含多种分布式电源的微电网运行控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电网具有先进灵活的运行控制方式,并且整合了高比重的分布式清洁能源,是未来智能电网中配电网的重要组成部分。与传统配电网相比,微电网中大量的分布式电源不仅会改变潮流的方向,而且风力发电、太阳能光伏发电等新能源的随机性也会给微电网运行带来深刻的影响。在多种分布式电源接入条件下,采用先进可靠的运行控制方法实现微电网的安全稳定运行是一项十分重要而又面临很多亟待解决问题的研究课题。本文紧紧围绕这一中心课题,从微电网中各种分布式电源的接入控制入手,对微电网的运行控制策略、运行方式转换以及电能质量管理进行了深入的研究。
     首先,分析微电网运行控制的基本理论,研究微电网的结构组成、分布式电源接口逆变器的控制方法以及微电网的基本控制策略。在此基础上,对微电网中多种分布式电源的接入和控制方法进行研究。建立微型燃气轮机和燃料电池发电的动态数学模型,并设计相应的电力电子设备接口将其稳定地接入微电网。仿真分析微型燃气轮机和燃料电池发电对变化负荷的跟踪能力,并针对微电网并网及孤岛的不同运行方式给出相应的分布式电源接口逆变器控制方法,满足不同情况下的负荷需求。此外,本文还研究了永磁直驱风力发电、太阳能光伏发电等多种分布式电源接入微电网的控制方法,为微电网中多种分布式电源在不同自然条件下的灵活组合奠定基础。
     双馈感应风力机组(DFIG)是目前风力发电的主流机型。为了满足DFIG的分布式应用发展需求,本文针对微电网的并网及孤岛运行方式分别提出相应的DFIG控制方法。微电网并网运行时DFIG捕获最大风能,并在此基础上针对微电网线路中电阻参数较大的情况,采用灵敏度分析方法调整DFIG输出的无功功率以抵消有功功率变化引起的电压波动;微电网孤岛运行时,DFIG通过桨距角控制和储能装置的配合,以输出电压频率和幅值可控的方式运行,并且模仿下垂特性直接与微电网中其他采取下垂控制的逆变型分布式电源配合。仿真分析结果表明本文提出的DFIG控制方法能够调节微电网的有功功率平衡并维持系统的电压稳定,在并网及孤岛运行方式下都能够保持微电网的平稳运行。
     在实现多种分布式电源稳定接入微电网的基础上,研究微电网的运行控制策略和运行方式转换。针对主从结构、对等结构和分层结构的微电网分别提出了相应的运行控制策略。在分层结构微电网中,选择主调频电源对孤岛运行微电网的频率进行二次调节,为微电网重新并网创造条件,同时提高电能质量,避免稳定的频率偏差对储能装置和用户的影响。微电网由并网向孤岛运行方式的转换需要连续进行孤岛检测,一旦发现微电网实际进入孤岛运行状态,立即调整分布式电源的控制方法,以维持稳定的孤岛运行。针对微电网由孤岛向并网运行方式的转换,考虑两种不同的情况:对于规模较小的主从结构的微电网,提出一种有效的微电网运行方式自动转换方法。该方法通过连续检测大电网侧和微电网侧电压的幅值和相角,判断微电网的实际运行状态,并且结合正序电压提取、锁相环和低通滤波等环节监控微电网的运行,在满足并网条件时实现微电网由孤岛向并网运行方式的平稳过渡。对于规模较大的分层结构的微电网,通过连续检测微电网侧和大电网侧的频率以及电压幅值和相角,判断微电网的实际运行状态,并采用电压灵敏度分析方法调节微电网并网接口处电压使其满足并网条件,实现微电网孤岛向并网运行方式的平稳转换。
     作为智能电网的重要组成部分,微电网的一个重要的目标是向用户提供优质的电能。本文最后研究微电网的电能质量,利用微电网中具有一定调节能力的分布式电源对电能质量进行管理。首先分析微电网中谐波源不在分布式电源接入点情况下进行谐波补偿时补偿效果的影响因素,并在此基础上提出一种微电网中基于逆变型分布式电源控制的重要节点电能质量管理方法。该方法选择逆变电源附近重要程度最高的节点并以其为目标管理微电网的电能质量,提取逆变器连接支路电流和目标节点电压中的谐波和不平衡分量,通过搜索的方法确定各个分量的最优补偿系数,并形成最终的补偿电流。该方法能够充分利用微电网中现有设备提高整体的电能质量,而且本文提出的方法还能够根据用户实际需要灵活的选择补偿目标节点和补偿水平,对提高微电网的管理水平,向用户提供可选择的优质电能具有重要的实际意义。
Microgrid is the significant part of the distribution network in the future smart grid, which has advanced and flexible operation and control pattern, and integrates distributed clean energy in high proportion. Compared with triditional distribution network, distributed sources in the microgrid can change the direction of the power flow, and the new energy such as the wind and solar photovoltaic can also bring profound effects to microgricd operation for their randomness. In the condition of various distributed generations, it is a very important and more wrong-headed subject that we complete the safe and stable operation for the microgrid using advanced and stable control method. In this paper, we begin with the access control for various distributed sources, and do deeply research on the issue of running control strategy, operation mode conversion and power quality management.
     Firstly, we analysis the basic theory on operation control for the microgrid. We also do some research on structure composition of the microgrid, control methods of interface inverter for distributed sources and the basic control strategy of the microgrid. On this basis, we do other researches on the access and control methods for various distributed sources. In addition, we establish the dynamic mathematical model for the microturbine and the fuel cell generation. Further more, we design the power electronical interface equipment correspondingly, which can be accessed to the microgrid. In order to meet different load demands, we analyze the tracking ability to loads for the microturbine and the fuel cell generation using simulations, and show the control methods of interface inverter for distributed sources according to different operation modes for the grid connected and islanding. At last, we do some researches on control methods for various distributed sources accessing the microgrid such as direct driven permanent magnet wind power generation and solar photovoltaic. The work will lay the foundations for flexible combination of various distributed sources in different natural conditions. The work will also provide some references for widespread use of the microgrid.
     Doubly fed induction generation (DFIG) is the main type of engine for wind power generation. In order to meet the distributed applying and developing demands, we respectively suggest the corresponding control methods to the operation mode of the grid connected and islanding. At the time of grid connected operation, DFIG can capture the most wind energy. According to the condition of bigger resistance parameter, we adopt sensitivity analysis method to adjust reactive power from DFIG, which can offset voltage fluctuation from active power changing, At the time of islanding operation, DFIG, which combined with the control of pitch angle and energy storage device, acted as voltage frequency and amplitude controllable. Thus, DFIG can cooperate with other droop control inverter-based distributed sources by simulate droop characteristic. The simulation results show that the new control method from this paper could adjust the active power balance in the microgrid and keep system voltage stability. This new method can also keep the microgrid running stable in the condition of grid connected and islanding operation.
     Based on the foundation that various distributed sources access to the microgrid, we do the research on the microgrid operation strategy and operation mode conversion. According to different microgrid structures, such as master slave structure, peer to peer structure and hierarchical structure, we put forward the corresponding operation strategy respectively. For the hierarchical structure microgrid, we complete the secondary frequency regulation for the islanding operation by choosing the principle frequency regulation source. This can improve the power quality and avoid the influence of energy storage devices and users caused by stable frequency offset. This can also create conditions for the reconnection of microgrid. Conversion from the grid connected operation to the islanding operation need continuous islanding detection. Once found the actual islanding state of microgrid, we adjust the control method of distributed source to maintain the stability of the islanding operation immediately. For the conversion form the islanding operation to the grid connected operation, we consider two cases:For the small scale master-slave structure, we propose an effective auto-switch operation mode for the microgrid, which can determine the operation states by contimuously detecting the voltage phase angle and amplitude in the large grid side and the microgrid side. And the new method can monitor the microgrid operation combining with extracting the positive sequence voltage, phase-locked loop and low-pass filter. Moreover, the method can also realize the smooth transition of grid connected and islanding operation. For the large scale hierarchical structure, the new method can determine the operation states by contimuously detecting the voltage frequency, amplitude and phase angle in the large grid side and the microgrid side. And it can also realize the smooth transition of grid connected and islanding operation by adjusting the interface voltage using voltage sensitivity analysis method.
     Microgrid is a significant part of the smart grid, an important target of whose is to supply electricity to customers of high quality. The last work of this paper is to study the power quality in the microgrid, and manage the power quality using distributed sources with regulating ability. Firstly, we analyze the influencing factors of harmonic compensation effects in the condition that the harmonic source is not in the access point of the distributed sources. Then a kind of power quality management method for important nodes is proposed, which is based on the inverter interfaced distributed sources controlling. For this method, the most important nodes near the inverter interfaced sources are chosen as the target to manage the power quality in the microgrid. In order to get the final compensation currents, the harmonic and the unbalanced component in the branch current of inverter and the target node voltage are extracted, and optimal compensation coefficients of every components are determined by searching. This new method can sufficiently use the existing equipment in the microgrid to improve the power quality entirely. In addition, the new methods in this paper can also flexiblely choose the target nodes and the level for compensation. It is of practical significance to improve management level in the microgrid and supply optional and top quality electricity to the customers.
引文
[1]卢强,梅生伟.面向21世纪的电力系统重大基础研究[J].自然科学进展,200010(10):870-876
    [2]Yang X, Song Y, Wang G, et al. A comprehensive review on the development of sustainable energy and implementation in China [J]. IEEE Transactions on Sustainable Energy,2010,1(2):57-65
    [3]Fangxing Li, Wei Qiao, Hongbin Sun, et al. Smart transmission grid:vision and framework[J]. IEEE Transactions on Smart Grid,2010,1(2):168-177
    [4]Fang Xi, Misra Satyajayant, Xue Guoliang, et al. Smart Grid-The new and improved power grid:A survey[J]. IEEE Communications Surveys & Tutorials, 2012,14(4):944-980
    [5]Santacane E, Rackliffe G, Le Tang, et al. Getting smart [J]. IEEE Power and Energy Magazine,2010,8(2):41-48
    [6]Kezunovic M, Vittal V, Meliopoulos S, et al. Smart research for large scale integrated smart grid solutionsp[M], IEEE Power and Energy Magazine, 2012, 10(4):22-34
    [7]Chun Hao Lo, Ansari N. The progressive smart grid system from both power and communications aspects[J]. IEEE Communications Surveys & Tutorials,2012, 14(3):799-821
    [8]Ackermann T, Andersson G, Soder L. Distributed generation:a definition[J]. Electric Power Systems Research,2001,57(3):195-204
    [9]Lopes J A P, Hatziargyriou N, Mutale J, et al. Integrating distributed generation into electric power systems:a review of drivers, challenges and opportunities[J]. Electric Power Systems Research,2007,77(9):1189-1203
    [10]王成山,王守相.分布式发电功能系统若干问题的研究[J].电力系统自动化,2008,32(20):1-4
    [11]Hatziargyriou N, Asano H, Iraavani R, et al. Microgirds:an overview of ongoing research, development, and demonstration projects[J]. IEEE Power and Energy Magazine,2007,5(4):78-94
    [12]丁明,张颖媛,茆美琴.微网研究中的关键技术[J].电网技术,2009,33(11):6-11
    [13]Shamshiri M, Chin Kim Gan, Chee Wei Tan. A review of recent development in smart grid and microgrid laboratories[C]. IEEE International Power Engineering and Optimization Conference,2012, pp.367-372
    [14]陈树勇,宋书芳,李兰欣,等.智能电网技术综述[J].电网技术,2009,33(8):1-7
    [15]鲁宗相,王彩霞,闵勇,等.微网研究综述[J].电力系统自动化,2007,31(19):100-107
    [16]Kouluri M K, Pandey R K. Intelligent agent based microgrid control[C]. International Conference on Intelligent Agent and Multi-Agent Systems,2011, pp.62-66
    [17]Ault G W, Mcdonald J R, Burt Graeme M. Strategic analysis framework for evaluating distributed generation and utility strategies[J]. IEE Proceedings of Generation, Transmission and Distribution,2003,150(4):475-481
    [18]Blaabjerg F, Teodorescu R, Liserre M, et al. Overview of control and grid synchronization for distributed power generation systems[J]. IEEE Transactions on Industrial Electronics,2006,53(5):1398-1409
    [19]梁才浩,段献忠,等.分布式发电及其对电力系统的影响[J].电力系统及其自动化,2001,25(12):53-56
    [20]Jun Hua Zhao, Foster J, Zhao Yang Dong, et al. Flexible transmission network planning considering distributed generation impacts[J]. IEEE Transactions on Power Systems,2011,26(3):1434-1443
    [21]Borges C L T, Falcao D M. Optimal distributed generation allocation for reliability, losses and voltage improvement J]. Electrical Power and Energy Systems,2006,8(6):413-420
    [22]Soroudi A, Ehsan M. Multi-objective distributed generation planning in liberalized electricity markets [C]. Transmission and Distribution Conference and Exposition,2008, pp.1-7
    [23]Soroudi A, Afrasiab M. Binary PSO-based dynamic multi-objective model for distributed generation planning under uncertainty[J]. IET Renewable Power Generation,2012,6(2):67-78
    [24]Singh D, Misra R K, Singh D. Effect of load models in distributed generation planning[J]. IEEE Transactions on Power Systems,2007,22(4):2204-2212.
    [25]Balamurugan K, Srinivasan D. Review of power flow studies on distribution network with distributed generation[C]. IEEE Ninth International Conference on Power Electronics and Drive Systems,2011, pp.411-417
    [26]余昆,曹一家,陈星莺,等.含分布式电源的地区电网动态概率潮流计算[J].中国电机工程学报,2011,31(1):21-25
    [27]Abu Mouti F S, El Hawary M E. A new and fast power flow solution algorithm for radial distribution feeders including distributed generations[C]. IEEE International Conference on Systems, Man and Cybernetics,2007, pp.2668-2673
    [28]Rugthaicharoencheep N, Lantharthong T, Auchariyamet S. Optimal operation for active management of distribution system with distributed generation [C]. International Conference on Clean Electrical Power,2011, pp.715-719
    [29]Vargas A, Samper M E. Real-time monitoring and economic dispatch of smart distribution grids:high performance algorithms for DMS applications[J]. IEEE Transactions on Smart Grid,2012,3(2):866-877
    [30]Xiangjing Su, Wolfs P, Masoum M A S. Optimal operation of multiple unbalanced distributed generation sources in three-phase four-wire LV distribution networks[C]. Universities Power Engineering Conference,2012, pp.1-6
    [31]Boemer J C, Gibescu M, Kling W L. Dynamic models for transient stability analysis of transmission and distribution systems with distributed generation:An overview[C]. IEEE Bucharest PowerTech,2009, pp.1-8
    [32]王敏,丁明.考虑分布式电源的静态电压稳定概率评估[J].中国电机工程学报,2010,30(25):17-22
    [33]Dahal S, Mithulananthan N, Saha T K. Enhancing small signal stability of an emerging distribution system by a coordinated controller [J]. IEEE Power and Energy Society General Meeting,2012, pp.1-8
    [34]Yiming Mao, Miu K N. Switch placement to improve system reliability for radial distribution systems with distributed generation [J]. IEEE Transactions on Power Systems,2003,18(4):1346-1352
    [35]Alkuhayli A A, Raghavan S, Chowdhury B H. Reliability evaluation of distribution systems containing renewable distributed generations [J]. North American Power Symposium,2012, pp.1-6
    [36]Atwa Y M, El Saadany E F. Reliability evaluation for distribution system with renewable distributed generation during islanded mode of operation[J], IEEE Transactions on Power Systems,2009,24(2):572-581
    [37]Lin Liu, Tao Lin, Jiaqiang Wu, et al. On novel protection algorithm for distribution network with distributed generations [C]. International Conference on Sustainable Power Generation and Supply,2009, pp.1-6
    [38]冯希科,邰能灵,宋凯.DG容量对配电网电流保护的影响及对策研究[J].电力系统保护与控制,2010,38(22):156-160
    [39]Mahat P. Zhe Chen. Bak Jensen B, et al. A simple adaptive overcurrent protection of distribution systems with distributed generation[J]. IEEE Transactions on Smart Grid,2011,2(3):428-437
    [40]Jinwei He, Munir M S, Yun Wei Li. Opportunities for power quality improvement through DG-grid interfacing converters[C]. International Power Electronics Conference,2010, pp.1657-1664
    [41]Xin Tang, Tsang K M, Chan W L. A power quality compensator with DG interface capability using repetitive control[J]. IEEE Transactions on Energy Conversion,2012,27(2):213-219
    [42]Turitsyn Konstantin, Sulc P, Backhaus Scott, et al. Options for control of reactive power by distributed photovoltaic generators [J]. Proceedings of the IEEE 2011,99(6):1063-1073
    [43]Lasseter R H, Eto J H, Schenkman B, et al. CERTS microgrid laboratory test bed. IEEE Transactions on Power Delivery,2011,26(1):325-332
    [44]Chowdhury S, Chowdhury S P, Crossley P. Microgrids and active distribution networks[M]. London, UK:IET,2009, pp.122-127
    [45]S Morozumi. Microgrid demonstration projects in Japan[C]. IEEE Power Conversion Conference,2007, pp.635-642
    [46]郑漳华,艾芋.微电网研究现状及在我国的应用前景[J].电网技术,2008,32(16):27-31
    [47]Lijun He, Yongdong Li, Harley R. Novel adaptive power control of a Direct-drive PM wind generation system in a microgrid[C]. IEEE Power Electronics and Machines in Wind Applications,2012, pp.1-8
    [48]Minyou Chen, Lei Yu, Wade N S, et al. Investigation on the faulty state of DFIG in a microgrid [J]. IEEE Transactions on Power Electronics,2011,26(7): 1913-1919
    [49]Chatterjee A, Keyhani A. Neural network estimation of microgrid maximum solar power [J]. IEEE Transactions on Smart Grid,2012,3(4):1860-1866
    [50]He Wang, Guoqing Li. Dynamic performance of microturbine and fuel cell in a microgrid[C]. International Conference on Mechatronic Science, Electric Engineering and Computer,2011, pp.122-125
    [51]Haihua Zhou, Bhattacharya T, Duong Tran, et al. Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications[J]. IEEE Transactions on Power Electronics.2011,26(3): 923-930
    [52]Hamzeh M, Karimi H, Mokhtari H. A new control strategy for a multi-bus MV microgrid under unbalanced conditions[J]. IEEE Transactions on Power Systems. 2012,27(4):2225-2232
    [53]Yunwei Li, Chingnan Kao. An accurate power control strategy for power electronics interfaced distributed generation units operating in a low-voltage multibus microgrid[J]. IEEE Transactions on Power Electronics,2009,24(12): 2977-2988
    [54]Zamani M A, Yazdani A, Sidhu T S. A control strategy for enhanced operation of inverter-based microgrids under transient disturbances and network faults[J]. IEEE Transactions on Power Delivery,2012,27(4):1737-1747
    [55]Luo F, Lai Y M, Tse C.K, et al. A triple-droop control scheme for inverter-based microgrids[C]. Annual Conference on IEEE Industrial Electronics Society,2012, pp.3368-3375
    [56]Chunxia Dou, Bin Liu. Multi-agent based hierarchical hybrid control for smart microgrid[J]. IEEE Transactions on Smart Grid,2013,4(2):771-778
    [57]Vandoorn T L, Meersman B, Degroote L, et al. A control strategy for islanded microgrids with DC-link voltage control [J]. IEEE Transactions on Power Delivery,2011,26(2):703-713
    [58]Mohamed Y A R I, Radwan A A. Hierarchical control system for robust microgrid operation and seamless mode transfer in active distribution systems [J]. IEEE Transactions on Smart Grid,2011,2(2):352-362
    [59]Jaehong Kim, Guerrero J M, Rodriguez P, et al. Mode adaptive droop control with virtual output impedances for an inverter-based flexible AC microgrid [J]. IEEE Transactions on Power Electronics,2011,26(3):689-701
    [60]张纯,陈民铀,王振存.微网运行模式平滑切换的控制策略研究[J].电力系统保护与控制,2011,39(20):1-5
    [61]Ma Zhengbo, Li Linchuan, Dong Tuo. Application of a combined system to enhance power quality in an island microgrid [C]. IEEE Power Engineering and Automation Conference, pp.326-330
    [62]Yunwei Li, Vilathgamuwa D M, Poh Chiang Loh. Microgrid power quality enhancement using a three-phase four-wire grid-interfacing compensator [J]. IEEE Transactions on Power Electronics,2005,41(6):1707-1719
    [63]Azizi M, Fatemi A, Mohamadian M, et al. Integrated solution for microgrid power quality assurance [J]. IEEE Transactions on Energy Conversion.2012. 27(4):992-1001
    [64]Illindala M, Venkataramanan G. Frequency/Sequence selective filters for power quality improvement in a microgrid [J]. IEEE Transactions on Smart Grid,2012, 3(4):2039-2047
    [65]Po Tai Cheng, Chi en An Chen, Tzung Lin Lee, et al. A cooperative imbalance compensation method for distributed-generation interface converters [J]. IEEE Transactions on Industry Applications,2009,45(2):805-815
    [66]杨琦,马世英,唐晓骏,等.微电网规划评价指标体系构建与应用[J].电力系统自动化,2012,36(9):13-17
    [67]Khodaei A, Shahidehpour M. Microgrid-based co-optimization of generation and transmission planning in power systems [J]. IEEE Transactions on Power Systems 2013,28(2):1582-1590
    [68]Seon Ju Ahn, Soon Ryul Nam, Joon Ho Choi, et al. Power scheduling of distributed generators for economic and stable operation of a microgrid[J]. IEEE Transactions on Smart Grid,2013,4(1):398-405
    [69]Bo Zhao, Xuesong Zhang, Jian Chen, et al. Operation optimization of standalone microgrids considering lifetime characteristics of battery energy storage system [J]. IEEE Transactions on Sustainable Energy,2013,4(4):934-943
    [70]Chen C, Duan S, Cai T, et al. Smart energy management system for optimal microgrid economic operation [J]. IET Renewable Power Generation,2011,5(3): 258-267
    [71]Wei Tzer Huang, Wen Chih Yang. Power flow analysis of a grid-connected high-voltage microgrid with various distributed resources [C]. International Conference On Mechanic Automation and Control Engineering,2011, pp.1471-1474
    [72]Rese L, Simoes Costa A, Silva A S E. A modified load flow algorithm for microgrids operating in islanded mode[J]. IEEE PES Conference On Innovative Smart Grid Technologies Latin America,2013, pp.1-7
    [73]段玉兵,龚宇雷,谭兴国,等.基于蒙特卡罗模拟的微电网随机潮流计算方法[J].电工技术学报,2011,26(S1):274-278
    [74]Kasem Alaboudy A H, Zeineldin H H, Kirtley J L. Microgrid stability characterization subsequent to fault-triggered islanding incidents[J]. IEEE Transactions on Power Delivery,2012,27(2):658-669
    [75]Iyer S V, Belur M N, Chandorkar M C A generalized computational method to determine stability of a multi-inverter microgrid[J]. IEEE Transactions on Power Electronics,2010,25(9):2420-2432
    [76]Tamersi A, Radman G, Aghazadeh M. Enhancement of micro grid dynamic voltage stabilty using microgrid voltage stabilizer[C]. Proceedings of IEEE Southeastcon,2011, pp.368-373
    [77]徐遐龄,查晓明,林涛.微电网小干扰稳定概率分析[J].高电压技术,2009,35(12):3117-3122
    [78]Bahramirad S, Reder W, Khodaei A. Reliability-constrained optimal sizing of energy dtorage dystem in a microgrid[J]. IEEE Transactions on Smart Grid,2012, 3(4):2056-2062
    [79]Ghahderijani M M, Barakati S M, Tavakoli S. Reliability evaluation of stand-alone hybrid microgrid using sequential monte carlo simulation[J]. Iranian Conference on Renewable Energy and Distributed Generation,2012, pp.33-38
    [80]Arefifar S A, Mohamed Y A R I, El Fouly T H M. Optimum microgrid design for enhancing reliability and supply-security[J]. IEEE Transactions on Smart Grid, 2013,4(3):1567-1575
    [81]Jiang Wei, He Zhengyou, Bo Zhiqian. The overview of research on microgrid protection development[J]. International Conference on Intelligent System Design and Engineering Application,2010, pp.692-697
    [82]Sortomme E, Venkata S S, Mitra J. Microgrid protection using communication assisted digital relays[J]. IEEE Transactions on Power Delivery,2010,25(4): 2789-2796
    [83]Ustun T S, Ozansoy C, Zayegh A. Fault current coefficient and time delay assignment for microgrid protection system with central protection unit[J]. IEEE Transactions on Power Systems,2013,28(2):598-606
    [84]Salomonsson D, Soder L, Sannino A. An adaptive control system for a DC microgrid for data centers[J]. IEEE Transactions on Industry Applications,2008, 44(6):1910-1917
    [85]Anand S, Fernandes B G. Reduced-order model and stability analysis of low-voltage DC microgrid[J]. IEEE Transactions on Industrial Electronics,2013, 66(11):5040-5049
    [86]薛贵挺,张焰,祝达康.孤立直流微电网运行控制策略[J].电力自动化设 备,2013,33(3):112-117
    [87]黄伟,孙昶辉,吴子平,等.含分布式发电系统的微网技术研究综述[J].电网技术,2009,33(9):14-18.
    [88]余贻鑫,栾文鹏.智能电网的基本理念[J].天津大学学报,2011,44(5):377-384
    [89]王成山,肖朝霞,王守相.微网综合控制与分析[J].电力系统自动化,2010,32(7):98-103
    [90]Nikkhajoei H, Lasseter R H. Distributed generation interface to the CERTS microgrid. IEEE Transactions on Power Delivery,2009,24(3):1598-1608
    [91]王成山,肖朝霞,王守相.微网中分布式电源逆变器的多环反馈控制策略[J].电工技术学报,2009,24(2):100-107
    [92]Ahn J, Papk J W, Chung I Y, et al. Power sharing method of multiple distributed generators considering control modes and configurations of a microgrid[J]. IEEE Transactions on Power Delivery,2010,25(3):2007-2016
    [93]Dimeas A L, Hatziargyriou N D. Operation of a multiagent system for microgrid control. IEEE Transactions on Power Systems,2005,20(3):1447-1455
    [94]Gaonkar D N, Pillai G N, Patel R N. Seamless transfer of microturbine generation system operation between grid connected and islanding modes[J]. Electric Power Components and Systems,2009,37(10):174-188
    [95]张国驹,唐西胜,齐智平.超级电容器与蓄电池混合储能系统在微网中的应用[J].电力系统自动化,2010,34(12):85-89
    [96]He Wang, Guoqing Li. Dynamic performance of microturbine and fuel cell in a microgrid[C]. International Conference on Mechatronic Science, Electric Engineering and Computer,2011, pp:122-125
    [97]Du W, Wang H F, Zhang X F, et al. Effect of grid-connected solid oxide fuel cell power generation on power systems small-signal stability [J]. IET Renewable Power Generation,2012,6(1):24-37
    [98]王鹤,李国庆.含多种分布式电源的微电网控制策略[J].电力自动化设备,2012,32(5):19-23
    [99]范高锋,赵海翔,王伟胜,戴慧珠.基于恒速风电机组的风电场并网过程仿真.电网技术,2007,31(14):20-23
    [100]Minyou Chen, Lei Yu, Wade N S, et al. Investigation on the faulty state of DFIG in a microgrid[J]. IEEE Transactions on Power Electronics,2011,26(7): 1913-1919
    [101]姚骏,廖勇,庄凯.永磁直驱风电机组的双PWM变换器协调控制策略.电力系统自动化,2008,32(20):88-92
    [102]刘伟,彭冬,卜广全,等.光伏发电接入智能配电网后的系统问题综述[J].电网技术,2009,33(19):1-6
    [103]Omran W, Kazerani A, Salama M. Investingation of methods for reduction of power fluctuations generated from large grid connected photovoltaic systems[J]. IEEE Transactions on Energy Conversion,2011,26(1):318-327
    [104]Woyte A, Belmans R, Nijs J. Testing the islanding protection function of photovoltaic inverters [J]. IEEE Transactions on Energy Conversion,2003,18(1): 157-162
    [105]R Pena, J C Clare, G M Asher. Doubly fed induction generator using back-to-back PWM converters and its application to variable speed wind energy generation[J]. IEEE Proceedings in Electric Power Applications,1996,143(3): 231-241
    [106]Meghdad Fazeli, Greg M Asher, Christian Klumpner, et al. Novel Integration of DFIG-based wind generators within microgrids. IEEE Transaction on Energy Conversion,2011,26(3):840-850
    [107]Koutroulis E, Kalaitzakis K. Design of a maximum power tracking system for wind-energy-conversion applications. IEEE Transaction on Industrial Electronics 2006,53(2):486-494
    [108]于芃,周玮,孙辉,等.用于风电功率平抑的混合储能系统及其控制系统设计[J].中国电机工程学报,2011,31(17):127-133
    [109]R Pena, J C Clare, G M Asher. A doubly fed induction generator using back to back PWM converters supplying an isolated load from a varialble speed wind turbine[J]. IEEE Proceedings in Electric Power Applications,1996,143(5):380-387
    [110]Cheng Jin, Mingzhi Gao, Xiaofeng Lv, et al. A seamless transfer strategy of islanded and grid-connected mode switching for microgrid based on droop control[C]. IEEE Energy Conversion Congress and Exposition,2012, pp.969-973
    [111]杨子龙,伍春生.三相并网/独立双模式逆变器系统的设计[J].电力电子技术,2010,44(1):14-16
    [112]Katirei F, Iravani M R. Power management strategies for a microgrid with multiple distributed generation units[J]. IEEE Transactions on Power System, 2006,21(4):1821-1831
    [113]孙驰,魏光辉,毕增军.基于同步坐标变换的三相不对称系统的无功与谐 波电流的检测[J].中国电机工程学报,2003,23(12):43-48
    [114]赵冬梅,张楠,刘燕华等.基于储能的微网并网和孤岛运行模式平滑切换综合控制策略[J].电网技术,2013,37(2):301-306
    [115]Enslin J H R, Heskes P J M. Harmonic interaction between a large number of distributed power inverters and the distribution network[J]. IEEE Transactions on Power Electronics,2004,19(6):1586-1593
    [116]Han B, Bae B, Kim H, et al. Combined operation of unified power-quality conditioner with distributed generation[J]. IEEE Transactions on Power Delivery, 2006,21(1):330-337
    [117]Aredes M. Three-phase four-wire shunt active filter control strategies [J]. IEEE Transaction on Power Electronics,1997,12(2):311-318
    [118]张国荣,张铁良,丁明,等.具有光伏并网发电功能的统一电能质量调节器仿真[J].电机工程学报,2007,27(14):82-86
    [119]C. K. Sao and P. W. Lehn. Voltage balancing of converter fed microgrids with single phase loads[C]. Presented at the IEEE Power Energy Soc. General Meeting, Pittsburgh, PA, Jul.2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700