高羊茅和钝叶草对干旱胁迫的适应性及生理响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以两种不同光合类型的草坪草高羊茅(C_3植物,Festuca arunginacea(Shreb.)cv.Houndog)和钝叶草(C_4植物,Stenotaphrum secundatum(Walt)Kuntze cv.Bitter blue)为材料,利用盆钵试验研究了两种草叶片、根颈或匍匐茎、根系的对土壤干旱胁迫的生理响应,以及不同控水处理对两种草茎叶和根系生长特征及抗旱性的影响。
     设置灌溉间期3天、6天和9天三种控水处理,分别记作T1、T2和T3,总体上看,高羊茅的根系分布深度、总根长显著高于钝叶草;随着控水时期的延长,高羊茅茎叶干重无显著变化,而钝叶草茎叶干重增加,两种草15cm以下的根长密度增加,高羊茅尤为明显;两种草的总根长、根重均有增加的趋势,高羊茅增加更为明显;在此过程中,高羊茅的冠根比降低,而钝叶草的冠根比升高。在144天间期供水后作断水干旱胁迫处理,高羊茅土壤水势的下降明显快于钝叶草,且一天中的变幅较大,尤其表现在T3处理中;出现表观永久萎蔫症状T1早于T2和T3,高羊茅早于钝叶草;以茎叶生长量、相对含水量与叶绿素含量的变化看,延长供水间期可增强抗旱性。综合上述结果,适当延长控水间期对高羊茅茎叶生长无显著影响,对钝叶草茎叶生长有显著促进作用,有利于两种草根系生长与纵深分布,从而增强草坪草对干旱胁迫的适应性;高羊茅虽然比钝叶草有更深的根系分布,但由于它在断水干旱胁迫下土壤水势的下降快于钝叶草,因而对干旱胁迫的适应能力低于钝叶草。
     在断水干旱胁迫条件下,高羊茅的土壤容积含水量、叶片相对含水量比钝叶草下降迅速;在干旱前期高羊茅的根系活力下降快于钝叶草,在干旱后期则慢于钝叶草。在断水的干旱胁迫过程中,两种草叶片与根系的质膜透性和MDA含量不同程度上升,二者呈显著或极显著的正相关;可溶性蛋白质含量、三种抗氧化酶(SOD、POD、CAT)活性均表现出先升后降的变化趋势,根系的这种生理变化早于叶片,相对而言,高羊茅比钝叶草表现得更快、更早。这表明植株失水的快慢所引起的活性氧保护酶变化的迟早可能是盆栽条件下两种草坪草抗旱机制差异的一个重要原因。
     在断水干旱胁迫条件下,高羊茅的叶片、根系和根颈以及钝叶草的叶片、根系和匍匐茎中,总可溶性糖、蔗糖、果糖含量都随断水天数的增加而持续上升,其中总可溶性糖在根颈与匍匐茎中积累最多;蔗糖与果糖分别占总可溶性糖的77.6%~93%和6.6%~18.7%;叶片与根系中的淀粉含量变化不显著,根颈或匍匐茎中的淀粉含量下降,且与可溶性糖的积累显著负相关;高羊茅叶片、根系和根颈中的氨其酸与脯氨酸
    
    葛晋纲南京农业大学硕士学位论文:高羊茅和钝叶草对干早胁迫的适应性及生理响应
    含量持续上升,根颈的变幅最大。在干旱胁迫下,钝叶草体内的氨基酸与脯氨酸含量
    没有出现规则的变化.高羊茅根颈与钝叶草甸旬茎中的r、Ca’‘、Mg卜含量随断水干旱
    胁迫的持续均出现下降趋势,而叶片与根系中的r、Ca’‘、M广含量则持续上升,其中,
    叶片与根系中三种离子积累的绝对量大小为K‘>C aZ+>M犷,而除了钝叶草中的caZ净卜,
    叶片中三种离子积累的绝对量均高于根系。综合上述结果,在干旱胁迫下,总可溶性
    糖是高羊茅和钝叶草的叶片和根系积累的渗透调节物质,其中蔗糖和果糖既是总可溶
    性糖的两种最主要的组分,也是干旱胁迫下总可溶性糖积累的主要形式;不同于钝叶
    草,氨基酸与脯氨酸是高羊茅积累的渗透调节物质,脯氛酸含量的上升可能是氨基酸
    积累最主要的原因;K+是高羊茅和钝叶草的叶片和根系中进行渗透调节的主要物质,
    叶片是积累K+主要的器官。
     一定时间的断水处理后,植物出现永久表观姜蔫,同期测定高羊茅和钝叶草的光
    合特性发现,净光合速率、蒸腾速率、气孔导度、水分利用效率和表观量子效率显著
    低于未断水的对照,而细胞间隙C02浓度、光补偿点则高于未断水的对照,其中钝叶
    草的净光合速率、水分利用效率、表观量子效率高于高羊茅,而蒸腾速率、光饱和点
    低于高羊茅,说明钝叶草光合效率与水分利用效率均高于高羊茅,从光合特征及其水
    分利用效率上看,钝叶草比高羊茅更耐旱。
Two different photosynthetic pathway turf-grasses: C3 plant/Houndog' tall fescue (Festuca arunginacea (Shreb.)) and C4 plant, 'Bitter blue' St.Augustinegrass (Stenotaphrum secundatum (Walt) Kuntze.) were used to study the physiological responses of progressive drought stress on the leaves, crowns(or stolons), roots and the effects of different irrigating treatments on shoot and root growing characteristic with its relation to drought resistance in two turf-grasses.
    Three water irrigating treatments (T1, T2, T3 referring to plants irrigated to field capacity every 3, 6, 9 days) were setted, which the data showed: tall fescue had deeper rooting distribution and more total rooting length than Auguestinegrass; Prolonging irrigating interval had no impact on shoot dry matter production of tall fescue but increased that of Augustinegrass, root length density (RLD) of any soil layers below 15cm in two turf-grasses increased, especially appeared in tall fescue; Shoot/root ratio (S/R) of tall fescue reduced, but that of Augustinegrass increased. In subsequent soil drought treatment after 144 days interval irrigation, soil water potential in tall fescue depleted more swiftly, but its diurnal fluctuations showed greater, especially in T3 treatment; Emergence of apparent permanent wilting symptom in Tl were earlier than that in T2 and T3, and that in tall fescue were earlier than that in Auguestinegrass; According to changing data of shoot dry matter production, relative water con
    tent and leaf chlorophyll content, prolong irrigating interval could increase drought tolerance. Integrated the above data, the results indicated: moderately prolonging irrigation interval could avail root growth and increase deeper rooting distribution, which would avail turf-grasses to enhance drought resistance. Although rooting distribution of tall fescue was deeper that that of Auguestinegrass, depletion of soil water potential in tall fescue was more swifter that in Augustinegrass, which showed drought resistance was lower than that of Augustinegrass.
    Under unartificial drought conditions, the soil volumetric water content and leaf relative water content of tall fescue decrease more remarkably than that of St.Augustinegrass; Relative to that in Augustinegrass, depletion of root vitality in tall fescue were swifter in early phase of drought, but were slower in later phase of drought. During drought stress, plasma membrane permeability was keeping increasing in remarked correlations with the malondialdehyde (MDA) content; Soluble protein content and activities of SOD, POD and CAT shows an increase in the early phase of drought and then a decrease with further increase in magnitude of water stress, these physiological responses in roots were more sensitive than those of in leaves, and these changes occurred in tall fescue
    
    
    prior to those of in St.Augustinegrass. The results suggest that water stress alters the equilibrium between free radical production and enzymatic defense reactions in two turf-grasses, and changing time of three protective enzyme activities, caused by plant water-losing speed, may be an important reason of drought resistance mechanism difference between two turf-grasses under potted condition.
    Under unartificial drought conditions, content of TSC, sucrose and fructose in leaf, root and crown (or stolon) of tall fescue and Augustinegrass showed a sustaining increase with the deepening degree of drought stress. In which TSC accumulated most in crown (or stolon) than in leaf and root; the ratio of sucrose and fructose to TSC was 77.6% ~ 93% and 6.6% ~ 18.7% respectively; Content of starch in leaf and root change unremarkably, but declined steadily in crown (or stolon), which correlated negatively to change of TSC.
    Content of amino acid and proline increased steadily with the deepening drought stress in leaf, root and crown of tall fescue, especially in crown, while content of these substances did not appear regular change in Augustinegrass. In crown(stolon) of tall fescue(Augustinegrass), content of K+, Ca2+, Mg2+ trended to su
引文
1.陈立松,刘星辉.水分胁迫对荔枝叶片活性氧代谢的影响.园艺学报,1998,25(3):241-246
    2.陈少裕.膜脂过氧化对植物细胞的伤害.植物生理学通讯,1991,27(2):84-90
    3.陈少裕.膜脂过氧化与植物逆境的伤害.植物学通报,1989.6(4):211-217
    4.陈新平,杨志福.土壤水分胁迫条件下施用钾肥对小麦抗早性的影响.见北方土壤钾素研究论文集,北京:中国农业科技出版社,1993,147-151
    5.丁钟荣.根系活力的测定见西北农业大学植物生理生化教研组编,植物生理学实验指导.西安:陕西科学技术出版社,1987
    6.高宁,高辉远,石定燧等.水分胁迫下两种草坪草的渗透调节与抗旱性的关系.中国草地.1995,4:44-48
    7.关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制.植物生理学通讯,1995,31(4):293-297
    8.关义新,戴俊英,徐世昌等.玉米花期干旱及复水对植株补偿性生长及产量的影响[J].作物学报,1997,23(6):740-745
    9.郭洪芸,樊治成.土壤水分胁迫对大蒜光合特性的影响.园艺学报,1999,26(6):404-405
    10.郭建军,胥志文,刘莲蓉等.冬小麦灌浆期渗透调节能力的研究.西北农业学报,1994,3(4):23-26
    11.郭贤仕.谷子旱后的补偿效应研究.应用生态学报,1999,10(5):563-566
    12.韩建国,潘全山,王培.不同草坪草蒸散量及各草种抗旱性的研究.草业学报,2001,10(4):56-63
    13.胡林.草坪栽培与养护.北京:中国农业出版社,2000
    14.籍越,孔德政,杨芳绒等.不同品种草坪草抗早性的初步研究.河南科学,2000,18(4):412-414
    15.景蕊莲,胡荣海.作物抗旱性的根系研究.国外农学—麦类作物,1995,3:37-39
    16.李德全,邹琦,程炳嵩.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质.见邹琦主编,植物抗旱生理生态研究,山东:山东科学技术出版社,1994
    17.李德全,邹琦,程炳嵩.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质.植物生理学报,1992,18(1):37-44
    18.李广敏,唐连顺,商振清等.渗透胁迫对玉米幼苗保护系统的影响及其与抗旱性的关系.河北农业大学学报,1994,17(2):1-5
    19.李广敏.作物节水高产研究的战略思考.作物抗旱生理与节水农业的研究.见李广敏,关军锋主编,北京:气象出版社,2001:1
    20.李合生等.植物生理生化实验原理和技术.高等教育出版社,2000:258-260
    21.李琳,焦新之.应用蛋白质染色剂考马斯亮兰G-250测定蛋白质的方法.植物生理学通讯.1980,82(6):52-55
    22.李美茹,刘鸿先,王以柔等.钙对水稻幼苗抗冷性的影响.植物生理学报.1996.22(4):379-384
    23.刘友良.植物水分逆境生理.北京:农业出版社,1992
    24.刘振虎,李魁英,张爱峰.草坪草抗旱需水研究概述.中国草地,2001,23(4):66-68
    25.卢少云,郭振飞,彭新湘等.干旱条件下水稻幼苗的保护酶活性及其与耐旱性关系.华南农
    
    业大学学报,1997,18(4):21-25
    26.卢少云,陈斯平,陈斯曼等.暖季型草坪草脯氨酸含量和抗氧化酶活性对干旱的反应.园艺学报,2003,30(3):23-27
    27.罗华建,刘星辉.水分胁迫对枇杷光合特性的影响.果树科学,1999,16(2):126-130
    28.马炜,王彩云.几种引进冷季型草坪草的生长及抗早生理指标.草业科学,2001.18(2):57-61
    29.马元喜等编著.小麦的根.北京:中国农业出版社,1999
    30.倪郁,李唯.作物抗旱机制及其指标的研究进展与现状.甘肃农业大学学报,2001,36(1):14-22
    31.潘全山,韩建国,王培.五个草地早熟禾品种蒸散量及节水性.草地学报,2001,9(3):207-212
    32.上官周平.小麦光合作用对不同干旱方式的反应.西北农业学报,1997,6(4):38-41
    33.孙彩霞,沈秀瑛,刘志刚.作物抗旱性生理生化机制的研究现状和进展.杂粮作物,2002.22(5):285-288
    34.孙彦,杨青川,张英华.不同草坪草种及品种苗期抗旱性比较.草地学报,2001,9(1):16-20
    35.王邦锡,黄久常,王辉.不同植物在水分胁迫下脯氨酸的累积与抗旱性的关系.植物生理学报,1989,15(1):46-51
    36.王宝山.生物自由基与生物膜伤害.植物生理学通讯,1988.(2):12-16.
    37.王玮,邹琦.干旱条件下冬小麦体内K~+的动态.山东农业大学学报,1996,27(2):199-202
    38.王忠主编.植物生理学.北京:中国农业出版社,2000第一版
    39.武玉叶,李德全,赵士杰等.水分胁迫下冬小麦的滲透调节及其与光合作用的关系.见吴丁、卢翠乔编著,植物生理学与跨世纪农业研究.科学出版社,1999:32-41
    40.徐世昌.土壤干旱后玉米叶细胞膜脂过氧化和膜磷脂脱酯化反应以及膜超微结构的变化.作物学报,1994,20(5):564-569
    41.徐世昌.玉米早害机制及抗旱应变措施的研究.沈阳农业大学博士生论文.1993,6
    42.许长成,赵世杰,孟庆伟等.小麦幼苗对水分胁迫的适应与活性氧防御酶.见邹琦主编,植物抗旱生理生态研究,山东:山东科学技术出版社,1994
    43.许长成,邹琦,程炳嵩.植物水分胁迫与活性氧代谢.见邹琦主编,植物抗早生理生态研究,山东:山东科学技术出版社,1994
    44.许大全.光合作用效率.上海:上海科学技术出版社,2002第一版p167
    45.于同泉 秦岭 王有年.渗透胁迫板栗苗可溶性糖的积累及组分变化的研究.北京农学院学报.1996.11(1):43-47
    46.於新建,张振清.植物材料中可溶性糖的测定.见上海植物生理研究所主编,现代植物生理学实验指南.北京:科学技术出版社,1999:127-128
    47.袁清昌.钙提高植物抗旱能力的研究进展.山东农业大学学报,1999,30(3):302-306
    48.张殿忠.测定小麦叶片游离脯氨酸含量的方法.植物生理学通讯.1990(4):62-65
    49.张福锁.环境胁迫与植物育种.北京:农业出版社,1993
    50.张劲松,陈受宜.植物耐盐耐旱分子机制及其基因工程.见吴平,陈昆松主编 植物分子生理学进展 浙江:浙江大学出版社 2000、7月第一版p223-244
    51.张林刚,邓西平.小麦抗旱性生理生化的研究进展.干旱地区农业研究,2000,18(3):87-92
    52.张宪政.作物生理研究法.农业出版社,1990
    53.张秀海,黄丛林,沈元月等.植物抗旱基因工程研究进展.生物技术通报.2001.4:21-25
    
    
    54.张正斌,山仑.作物生理抗逆性的若干共同机理研究进展.作物杂志,1997,4:10-12
    55.张志良.植物生理学实验指导(第二版).高等教育出版社.1997,p164-170
    56.赵可夫,王韶唐主编.作物抗性生理.北京:中国农业出版社,1990
    57.赵世杰,许长成,孟庆伟,邹琦.田间小麦叶片光合作用的光抑制.西北植物学报,1998,18(4):521-526
    58.赵世杰,许长成,邹琦等.植物组织中丙二醛测定方法的改进.植物生理学通讯.1994,30(3):207-210
    59.周久亚,刘建秀,陈树元.草坪草抗旱性研究概述.草业科学,2002,19(5):61-66
    60.邹琦.植物对水分胁迫的响应及其在旱作农业和抗旱育种中的应用见吴平,陈昆松主编植物分子生理学进展浙江:浙江大学出版社 2000、7月第一版
    61.邹琦.作物在水分逆境下的光合作用.作物杂志,1994,(5):1-4
    62. Alpert, P. The discovery, and puzzle of desiccation tolerance in plants. Plant Ecology, 2000, 151: 5-17
    63. Aronson L. J., Gold, A. J., Hull, R. J. Cool-season turfgrass responses to drought stress. Crop sci, 1987, 27: 1261-1266
    64. Asada, K. Ascorbate peroxidase—a hydrogen peroxide scavenging enzyme in plants. Physiol Plant, 1992, 85: 235-241
    65. Baker. N. R. Light-use efficiency and photoinhibition of photosynthesis in plants under environmental stress, p.221-235. In: J. A. C. Smith and H. Grissiths (eds.). Water deficits-Plant responses from cell to community. Bios Scientific Pulishers, Oxford, U. K. 1993.
    66. Beard J. B. Turfgrass water stress: Drought resistance components, physiological mechanism, and species-genotype diversity. 1989, P.23-28. In H.Takatoh (ed.) Proc Int. Turf. Sci., 6th. Tokyo, Japan. August 1989. Japan. Sci. Turf Sci., Tokyo
    67. Biran I., B. Bravdo, I. Bushkin-Haray, et al. Water consumption and growth rate of 11 turfgrasses as affected by mowing height, irrigation frequency, and soil moisture. Agron. J., 1981, 73: 85-90..
    68. Carrow R.N. Canopy temperature irrigation scheduling indices for turfgrasses in humid climates. p.594-599. In R.N. Carrow et al. (ed) Proc. Int. Turf. Sci., 7th. Palm Beach. FL. July 1993. Intertec Publ. Co., Overland Park. KS. 1993.
    69. Carrow R.N. Drought avoidance characteristics of diverse tall fescue cultivar. Crop Sci., 1996b, 36: 371-377.
    70. Carrow R.N. Drought resistance aspects of turfgrass in the east: evapotraspiration and crop coefficients. Crop Sci, 1995, 35: (1)685-1690.
    71. Carrow R.N. Drought resistance aspects of turfgrasses in the Southeast: Root-shoot response. Crop Sci, 1996a, 36: 371-377
    72. Carrow, R.N. Turfgrass water use, drought resistance and rooting patterns in the Southeast. Publ. ERC 01-91. University of Georgia, Griffin. 1991.
    73. Chance B. and Machly A.C. Assay of catalase and peroxidases. Mehtods Enzymol, 1955, 27: 64-775
    74. Dale J E The control of leaf expansion. Ann. Rev. Plant Physiol., 1988, 39:267-295
    75. Dhindsa R.S., Dhindsa P. P., ThorpeT. A. Leaf senescence correlated with increased levels of membrane permeability and lipid oxidation and decreased levels of superoxide dismutase and catalase. Journal of Experiment Botany, 1981, 32:93-101.
    
    
    76. Ekern, P.C. Evapotranspiration by bermudagrass sod, Cynodon dactylon L. Pers. In Hawaii. Agron J., 1966, 58: 387-390
    77. Feldhake, C.M., R.E. Danielson, and J.D. Butler. Turfgrass evapotranspiration. □. Response to deficit irrigation. Agron. J., 1984, 76:85-89
    78. Fu J. Huang B. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ. Exp. Bot., 2001, 45(2): 105-114
    79. Gibson S I, Plant sugar-response pathway. Part of a complex regulatory web. Plant physiol. 2000, 124: 1532-1539
    80. Hays, K. L., Barber, J. F., Kenna, M. P. et al. Drought avoidance mechanisms of selected bermudagrass genotypes. Hortsci., 1991, 26(2): 180-182
    81. Hook, J. E., W. W. Hanna, and B. W. Maw. Quality and growth response of centipedegrass to extended drought. Agron.J., 1992.84:606-612
    82. Hook. J. E., W. W. Hanna. Drought resistance in centipedegrass cultivars. Hortsci., 1994, 29(12): 1528-1531
    83. Horst G L, Nelson C J. Compensatory growth of tall fescue following drought. Agron J, 1979,71:559-563
    84. Hsiao, T.C. Plant responses to water stress. Annu. Rev. Plant Physiol, 1973, 24:519-570
    85. Huang B. Water relations and activities ofBuchloe dectyloides and Zoysia japonica in responses to localized soil drying. Plant and Soil, 1999a, 208:179-186
    86. Huang B., Fry. J. Photosynthesis, respiration, and carbon allocation of two cool-season perennial grasses in response to surface soil drying. Plant and soil, 2000a, 227:17-26
    87. Huang B., Fry. J. Root anatomical, physiological, and Morphological responses to drought stress for tall fescue cultivars. Crop Sci., 1998, 38:1017-1022
    88. Huang B., Gao H., Root physiological characteristic associated with drought resistance in tall fescue cultivars. Crop Sci., 2000b, 40:196-203
    89. Huang B., Gao. H. Physiological response of diverse tall fescue cultivars to drought stress. Hortsci., 1999b, 34 (5): 891-901
    90. Huang B., R. R. Duncan & Carrow R.N. Drought-resistance mechanisms of seven warm-season turfgrass under surface soil drying: Ⅰ. shoot response. Crop Sci., 1997a. 37:1858-1863.
    91. Huang B., R.R.Duncan & Carrow R.N. Drought-resistance mechanisms of seven warm-season turfgrass under surface soil drying: Ⅱ. Root response. Crop Sci., 1997b. 37:1863-1869.
    92. Hunt J. Dilute hydrochloric acid extraction of plant material for routine cation analysis. Soil Sci. Plant Anal. 1982, 13(1), 49-55
    93. Iannucci A., A. Rascio, M. Russo, et al. Physiological responses to water stress following a conditioning period in berseem clover. Plant and Soil, 2000, 223:217-227
    94. Jiang Y. Huang B. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci, 2001,41:436-442
    95. Jiang Y., Huang B. Osmotic adjustment and root growth associated drought preconditioning-enhanced heat tolerance in Kentucky bluegrass. Crop Sci, 2001,41:1168-1173
    96. Jiang Y., Huang B. Physiological responses to heat stress alone or in combination with drought: a comparison between tall fescue and perennial ryegrass. Hortsci., 2001, 36 (40): 682-686
    97. Jiang Y., Huang B. Protein alterations in response to water stress and ABA in Tall fescue. Crop Sci.
    
    2002, 42(1): 202-207
    98. Kim, K. S., Beard, J. B. Comparative turfgrass evapotranspiration rates and associated plant morphological characteristics. Crop Sci., 1988, 28:328-331
    99. Kimani P M, Benzioni A and Ventura M. Genetic variation in pigeonpea (Cajanus cajan (L.) Mill sp.) in response to successive cycles of water stress. Plant Soil, 1994, 158:193-201
    100. Koch K E, Carbohydrate-modulated gene expression in plants. Ann Rev Plant and Plant Mol Bio, 1996, 47: 509-540
    101. Kramer P.J. Drought stress and the origin of adaptations. N.C. Turner, P. J. Kramer. Adanptation of plants to water and high temperatures stress. New York: Join Will &sons, 1978, 7-20
    102. Leafe E L, Jones M B., Stiles W. 1980. The physiological effect of water stress on perennial ryegrass in the field. Wojahn E, Thons H. Proceedings of the Ⅷ international grassland and congress, Leipzig 1977, Vol. 1. Berlin: Akzdemie Verlag. 1980, 253-260
    103. Lehman, V. G., Engelke, M. C., White, R. H. Leaf water potential and relative water content variation in creeping bentgrass clones. Crop Sci., 1993, 33:1350-1353
    104. Levitt J. Responses of plant to environmental stress. 2nd ed. Vo 1.2 New York: Academic Press. 1980
    105. Levitt J. Responses of plant to environmental stresses. Academic Press, New York. 1972.
    106. Li F.M., Liu X.L., Li S.Q. Effect of early soil water distribution on the dry matter partition between roots and shoots of winter wheat. Agricultural Water Management. 2001, 49: 163-171
    107. Lima A. L. S., DaMatta F.M., Pinheiro H.A.. et al. Photochemical responses and oxidative stress in two clones of Coffea canephora under deficit conditions. Environmental & Experimental Botany. 2002, 47: 239-247
    108. Marcum. K.B., Engelke. M.C., Morton S. et al. Rooting characteristics and associated drought resistance of Zoysiagrass. Agron. J., 1995, 87:534-538
    109. Mengel K. 1980. Potassium in crop production. Adv Agron.1980, 59-110
    110. Morgan J.M. Osmotic adjustment and solute in high plants. Annal Review Plant Physiology, 1984, 35: 299-319
    111. Ogren E., Evans J.R. Photoinhibition in situ in six species of Eucalyptus. Aust. J. Plant Physiol., 1992, 19: 223-232
    112. Patakas A., Nikolaou N., Zioziou E. et al. The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Science, 2002, 163:361-367
    113. Patakas A., Nikolaou N., Zioziou E. et al. The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Science, 2002, 163: 361-367
    114. Qian Y. L., Fry. J. D., Upham. W. S. Rooting and drought avoidance of warm-season turfgrasses and tall fescue in Kansas. Crop Sci., 1997, 37: 905-910
    115. Qian,Y. L., M.C. Engelke. Performance of five turfgrass under linear gradient irrigation. Hortsci., 1999, 34(5): 893-896
    116. Shinozaki and Yamaguchi-Shinozki. Gene exptression and signal transduction in water stress response. Plant Physiol., 1997, 115: 327-334
    117. Sifers S. I., J. B. Beard, and M. H. Hall. Comparative dehydration avoidance and drought resistance among major warm-turfgrass species and cultivar. Texas Turfgrass Research -1990. PR-4738-4768. Texas Agr. Expt. Sta. Publ., College Station. 1990.
    
    
    118. Sisson. W. B. Carbon balance of Panicum coloratum during drought and non-drought in the northern Chihuahuan Desert. J. Ecol. 1989, 77: 799-810
    119. Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol., 1993, 125: 27-58.
    120. Smucker A J M, Nunez-Barrios A and Ritchie J T. Root dynamics in drying soil environments. Belowground Ecol. 1991, 1: 1-5.
    121. Turner N C and Jones M M. Turgor maintenance by osmotic adjustment: A review and evaluation. In adaptation of Plants to Water and High temperature stress. EDS. NC Turner and PJ Kramer. Pp 87-103. Wiley and Sons, New York. 1980
    122. Tyree M T and Jarvis P G. Water in tissues in cells. In encyclopedia of plant physiology, New Series, Vol. 12B. Eds. OL Lange, PS Nobel, CB Osmond and M Ziegler. Pp 36-77. Springer-Verlag, Berlin. 1982
    123. Vassey, T.L., Shaekey, T.D.. Mild water stress of Phaseolus vulgaris plant leads to reduced starch synthesis and extractable sucrose phosphate synthase activity, Plant Physiol., 1989, 89: 1066-1070,
    124. White R.H., M.C. Engelke, S.J. Morton, et al. Comparative turgor maintenance in tall fescue. Crop Sci. 1992, 32: 251-256
    125. Yordanov I., Velikova V., Tsonev T. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica, 2000. 38 (1): 171-186
    126. Youngner, V.B., A.V. Marsh, R.A., B.A. Gibeault, et al. Water use and turf quality of warm-season and cool-season turfgrass. Proc. 4th Int. Turfgrass Res. Conf., 4:257-259, 1981.
    127. Zhang. J. X., Kirkham. M. B. Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol., 1994, 35(5): 785-791

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700