L and Zhang Z G. 1992. Zircon U-Pb ages for the early Cambrian time scale. J. GeologicalSociety, London, 149:171—184.
    Compston W, Williams I S, Meyer C. 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe . J. Geophysical Research, 89 (Supp.):325-534.
    Dilles 1 H. 1987. Petrology of the Yerington batholith, Nevada: evidence for evolution of porphyry copper ore fluids. Econ. Geol. 82:1750—1759.
    Griffin WL, Pearson NJ, Helousova E, Jackson SE, Achterbergh E, O'Reilly SY, Shee SR. 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta, 64:133—147.
    Guilbert J M. 1995. Geology, alteration, mineralization and genesis of the bajo de la Alumbrera porphyry copper-gold deposit, Catamarca province, Argentina. Arizona Geological Society Diges, 20: 646~656.
    Heinrich C. 2005. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition:a thermodynamic study.Mineral Depos 39:864~889.
    Hendry D A F, Chivas A R, Reed S B T, et al. 1989. Geochemical evidence form agmatic fluid in porphyry copper mineralization, part Ion-probe analysis of Cu Contents of mafic minerals, koloulal gneous complex . Contrib. Mineral. Pertol, 86:404~412.
    Hollister V F. 1978. Geology of the porphyry copper deposits of the Western Hemisphere. New York: Soc. Mining Engineers.
    Hou Z Q, Ma H W, Khin Zaw,et al., 2003. The Yulong Porphyry Copper Belt: Product of Large-Scale Strike-Slip Faulting in Eastern Tibet: Economic Geology, 98:125—145.
    Kay S M , Mpodozis C , Coma B. 1999.Neogene magmatism, tectonism, and minerald eposits of central Andes(220 to 330 S Latitude).Geology and Ore Depositsof the Central Andes. Skinner B J (ed.). Society of Economic Geologists Special Publication 7, 27— 59.
    Kerrich R, Goldfarb R, Groves D, Garwin S. 2000. The characteristics, origins, and geodynamic setings of supergiant gold metallogenic provinces:S icence in China, 43 :1~ 68.
    Kirkham R V. 1998. T ectonic and structural features of arc deposits: Metallogeny of Volcanic Arcs, British Columbi a Geological Survey, BI-45.
    Lowell J D, Guilbert J M. 1970. Lateral and vertical alteration-mineralizatioon zoning in porphyry ore deposits. Econ. Geol., 65:373~408.
    Lowell J D. 1974. Regional characteristics of porphyry copper deposits of the southwest. Econ. Geol., 69: 601~617.
    
    Lowenstern1 B. 1994. Dissolved Volatile Concentrations in an ore-forming magma. Geology, 22:893~896.
    Macdonald G D, Arnold L C. 1994. Geological and geochemical zoning of the Grasberg igneous complex, Irian, Jaya, Indonesia. Journal of Geochemical Exploration, 50: 145~178.
    McMillan W J. 1980. Panteleyev, A. Ore deposit models-1. Porphyry copper deposits. Geoscience Canada, 7:52~63.
    Mctnnes B I A.Cameron E M, 1994. Carbonated, alkaline hydridizing melts from a sub-arc environment: mantle wedge samples from the Tabar-Lihir-tanga-Feniarc, Papua New Guinea Earth. Planet. Sci. Let. ,122: 125-141.
    Meldrum S J, Aquino R S, Gonzales R I, et al., 1994. The Batu Hijau porphyry copper-gold deposit, Sumbawa Island, Indonesia. Journal of Geochemical Exploration, 50: 203~220.
    Metrich N, Rutherfood M J. 1992. Experimental study of chlorine behaviou in hydrous silicmelts. Geochim Cosmochim Al-Ca, 56:607~616.
    Mungall J E. 2002. Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits . Geology, 30: 915~918.
    Nam T N , Sano Y, Terada K, et al. 2001. First SHRIMP U-Pb zircon dating of granulites from the Kontum massif (Vietnam) and tectonothermal implications. Journal of A sian Earth Sciences, 19:77~84.
    Nielsen H. 1976. Recent developments in the study of porphyry copper geology: Areview. In: Brown AS, (ed.). Porphyry deposits of the Canadian Cordillera. Can. Inst. Mining Metall. Spec, 15:487.
    Oyarzon R ,Marquez A ,Lillo J, et al., 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile:adakitic versus normal calc-alkaline magmatism. Mineralium Deposita, 36:794~798.
    Oyarzun R, Marquez A, Lillo J, et al., 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism. Mineralium Deposita, 36: 794~798.
    Patchett PJ. 1983. Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution. Geochim. Cosmochim. Acta, 47:81~91.
    Pearce J A.Harris N B W,Tindle A G. 1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Petrol., 25(4) :956~983.
    RichardsJ BoyceA J , Pr ingle M S. 2001. Geologic evolution of the Escondidaarea, northern Chile:a model for spatial and temporal location of porphyry Cu mineralization. Econmic Geology, 96:271—306.
    Roedder E. 1992. Fluid inclusion evidence for immiscibility in magmatic differentiation. Geochim. Cosmochim. Acta, 56:5~20.
    Rombach C S, Newberry R J. 2001. Shotgun deposit:granite porphyry-hosted gold-arsenic mineralization in southwestern Alaska, USA. Mineral Depos, 36:607~621.
    Ruano S M, Both R A, Golding S D. 2002. A fluid inclusion and stable isotope study of the Moonta copper-gold deposits, South Australia:evidence for fluid immiscibility in a magmatic hydrothermal system. Chem Geol, 192:211~226.
    Sajona F G, Maury R C. 1998. Association of adakite with gold and copper mineralization in the Philippines. CR ACAD SCI II A, 326: 27-34.
    Sajona F G.Maury R C . 1998. Association of adakite with gold and copper mineralization in the Philippines. CR ACAD SCI Il A , 3 26:27-34.
    Sillitoe R H , 1972. A platete ctonicmodle for the origin of porphyryc opperd eposits. Econ. Geol., 67 :184—197.
    Sillitoe R H, Gappe I M Jr. 1984. Phillipine porphyry copper deposits:geological setting and characteristics. CCOP Technical Publication H.Bangkok, United Nations Escap, Tailand.
    Skewes M A, Holmgren C, Stern C R . 2003. The Donoso copper-rich, tourmaline-bearing breccia pipe in central Chile:petrologic, fluid inclution and stable isotope evidence for an origin from magmatic fluids. Mineral Depos, 38:2—21.
    Skewes M A, Stern C R . 1995. Genesis of the giantlate Mioceneto Pliocenec opper deposits of central Chilein the context of Andean magmatic and tectonice volution. In ternational Geology Review. 37 (10):893—909.
    Solomon M. 1990. Subduction, arc reversal, and the origin of porphyry copper-gold deposits in island arcs. Geology (Boulder). 18 (7):630—633.
    Stefanini B, Williams-Jones A E. 1996. Hydrothermal evolution in the Calabona porphyry. Copper System (Sardinia,Italy). The path to an uneconomic deposit. Econ. Geol., 91:774—791.
    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In:Sunders A D, Norry M J. Magmatism in the Ocean Basin. Geol Soc Special Publ, (42): 313—345.
    Tarkian M, Hunken H, Tokmakchieva M, Bogdanov K. 2003. Precious-metal distribution and fluid-inclusion petrography of the Elatsite porphyry copper deposit , Bulgaria. Mineral Depos, 38:261—281.
    Taylor S R, McLenna W F. 1985.The Continental Crust:Its Composition and Evolution. London:Blackwell Sei Publ, 1—312.
    Thieblemont D , Stein G, Lescuyer J L . 1997. Epithermal and porphyry deposits:the adakite connection. CR ACAD ;SCI II A 325:103—109.
    Thieblemont D, Stein G, Lescuyer J L. 1997. Epithermal and porphyry deposits: the adakite connection. CR ACAD SCI II A, 325: 103—109.
    Tilley S R ,Beane R E . 1989. Porphyry copperde posits, part1, Geologic seting, petrology and tectogenesis. Econ. Geol . 75th. Anniv. 1:214—235.
    Titley S R, Beane R E. 1981. Porphyry copper deposits: Part 1: Geologic settings, petrology, and tectogenesis. Econ. Geol. ,75th Anniv. 214—235.
    Xie Y L, Xu J H, Hou Z Q,et al. 2004. Danghter minerals in fluid inclusions of garnet and diopside from Tongguanshan Copper Deposit by SEM/EDS and LRM. Journal of University of Science and Technology Beijing, 11(6) :481~485.
    Zhang Z Q, Tang S H, Wang J H, Yuan Z X, Bai G. 1994. New data for Ore-forming age of the Bayan Obe REE ore deposit, Inner Mongolia:Acta Geoscientia Sinica, 1~2:85~94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700