铁磁近邻作用下二维电子气体系的自旋相关输运研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二维电子气是在二维平面内能自由运动,而垂直于该平面方向运动受限的电子系统,它的独特性质使其成为凝聚态物理领域中研究热点之一.本文采用转移矩阵方法,分别对半导体异质结、石墨烯和拓扑绝缘体表面几种典型二维电子气体系在铁磁近邻作用下的自旋相关输运问题进行了较系统的研究,旨在为纳米电子器件和自旋量子器件的设计提供物理基础.
     全文共分为六章.第一章为绪论,简要介绍了几种典型二维电子气体系的实现及实验制备,以及它们的物理性质和应用背景.第二章,我们详细介绍了介观输运研究中常用的转移矩阵方法.
     第三章,我们根据薛定谔方程,研究半导体异质结二维电子气在外加两个不对称磁垒作用下的自旋相关输运性质.结果表明:不一致的磁垒可以使体系电导自旋分离,进而导致隧穿磁阻的自旋分离;磁垒间隔越小,不对称性越明显,自旋分离也越明显.因此,通过适当调节外加磁垒的结构参数,可以获得自旋明显分离的电导和磁阻.
     第四章,我们从Dirac方程出发,分别研究了石墨烯和扶手椅型边缘石墨烯纳米条带在两个可调磁垒作用下的自旋相关输运性质.结果表明:当两磁垒相对高度差较大时,体系低能量区域禁止导通,且反平行情况下的透射谱不再关于入射角对称;当两磁垒间隔增大时,中间区域左行波和右行波的干涉增强使透射谱更加离散化.当磁垒宽度变大时,由于衰减态的存在,凡是衰减长度小于势垒宽度的电子波将不能透过势垒.相应地,体系的隧穿电导和磁阻随结构参数变化的特征与透射谱一致,磁垒绝对和相对高度的增强或磁垒宽度变大都会使得电导减小,磁阻增大,而磁垒间隔增大只是导致电导和磁阻振荡加强.扶手椅型石墨烯条带在磁垒作用下的输运特性是:横向受限导致横向波矢离散化,所以磁化平行和反平行构型下体系都呈现出平台电导,由此导致了平台磁阻.同时,条带宽度不同,其能带结构和输运电导的特征也不相同.
     第五章是我们研究的重点内容.利用转移矩阵方法,我们研究了电磁复合超晶格作用下三维拓扑绝缘体表面的能带结构和输运性质,以及电子自旋极化的分布.结果表明:由于磁化方向从平行到反平行造成势垒的结构差异,在同样的能量窗口,反平行构型下子能级的数目多于平行情况.当磁垒足够强时,平行和反平行构型下低能量区域子能带都几乎平行于坐标轴,这意味着传输速度趋于零,所以电子的传输将被禁止.而电垒的变化对体系能带结构影响不大.体系的透射通道数目与能带结构是一致的,磁垒增强时反平行情况下存在更宽的禁止导通区域.电垒增强时,当能量与电垒高度匹配时,只存在小角度入射的透射通道.此外,我们还研究了表面电子的自旋极化分布.在动量空间,其自旋极化分布表明反射电子和透射电子出现的能量区域与透射谱都是相对应的.由于自旋与动量的锁定,反射电子自旋极化取向相对于入射电子旋转一个角度,而透射电子与入射电子一致.但在坐标空间,入射区域电子平面内自旋极化只随纵坐标周期性变化,但z分量不为零,打破了自旋平面的锁定.在透射区只有透射波,因此该区域内电子自旋极化取向与坐标无关,只随入射电子取向而变化.
     第六章,我们对本文的工作进行了总结和归纳,并对二维电子气体系在铁磁近邻作用下的输运研究进行了展望.
Two-dimensional electron gas (2DEG) is the system that electron can move freely in two dimensional plane but is limited in the perpendicular direction, which has been a hot topic in condensed matter physics because of its special property. In this thesis, the spin-dependent transport properties for semiconductor heterostruc-ture, graphene and surface of three-dimensional topological insulator under ferro-magnetic modulation have been theoretically investigated with the transfer matrix method. The purpose of this study is for providing physical basis for the design of nano-electronical devices and spin quantum devices.
     The thesis is divided into six chapters. In the first chapter, we give a brief introduction about the discovery and fabrication techniques of three types of2DEG system, the physical properties and their application background. In the second chapter, we give a detailed introduction about the transfer matrix which are often used in the study of mesoscopic quantum transport.
     In the third chapter, according to the Schrodinger equation we theoretically investigate the transport property of semiconductor heterostructure2DEG with the modulation of two applied asymmetry magnetic barriers. It is demonstrated that, the spin-dependent conductance split as the magnetic barriers is inconsis-tent, which lead to the spin-splitting of the tunneling magnetic resistance (TMR). The shorter the space of the barriers and the more apparent the asymmetry, the splitting is more significant. Therefore, we can obtain the conductance and TMR which is spin-splitting remarkably by manipulating the structure parameters of the applied magnetic barriers.
     In the fourth chapter, based on the Dirac equation we respectively investi-gate the transport property of graphene and armchair-edged graphene nanoribbon (AGNR) under the modulation of two tunable magnetic barriers. It is demon-strated that, the transmission of system is forbidden in the lower energy region when the relatively height of magnetic barriers is stronger, and the transmission spectrum is not symmetry any more in AP configuration. With the increase of the space of the two barriers, the intervention of the left-going and right-going wave is enhanced, which result in the transmission channels more discrete. When the width of the magnetic barrier become longer, owing to the exist of the evanes-cent state the electron wave can not through the barrier as the decaying length is shorter than the width of the barrier. Accordingly, with the varied structure parameters the change of the conductance and TMR is consistent with the trans-mission spectrum. Both the increase of absolute (or relative) height and the width of the barrier can reduce the conductance and make the TMR lager. However, the resonant of conductance and TMR is enhanced as the space of the barriers become lager. In addition, the transport property of the AGNR is investigated. It is demonstrated that the transverse wave vector is discrete because of the lim-itation of transverse direction, and the system exhibit platform conductance in both P and AP configurations, which lead to the platform TMR. Meanwhile, the character of the energy band and conductance of the AGNRs with different width is different.
     Chapter five is our major work. By the transfer matrix method we investigate the band structure and transport property of the surface of three-dimensional topological insulator (3D TI) and the distribution of electron spin polarization under the modulation of electro-magnetic superlattice. It is demonstrated that, since the difference result from the system configuration changes from P to AP, the number of subband in AP configuration is lager than that in P configuration at the same energy window. As the height of the magnetic barriers become enough larger, the energy levels in lower energy region are almost parallel to the coordinate axis in both P and AP configuration, which means that the transverse velocity (?)E/(?)kx tend towards zero, and the transmission is forbidden. But as the electric barriers become stronger the influence is very slight. Further, the number of transmission channel is consistent with the band structure of system, and the transmission forbidden region is wider in AP configuration because of the stronger suppression. When the electric barriers increased, especially in the vicinity of E=Vo, there is only small incident angle transmission channel. This property is different from the semiconductor heterostructure and graphene. Moreover, we investigate the character of the electron spin polarization. In momentum space, the incident energy and angle dependence of electron spin polarization is in good agreement with the transmission spectrum. Due to the spin-momentum locking of TI surface states, the spin orientation of reflected electrons is always rotated and transmitting electron is always along the direction of the incident electron. However, in real space, in incident region the in-plane spin polarization oscillates periodically only in x-direction, and the spin polarization Pz is not zero, which induced the spin-surface locking broken. Because there is only transmission wave in the transmitting region the spin polarization in the transmitting region is found not relevant to coordinates and varying with the incident electron.
     In chapter six, a summary of the work and a outlook of the transport prop-erties of two dimensional gas under the ferromagnetic modulation are given.
引文
[1]黄永南.二维电子气简介.固体电子学研究与进展,第2卷:第4期,1982.
    [2]Kaoru Inoue, Hiroyuki Sakaki and Junji Yoshino. MBE Growth and Properties of AlGaAs/GaAs/AlGaAs Selectively-Doped Double-Heterojunction Structures with Very High Conductivity. Jpn. J. Appl. Phys.,1984,23:L767.
    [3]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene. Nature,2005,438:197.
    [4]Haijun Zhang, Chao-Xing Liu, Xiao-Liang Qi, Xi Dai, Zhong Fang and Shou-Cheng Zhang. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics,2009,5:438.
    [5]S. Datta, Electronic transport in mesoscopic systems. Cambridge:Cambridge University Press.1995.
    [6]K.v. Klitzing, G. Dorda and M. Pepper. New Method for High-Accuracy Determi-nation of the Fine-Structure Constant Based on Quantized Hall Resistance. Phys. Rev. Lett.,1980,45:494.
    [7]D.C. Tsui, H.L. Stormer, and A.C. Gossard. Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Phys. Rev. Lett.,1982,48:1559.
    [8]H. B. Laughlin. Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations. Phys. Rev. Lett.,1983,50:1395.
    [9]B A Joyce. Molecular beam epitaxy. Rep. Prog. Phys.,1985,48:1637.
    [10]C. Joachim, J. K. Gimzewski and A. J. Aviram. Electronics using hybrid-molecular and mono-molecular devices. Nature,2000,408:541.
    [11]H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley. C6o: Buckyminister-fullerene. Nature,1985,318:162.
    [12]R. F. Curl and R. E. Smalley. Fullerenes. Scientific American,1991,10:54.
    [13]S. Jijima. Helical, microtubules of graphitic carbon. Nature,1991,354:56.
    [14]S. Jijima and T. Ichihashi. Single-shell carbon nanotubes of lnm diameter. Na-ture,1993,363:603.
    [15]K. S. Novoselov, A. K. Geim, S .V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov. Electric filed effect in atomically thin carbon film. Science,2004,306:666.
    [16]杨全红,吕伟,杨永岗,王茂章.自由态二维碳原子晶体——单层石墨烯.新型炭材料23卷2期97-102,2008.
    [17]J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit and A. Zettla. On the roughness of single-and bi-layer graphene membranes. Solid State Commun.,2007,143:101.
    [18]A. Fasolino, J. H. Los and M. I. Katsnelson. Intrinsic ripples in graphene. Nature Materials,2007,6:858.
    [19]Claire Berger, Zhimin Song, Xuebin Li, Xiaosong Wu, Nate Brown, Cecile Naud, Didier Mayou, Tianbo Li, Joanna Hass, Alexei N. Marchenkov, Edward H. Con-rad, Phillip N. First, Walt A. de Heer. Electronic Confinement and Cohcrence in Patterned Epitaxial Graphene. Science,2006,312:1191.
    [20]Xiaogan Liang, Zengli Fu and Stephen Y Chou. Graphene Transistors Fabricated via Transfer-Printing In Device Active-Areas on Large Wafer. Nano. Lett.,2007, 7:3480.
    [21]Dan Li, Marc B Muller, Scott Gilje, Richard B Kaner and Gordon G Wallace. Pro-cessable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 2008,3:101.
    [22]Sasha Stankovich. Dmitriy A. Dikin, Geoffrey H. B. Dommett, Kevin M. Kohlhaas, Eric J. Zimney, Eric A. Stach, Richard D. Piner, SonBinh T. Nguyen and Rodney S. Ruoff. Graphene-based composite materials. Nature,2006,442:20.
    [23]王征飞.单层及有限层石墨体系的扫描隧道显微镜图像模拟与纳米电子器件的理论研究.安徽:中国科学技术大学博士学位论文,2008.
    [24]I. Forbeaux, J. -M. Themlin and J.-M. Debever. Heteroepitaxial graphite on 6H-SiC (0001):Interface formation through conduction-band electronic structure. Phys. Rev. B,1998,58:16396.
    [25]H. Hibino, H. Kageshima, F. Maeda, M. Nagase, Y. Kobayashi and H. Yamaguchi. Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons. Phys. Rev. B,2008, 77:075413.
    [26]G. M. Rutter, N. P. Guisinger, J. N. Crain, E. A. A. Jarvis, M. D. Stiles, T. Li, P. N. First and J. A. Stroscio. Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy. Phys. Rev. B,2007,76:235416.
    [27]Siew Wai Poon, Wei Chen, Eng Soon Tok and Andrew T. S. Wee. Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling mi-croscopy. Appl. Rhys. Lett.,2008,92:104102.
    [28]江华.拓扑绝缘体输运性质研究.北京:中国科学院研究生院博士学位论文,2010.
    [29]W. Kohn, Theory of the insulating state. Phys. Rev.,1964,133:A171.
    [30]J. E. Avron, D. Osadchy, R. Seiler. A topological look at the Quantum Hall Effect. Physics Today,2003,56:38.
    [31]C. Day. Quantum spin Hall effect shows up in a quantum well insulator. Physics Today,2008,61:19; C. L. Kane and E. J. Mele. A New Spin on the Insulating State. Science,2006,314:1692.
    [32]C. L. Kane and E. J. Mele. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett.,2005,95:226801.
    [33]B. A. Bernevig, T. L. Hughes, and S. C. Zhang. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. Science,2006.314:1757.
    [34]M. Konig, Steffen Wiedmann, Christoph Bruene, Andreas Roth, Hartmut Buh-mann, LaurensW. Molenkamp, Xiao-Liang Qi and S. C. Zhang. Quantum Spin Hall insulator state in HgTe Quantum Wells. Science,2007,318:766.
    [35]S. Murakami. Quantum Spin Hall Effect and Enhanced Magnetic Response by Spin-Orbit Coupling. Phys. Rev. Lett.,2007,97:236805.
    [36]Atsuo Shitade, Hosho Katsura, Jan Kun, Xiao-Liang Qi, Shou-Cheng Zhang, and Naoto Nagaosa. Quantum Spin Hall Effect in a Transition Metal Oxide Na2IrO3. Phys. Rev. Lett.,2009,102:256403.
    [37]Chaoxing Liu, Taylor L. Hughes, Xiao-Liang Qi, KangWang, and Shou-Cheng Zhang. Quantum Spin Hall Effect in Type-II Semiconductors. Phys. Rev. Lett., 2008,100:236601.
    [38]Liang Fu, C. L. Kane and E. J. Mele. Topological insulator in Three Dimensions. Phys. Rev. Lett.,2007,98:106803.
    [39]J. E. Moore and L. Balents. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B,2007,75:121306(R).
    [40]Rahul Roy. classification of quantum spin Hall systems: An approach using time-reversal invariance. Phys. Rev. B,2009,79:195321.
    [41]Y. Xia, D. Qian, D. Hsieh, L.Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava and M. Z. Hasan. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Phys.,2009,5:398.
    [42]D. Hsieh, Y. Xia, D. Qian, L, Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava and M. Z. Hasan. A tunable topological insulator in the spin helical Dirac transport regime. Nature,2009,460:1101.
    [43]J. E. Moore. Topological insulator: The next generation. Nature Phys.,2009,5: 378.
    [44]Yuan Deng, Ce-Wen Nan, Guo-Dan Wei, Lin Guo and Yuan-hua Lin. Organic-assistedgrowth of bismuth telluride nanocrystals. Chem. Phys. Lett.,2003,374: 410.
    [45]Desheng Kong, Jason C. Randel, Hailin Peng, Judy J. Cha, Stefan Meister, Keji Lai, Yulin Chen, Zhi-Xun Shen, Hari C. Manoharan, and Yi Cui. Topological Insulator Nanowires and Nanoribbons. Nano Lett.,2010,10:329.
    [46]Guanhua Zhang, Huajun Qin, Jing Teng, Jiandong Guo, Qinlin Guo, Xi Dai, Zhong Fang, and Kehui Wu. Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3. Appl. Phys. Lett.,2009,95:053114.
    [47]Yi Zhang, Ke He, Cui-Zu Chang, Can-Li Song, Li-LiWang, Xi Chen, Jin-Feng Jia, Zhong Fang, Xi Dai, Wen-Yu Shan, Shun-Qing Shen, Qian Niu, Xiao-Liang Qi, Shou-Cheng Zhang, Xu-Cun Ma and Qi-Kun Xue, Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nature Phys.,2010,6:584.
    [48]Yusuke Sakamoto, Toru Hirahara, Hidetoshi Miyazaki, Shin-ichi Kimura, and Shuji Hasegawa. Spectroscopic evidence of a topological quantum phase transi-tion in ultrathin Bi2Se3 films. Phys. Rev. B,2010,81:165432.
    [49]M. I. Katsnelson, K. S. Novoselov and A. K. Geim. Chiral tunnelling and the Klein paradox in graphene. Nature Phys.,2006,2:620.
    [50]Klein,O. Die reflexion von elektronen an einem potentialsprung nach der rela-tivistischen dynamik von Dirac. Z. Phys.,1929,53:157.
    [51]Andrea F. Young and Philip Kim. Quantum interference and Klein tunnelling in graphene heterojunctions. Nature Phys.,2009,5:222.
    [52]J. Milton Pereira, Jr., V. Mlinar, F. M. Peeters and P. Vasilopoulos. Confined states and direction-dependent transmission in graphene quantum wells. Phys. Rev. B,2006,74:045424.
    [53]Vadim V. Cheianov and Vladimir I. Fal'ko. Selective transmission of Dirac elec-trons and ballistic magnetoresistance of n-p junctions in graphene. Phys. Rev. B.2006,74:041403(R).
    [54]C. W. J. Beenakker. Colloquium: Andreev reflection and Klein tunneling in graphene. Rev. Mov. Phys.,2008,80:1337.
    [55]K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, II. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim and A. K. Geim. Room-Temperature Quantum Hall Effect in Graphene. Science,2007,315:1379.
    [56]毛金海,张海刚,刘奇,时东霞,高鸿钧Graphene的物理性质和器件应用.物理,2009,38:378.
    [57]K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal'ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin and A. K. Geim. Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene. Nature Phys.,2006,2:177.
    [58]T. Matsui, H. Kambara, Y. Niimi, K. Tagami, M. Tsukada and Hiroshi Fukuyama. STS observations of Landau levels at graphite surfaces. Phys. Rev. Lett.,2005, 94:226403.
    [59]Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y. -W. Tan, M. Fazlollahi, J. D. Chudow,J. A. Jaszczak, H. L. Stormer and P. Kim. Landau-level splitting in graphene in high magnetic fields. Phys. Rev. Lett.,2006,96:136806.
    [60]E Abrahams, P W Anderson, D C Licciardello and T V Tamakrishnan. Scaling Theory of Localization:Absence of Quantum Diffusion in Two Dimensions. Phys. Rev. Lett.,1979,42:673.
    [61]J Cserti. Minimal longitudinal dc conductivity of perfect bilayer graphene. Phys. Rev. B,2007,75:033405.
    [62]K Ziegler. Robust Transport Properties in Graphene. Phys. Rev. Lett.,2007, 97:266802.
    [63]K Nomura and A H MacDonald.Quantum Hall Ferromagnetism Graphene. Phys.Rev.Lett.,2006,96:256602.
    [64]Peng cheng,Canli Song,Tong Zhang,Yanyi Zhang,Yilin Wang,Jin-Feng Jia, Jing Wang,Yayu Wang,Bang-Fen Zhu, Xi Chen,Xucun Ma, Ke He, Lili Wang, Xi Dai, Zhong Fang, Xincheng Xie, Xiao-Liang Qi, Chao-Xing Liu, Shou—Cheng zhang and Qi-Kun Xue. Landau Quantization of Topological Surface Stares in Bj2Se3. Phys. Rev. Lett.,2010,105:076801.
    [65]Rui Yu,Wei zhang, Hai-]un zhang, shou-cheng zhang, xi Dai, zhong Fang. Quantized Anomalius Hall Effect in Magnctic Topological Insulators.Science, 2010,329:61.
    [66]Judy J.cha,James R.Williams,Desheng Kong, stefan Meister, Hailin Peng, Andrew J. Bestwick,Patrick Gallagher, David Goldhaber-Gordon,and Yi Cui. Magnetie Doping and Kondo Effect in Bi2Se3 Nanoribbons. Nano. Lett.,2010, 10:1076.
    [67]Pedram Roushan, Jungpil seo, Colin V.Parker, Y. S. Hor,D. Hsieh, Dong Qian, Anthony Richardella, M.Z.Hasan, R. J. Cava and Ali Yazdani. Topological surface states protected from backscattering by chiral spin texture. Nautre,2009,460: 1106.
    [68]Tong zhang, Peng cheng, xi chen, Jin-Feng Jia, xucun Ma, Ke He,Lili Wang, Haijun Zhang, Xi Dai, Zhong Fang, Xincheng Xie and Qi-Kun Xue. Experimental Demonstration of Topological Surface States Protected by Time-Reversal Symme-try. Phys. Rev. Lett.,2009,103:266803.
    [69]Sadao Adachi. GaAs, AlAs, and AlχGa1-χAs Material parameters for use in re-search and device appnlications, J. Appl. Phys.,1985,58:3.
    [70]M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Snperlattoces.Phys. Rev.Lett., 1988.61:2472.
    [71]Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar and James Hone. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008,321:385.
    [72]Yuanbo Zhang, Yan-Wen Tan, Horst L. Stormer and Philip Kim. Experimentel observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005,438:201.
    [73]Robert F. Service. Carbon Sheets an Atom Thick Give Rise to Graphene Dreams. Science,2009,324:875.
    [74]A. K. Geim and K. S. Novoselov. The rise of graphene. Nature Materials,2007, 6:183.
    [75]N. G. Van Kampen. Stochastic processes in Physics and Chemsistry. (Amsterdan: North-Holland),1981.
    [76]F. Kassubek, C. A. Stafford and H. Grabert. Force, charge, and conductance of an ideal metallic nanowire. Phys. Rev. B,1999,59:7560.
    [77]夏建白,朱邦芬.半导体超晶格物理.上海科学技术出版社,1995.
    [78]R. Landauer. Spacial variation of currents and fields due to localized scatters in metallic conduction. IBM J. Rev. Dev.,1957,1:223.
    [79]M. B(u|¨)ttiker and Y. Imry. Magnetic Field Asymmetry in the Multichannel Lan-dauer Formula. J. Phys. C,1985,18:L467.
    [80]M. B(u|¨)ttiker. Four-Terminal Phase-Coherent Conductance. Phys. Rev. Lett. 1986,57:1761.
    [81]A. Matulis, F.M. Peeters and P. Vasilopoulos. Wawe-Vector-Dependent Tunneling through Magnetic Barriers. Phys. Rev. Lett.,1994,72:1518.
    [82]Yong Guo, Hao Wang, Bing-Lin Gu and Yoshiyuki Kawazoe. Electric-field effects on electronic tunneling transport in magnetic barrier structures. Phys. Rev. B, 2000,61:1728.
    [83]T. Vancura, T. Ihn, S. Broderick, K. Ensslin, W. Wegscheider and M. Bichler. Elec-tron transport in a two-dimensional electron gas with magnetic barriers. Phys. Rev. B,2000,62:5074.
    [84]Frederick Casper and Claudia Felser. Giant magnetoresistance in semiconducting DyNiBi. Solid State Commun.,2004,70:175.
    [85]Feng Zhai, Yong Guo and Bing-Lin Gu. Giant, magnetoresistance effect in a magnetic-electric barrier structure. Phys. Rev. B,2002,66:125305.
    [86]Xiao-Dong Yang, Ru-Zhi Wang, Yong Guo, Wei Yang, Dun-Bo Yu, Bo Wang and Hui Yan. Giant magnetoresistance effect of two-dimensional electron gas systems in a periodically modulated magnetic field. Phys. Rev. B,2004,70:115303.
    [87]N. N. Beletskii, G. P. Berman, A. R. Bishop, S. A. Borysenko and V. M. Yakovenko. Magnetoresistance and spin polarization of electron current, in mag-netic tunnel junctions. Phys. Rev. B,2007,75:174418.
    [88]Yong Guo, Bing-Lin Gu, Zhong Zeng, Jing-Zhi Yu and Yoshiyuki Kawazoe. Electron-spin polarization in magnetically modulated quantum structures. Phys. Rev. B,2000,62:2635.
    [89]Mao-Wang Lu, Li-De Zhang and Xiao-Hong Yan. Spin polarization of electrons tunneling through magnetic-barrier nanostructures. Phys. Rev. B,2002,66: 224412.
    [90]Yun-Juan Bao and Shun-Qing Shen. Electric-field-induced resonant spin polariza-tion in a two-dimensional electron gas. Phys. Rev. B,2007,76:045313.
    [91]Anh T. Ngo. J. M. Villas-Boas and Sergio E. Ulloa. Spin polarization control via magnetic barriers and spin-orbit effects. Phys. Rev. B,2008,78:245310.
    [92]S. Honda, H. Itoh, J. Inoue, H. Kurebayashi, T. Trypiniotis, C. H. W. Barnes, A. Hirohata and J. A. C. Bland. Spin polarization control through resonant, states in an Fe/GaAs Schottky barrier. Phys. Rev. B.2008,78:245316.
    [93]Yu. V. Pershin and M. Di Ventra. Spin memristive systems: Spin memory effects in semiconductor spintronics. Phys. Rev. B,2008,78:113309.
    [94]Amlan Majumdar. Effects of intrinsic spin on electronic transport through mag-netic barriers. Phys. Rev. B,1996,54:11911.
    [95]I. S. Ibrahim and F. M. Peeters. Two-dimensional electrons in lateral magnetic superlattices. Phys. Rev. B,1995,52:17321.
    [96]G. Papp and F. M. Peeters. Spin filtering in a magnetic-electric barrier structure. Appl. Phys. Lett.,2001,78:2184; H. Z. Xu and Y. Okada. Does a magnetic barrier or a magnetic-electric barrier structure possess any spin polarization and spin filtering under zero bias?. Appl. Phys. Lett.,2001,79:3119.
    [97]Kees M. Schep, Paul J. Kelly and Gerrit E. W. Bauer. Ballistic transport and electronic structure. Phys. Rev. B,1998,57:8907.
    [98]A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim. The electronic properties of graphene. Rev. Mod. Phys.,2009,81:109.
    [99]A. De Martino, L. Dell'Anna, and R. Egger. Magnetic Confrnement of Massless Dirac Fermions in Graphene. Phys. Rev. Lett.,2007,98:066802.
    [100]M. Ramezani Masir, P. Vasilopoulos and F. M. Peeters. Magnetic Kronig-Penney model for Dirac electrons in single-layer graphene. Appl. Phys. Lett.,2008,93: 242103.
    [101]M. Tahir and K. Sabeeh. Quantum transport of Dirac electrons in graphene in the presence of a spatially modulated magnetic field. Phys. Rev. B,2008,77: 195421.
    [102]J. Milton Pereira Jr., P. Vasilopoulos, and F. M. Peeters. Graphene-based resonant-tunneling strucures. Appl. Phys. Lett.,2007,90:132122.
    [103]M. Cerchez, S. Hugger, T. Heinzel and N. Schulz. Effect of edge transmission and elastic scattering on the resistance of magnetic barriers: Experiment and theory. Phys. Rev. B.2007,75:035341.
    [104]M. Ramezani Masir, P. Vasilopoulos, A. Matulis, and F. M. Peeters. Direction-dependent tunneling through nanostructured magnetic barriers in graphene. Phys. Rev. B,2008,77:235443.
    [105]M Ramezani Masir, P Vasilopoulos and F M Peeters. Magnetic Kronig-Penney model for Dirac electrons in single-layer graphene. New J. Phys.,2009,11: 095009.
    [106]Hengyi Xu, T. Heinzel, M. Evaldsson and I. V. Zozoulenko. Magnetic barriers in graphene nanoribbons: Theoretical study of transport properties. Phys. Rev. B, 2008,77:245401.
    [107]Benliang Zhou, Benhu Zhou, Wenhu Liao and Guanghui Zhou. Electronic trans-port for armchair graphene nanoribbons with a potential barrier. Phys. Lett. A, 2009,374:761.
    [108]Luca Dell'Anna and Alessandro De Martino. Multiple magnetic barriers in graphene. Phys. Rev. B,2009,79:045420.
    [109]Chunxu Bai and Xiangdong Zhang. Klein paradox and resonant tunneling in a graphene superlattice. Phys. Rev. B,2007,76:075430.
    [110]Feng Zhai and Kai Chang. Theory of huge tunneling magnetoresistance in graphene. Phys. Rev. B,2008,77:113409.
    [111]Yury P. Bliokh, Valentin Freilikher and Franco Nori. Tunable electronic transport and unidirectional quantum wires in graphene subjected to electric and magnetic fields. Phys. Rev. B,2010,81:075410.
    [112]Yu-Xian Li. Transport in a magnetic field modulated graphene superlattice. J. Phys.:Condens. Matter,2010,22:015302.
    [113]M Ramezani Masir, P Vasilopoulos and F M Peeters. Kronig-Penney model of scalar and vector potentials in graphene. J. Phys.:Condens. Matter,2010, 22:465302.
    [114]L. Brey and H. A. Fertig. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B,2006,73:235411.
    [115]Huaixiu Zheng, Z. F. Wang, Tao Luo, Q. W. Shi and Jie Chen. Analytical study of electronic structure in armchair graphene nanoribbons. Phys. Rev. B,2007, 75:165414.
    [116]Nojoon Myoung, G. Ihm and S.J. Lee. Transport in armchair graphene nanorib-bons modulated by magnetic barriers. Physica E,2009,42:2808.
    [117]P. R. Wallace. The band theory of graphite. Phys. Rev.,1947,71:622.
    [118]S. Reich, J. Maultzsch and C. Thomsen. Tight-binding description of graphene. Phys. Rev. B,2002,66:035412.
    [119]廖文虎.石墨烯纳米带电光性质及应力调控研究.长沙:湖南师范大学博士学位论文,2010.
    [120]Y. H. Wu, T. Yu and Z. X. Shen. Two-dimensional carbon nanostructures: Fun-damental properties, synthesis, characterization, and potential applications. J. Appl. Phys.,2010,108:071301.
    [121]Katsunori Wakabayashi, Mitsutaka Fujita, Hiroshi Ajiki and Manfred Sigrist. Elec-tronic and magnetic properties of nanographite ribbons. Phys. Rev. B,1999,59: 8271.
    [122]Mitsutaka Fujita, Katsunori Wakabayashi, Kyoko Nakada and Koichi Kusakabe. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn.,1996,65: 1920.
    [123]Kyoko Nakada, Mitsutaka Fujita, Gene Dresselhaus and Mildred S. Dresselhaus. Edge state in graphene ribbons: Nanometer size effect, and edge shape dependence. Phys. Rev. B,1996,54:17954.
    [124]Motohiko Ezawa. Peculiar width dependence of the electronic properties of carbon nanoribbons. Phys. Rev. B,2006.73:015432.
    [125]Young-Woo Son, Marvin L. Cohen and Steven G. Louie. Energy Gaps in Graphene Nanoribbons. Phys. Rev. Lett.,2006,97:216803.
    [126]Alessandro Cresti, Giuseppe Grosso and Giuseppe Pastori Parravicini. Electronic states and magnetotransport in unipolar and bipolar graphene ribbons. Phys. Rev. B,2008,77:115408.
    [127]L. Malysheva and A. Onipko. Spectrum of π Electrons in Graphene as a Macro-molecule. Phys. Rev. Lett.,2008,100:186806.
    [128]Sankalpa Ghosh and Manish Sharma. Electron optics with magnetic vector po-tential barriers in graphene. J. Phys.:Condens. Matter,2009,21:292204.
    [129]Manish Sharma and Sankalpa Ghosh. Electron transport and Goos-H(a|¨)nchen shift in graphene with electric and magnetic barriers: optical analogy and band struc-ture. J. Phys.:Condens. Matter,2011,23:055501.
    [130]Yong-Hong Kong, Mao-Wang Lu, Wei-Hua Tang, Chun-Shu Li and Gui-Lian Zhang. Giant magnetoresistance effect in hybrid ferromagnetic/semiconductor nanosystems. Solid State Commun.,2007,142:143.
    [131]Charles L. Kane and Eugene J. Mele. A New Spin on the Insulating State. Sci-ence,2006,314:1692; Shou-cheng Zhang. Topological states of quantum matter. Physics,2008,1:6.
    [132]M. Z. Hasan and C. L. Kane. Colloquium:Topological insulators. Rev. Mod. Phys.,2010,82:3045; Xiao-Liang Qi and Shou-Cheng Zhang. Topological insu-lators and superconductors. Rev. Mod. Phys.,2011,83:1057.
    [133]Shuichi Murakami. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys.,2007,9: 356.
    [134]Chao-Xing Liu, Xiao-Liang Qi, HaiJun Zhang, Xi Dai, Zhong Fang, and Shou-Cheng Zhang. Model Hamiltonian for topological insulators. Phys. Rev. B,2010, 82:045122.
    [135]Liang Fu and C. L. Kane. Topological insulators with inversion symmetry. Phys. Rev. B,2007,76:045302.
    [136]D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava and M. Z. Hasan. A topological Dirac insulator in a quantum spin Hall phase. Nature,2008,452: 970.
    [137]D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava and M. Z. Hasan. Observation of Unconventional Quantum Spin Textures in Topological Insulators. Science,2009, 323:919.
    [138]Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain and Z.-X. Shen. Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3. Science,2009,325:178.
    [139]Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain and Z. X. Shen. Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator. Science,2010,329:659.
    [140]Xiao-Liang Qi, Taylor L. Hughes and Shou-Cheng Zhang. Topological field theory of time-reversal invariant insulators. Phys. Rev. B,2008,78:195424.
    [141]Rahul Roy. Topological phases and the quantum spin Hall effect in three dimen-sions. Phys. Rev. B,2009,79:195322.
    [142]Desheng Kong, Wenhui Dang, Judy J. Cha, Hui Li, Stefan Meister, Hailin Peng, Zhongfan Liu and Yi Cui. Nano Lett.,2010,10:2245.
    [143]Takehito Yokoyama, Alexander V. Balatsky and Naoto Nagaosa. Gate-Controlled One-Dimensional Channel on the Surface of a 3D Topological Insulator. Phys. Rev. Lett.,2010,104:246806.
    [144]Kentaro Nomura and Naoto Nagaosa. Electric charging of magnetic textures on the surface of a topological insulator. Phys. Rev. B,2010,82:161401(R).
    [145]J. chen, H.J.Qin,F.Yang,J.Liu,T.Guan,F.M.Qu,G.H.Zhang,.J.R. Shi,X.C.Xie,C.L.Yang,K.H.Wu,Y.Q.Li and L.Lu.Gate- Voltage Control of Chemical Potential andWeak Antilocalizatjon in Bi2Se3.Phys.Rev.Lett., 2010,105:176602.
    [146]Zhenhua Wu,F.M.Peeters and Kai Chang.spjn and momentum filtering of electrons on the surface of a topological insulator.Appl.Phys.Lett.,2011,98: 162101.
    [147]Qiuzi Li,Parag Ghosh, Jay D.Sau,Sumanta Tewari and S. Das Sarma. Anisotropic surface transport in topological insulators in proximity to a helical spin density wave. Phys.Rev.B,2011,83:085110.
    [148]Takehito Yokoyama,Yukio Tanaka and Naoto Nagaosa, Anomalous magnetoresis-tance of a two-dimensional ferromagnet/ferromagnet junction on the surface of a topological insulator. Phys.Rev.B,2010,81:121401(R).
    [149]Zhenhua Wu,F.M.Peeters and Kai Chang.Electron tunneling through double n]agnetic barriers on the surface of a topological insulator. Phys. Rey. B,2010, 82:115211.
    [150]s.Mondal,D.Sell,K.Sengupta and R.Shankar.Tuning the Conductance of Dirac Fermjons on the Surface of a Topological Insulator. Phys.Rev.Lett.,2010,104: 046403;Phys.Rev.B,2010,82:045120.
    [151]Ya Zhang and Feng Zhai.Tunneling magnetoresistance on the surface of a topo-logical insulator with periodic magnetic modulations.Appl.Phys.Lett.,2010, 96:172109.
    [152]Motohiko Ezawa and Jiadong Zang.Current modulator based on topological in-sulator with sliding magnetic superlattice.Phys.Rev.B,2010,81:193302.
    [153]Feng Zhai,Peiyan Mu and Kai Chang. Energy spectrum of Dirac electrons on the surface of a topological insulator modulated by a siral magnetization superlattice. Phys.Rev.B,2011,83:195402.
    [154]Igor Zutic, Jaroslav Fabian and S. Das Sarrma. Spintronics: Fundamentals and applications. Rev. Mod. Phys.,2004,76:323.
    [155]Huaihua Shao, Xiaoying Zhou, Yuan Li, Genhua Liu and Guanghui Zhou. Spin polarization and charge transmission for a waveguide on surface of topological insulator. Appl. Phys. Lett.,2011,99:153104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700