石墨烯及其纳米带电磁输运性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是一种新型二维平面碳纳米材料,其电子在狄拉克点附近的线性色散关系决定了它具有丰富而新奇的性质.自2004年底成功制备以来,迅速成为凝聚态物理、材料、化学、信息和生物技术等学科领域的交叉研究热点之一.本文分别采用狄拉克方程,紧束缚近似,非平衡态格林函数和第一原理等方法对石墨烯及其纳米带的电子输运和自旋输运性质进行了较系统的理论研究,为其在纳米电子器件,自旋量子器件等领域的应用提供理论指导.
     全文共分为六章.第一章为绪论部分,简要介绍了石墨烯的发现及实验制备,石墨烯及其纳米带的应用背景.第二章,我们详细介绍了石墨烯及其纳米带的能带结构以及石墨烯的奇异物理性质.
     第三章至第五章是我们自己的工作.第三章,我们利用狄拉克方程研究了单模式和多模式扶手椅型石果烯纳米带在外加方势垒下的输运性质.结果表明:对于金属扶手椅边缘石墨烯纳米带,最低子带对应的透射系数恒为1,其它子带的透射谱与半导体扶手椅纳米带系统中的子带类似.所有子带均敏感地依赖于扶手椅纳米带的宽度以及势垒的宽度和高度.此外,我们还研究了多模式金属和半导体型扶手椅纳米带的电导和Fano因子.结果表明:电导最小对应Fano因子最大,且Fano因子最大值大于石墨烯中Fano因子的普适值(1/3).
     第四章是我们研究的重点内容.我们推导出了石墨烯和扶手椅石墨烯纳米带在动量空间中的推迟格林函数.利用非平衡格林函数方法,系统地研究了外加磁绝缘体下石墨烯的自旋输运性质.结果表明:在两铁磁平行分布的情况下,系统电子自旋向上(向下)的态密度随两铁磁电极极化强度的增大而减小(增加):但系统的电导正好相反,电子自旋向上(向下)的电导随铁磁电极极化强度的增大而增加(减小).系统电子自旋向上和向下的电流在小偏压时呈现出线性行为,而在大偏压时则表现为非线性现象.有趣的是,当磁绝缘体在石墨烯中引起的交换劈裂能为0时,系统的TMR呈现出一个尖端结构,在0电压处出现极大值.而当交换劈裂能不为0时,这一尖端结构被强烈地抑制.此外,系统的自旋转矩随两铁磁电极磁矩的相对夹角呈正弦函数变化,而随电压的关系类似于系统的电流,且正比于两铁磁平行分布下自旋电流的大小,自旋转矩对交换劈裂能大小的变化不甚敏感.基于相同的方法,我们进一步研究了外加磁绝缘体下7-和8-扶手椅石果烯纳米带的自旋输运性质.研究结果表明,对于7-(8-)扶手椅理想条带,系统的态密度随电子入射能量的关系在费米能附近表现为对称的0平台(非0平台);当电子入射能量远离费米能时,7-和8-扶手椅纳米带的电子自旋向上和向下的态密度均呈现出一系列尖峰结构.由于量子尺寸效应,线性电导、微分电导也呈现出一系列尖峰结构,且这些尖峰的位置随交换劈裂能而变化.有趣的是,在交换劈裂能为0时,7-和8-扶手椅纳米带的TMR在0电压附近均呈现出理想的平台结构;而当交换劈裂能不为0时,7-扶手椅纳米带的TMR的平台结构变窄,8-扶手椅纳米带的TMR在0电压附近出现一个更高的平台结构,其宽度正比于交换劈裂能的大小.通过进
     -步研究,发现7-扶手椅纳米带的自旋转矩定量上要大于8-扶手椅纳米带;7-和8-扶手椅纳米带的自旋转矩随两铁磁电极磁矩的相对夹角变化与石墨烯系统类似;与石墨烯不同的是,7-和8-扶手椅型纳米带的自旋转矩随交换劈裂能呈振荡行为.
     第五章,利用第一原理AtomisticToolkit程序包,计算了掺杂与非掺杂十字型石墨烯纳米结系统的电子输运性质.计算结果表明,十字型结的电子输运性质十分敏感于分支的高度、宽度等几何特性和惨杂的位置.例如,当氮(或硼)掺杂于两臂时,我们发现十字型石墨烯纳米结系统在低偏压情况下电流随偏压的增加基本保持为零;但当氮(或硼)掺杂于两干时,电流随偏压的增加显著增大.
     第六章,我们对本文的工作进行了总结和归纳,并对石墨烯及其条带的电磁输运性质这一研究领域的发展前景作了简要的展望.
Graphene is found to be exhibit many unusual and intriguing physical prop-erties due to its linear dispersion relation near the Dirac point. Since successful preparation at the end of 2004, graphene has been becoming one of the hot sys-tems in condensed matter physics, material science, chemistry, information and biology technologies. In this thesis, electronic and magnetic transport proper-ties have been theoretically investigated based on the Dirac equation method, the tight-binding method, the non-equilibrium Green function technique, and the first principles method which could provide theoretical guidancd for their applications in nano-electronci devices and spintronics devices.
     The thesis is divided into six chapters. In the first chapter, we give a brief introduction about the discovery and fabrication techniques of graphene, the ap-plication background of graphene and its nanoribbons. In the second chapter, we give a detailed introduction about the electronic structure of graphene and its nanoribbons, and the unique physical properties in graphene.
     Chapter three, four and five are our works. In the third chapter, based on the Dirac equation method, we theoretcally investigate the mode-dependent and mode-independent transmission probability through a rectanglar potential barrier embedded in armchair-edge graphene nanoribbons (AGNRs) of various widths. It is demonstrated that, the transmission probability for the lowest mode (mode crossing the Fermi level) of the metallic AGNRs is always equal to unity, and the other modes transmission probability for metallic AGNRs is similar to that for semiconducting AGNRs, which depends sensitively on the widths of AGNRs, the barrier height and its range. Besides, the both metallic and semiconducting AGNRs in the vicinity of barrier own a minimum conductance associated with the maximum Fano factor which is larger than universal value 1/3 for a short and wide graphene strip at zero carrier concentration.
     Chapter four is our major works. Firstly, a momentum-space expression for the retard Green's function of graphene and AGNRs is derived. By using nonequilibrium Green's function techniques, we theoretically investigate the spin-dependent transport through a graphene sheet between two ferromagnetic leads with arbitrary polarization directions. A magnetic insulator is deposited on the graphene to induce an exchange splitting. It is noted that the density of states (DOS) decreases for spin-up and increases for spin-down when the polarization strength of the two leads in parallel alignment increases, while the conductance increases for spin-up but decreases for spin-down with an increase of the polar-ization. The currents for both spin-up and spin-down channels are found to be linearly proportional to the applied voltage at small bias, then grow nonlincarly as the bias increases. Interestingly, a pronounced cusp-like feature and the max-imum tunneling magnetoresistanec (TMR) value appear at zero bias without the exchange splitting, and the magnitude of TMR is dramatically suppressed with an increase of the exchange splitting. Furthermore, the current-induced spin transfer torque (STT) dependence on the relative angle between the magnetic moments of the two leads shows a sine-like behavior. The behavior of the bias dependent STT is similar to that of the current because the STT is proportional to the spin cur-rent for the two leads in parallel alignment, but it is not sensitive to the exchange splitting in graphene. In the same way, we also investigate the spin-dependent transport for the system of 7-and 8-AGNRs with a magnetic insulator deposited on the AGNRs. It is demonstrated that, a zero (nonzero) value plateau in DOS for 7-AGNR (8-AGNR) appears symmetrically with respect to the Fermi level. For larger electron incident energy, the DOS for the system of both 7-and 8-AGNRs shows an oscillation behavior with sharp peaks. Due to quantum size effect, the linear conductance and the differential conductance are demonstrated to an oscil-lation behavior with sharp peaks, the positions of the peaks for the system shift with the exchange field strength. Interestingly, a pronounced plateau for 7-and 8-AGNR systems appears at lower bias, the increase of the exchange spliitingΔsuppresses the amplitude of this structure for 7-AGNR system. However, the TMR is enhanced within bias range from-ΔtoΔfor 8-AGNR system. Similarly, the STT versus the angle shows a sine-like behavior for 7-and 8-AGNR systems, but it for 7-AGNR system is quantitatively larger than that for 8-AGNR system. In contrast to the STT of the FM/graphene/FM system, the STT with the exchange splitting displays a oscillation behavior for the 7-and 8-AGNR system.
     By the first principle (Atomistic Toolkit software packet) calculations, chap-ter five investigates the electronic transport property for a crossed junction of graphene nanoribbons with and without impurity doping. It is demonstrated that the transport property of the junctions very sensitively depends on their dopant positions and gcometic features, including the width and height of the branches. For example, the current is about zero for junction with N(B)-doped shoulder under small bias voltage, but increases notably with N(B)-doped stems.
     In chapter six, a summary of the work and a outlook of this topic are given.
引文
[1]H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley. C60: Buckyminister-fullerene. Nature,1985,318:162.
    [2]W. Kratschmer, L. D. Lanb, K. Fortiropoulos and D. R. Huffman. Solid C60:A new form carbon. Nature,1990,347:354.
    [3]R. F. Curl and R. E. Smalley. Fullerenes. Scientific American,1991,10:54.
    [4]S. Jijima. Helical, microtubules of graphitic carbon. Nature,1991,354:56.
    [5]S. Jijima and T. Ichihashi. Single-shell carbon nanotubes of Inm diameter. Na-ture,1993,363:603.
    [6]D. S. Bethune, C. H. Kiang, M. S. deVries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers. Cobalt-Catalyzed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls. Nature,1993,363:605.
    [7]K. S. Novosclov, A. K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov. Electric filed effect in atomically thin carbon film. Science,2004,306:666.
    [8]K. S. Novoselov, D. Jiang, F Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim. Two-dimensional atomic crystals. Proc. Matl. Acad. Sci. USA,2005,102:10451.
    [9]王征飞. 单层及有限层石墨体系的扫描隧道显微镜图像模拟与纳米电子器件的理论研究.安徽:中国科学技术大学博士学位论文,2008.
    [10]J. C. Meyer, A. K. Geim. M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit and A. Zettla. On the roughness of single-and bi-laycr graphene membranes. Solid State Communications,2007,143:101.
    [11]A. Fasolino, J. H. Los and M. I. Katsnelson. Intrinsic ripples in graphene. Nature Materials,2007,6:858.
    [12]I. Forbeaux, J.-M. Themlin and J.-M. Debever. Heteroepitaxial graphite on 6H-SiC(0001):Interface formation through conduction-band electronic structure. Phys. Rev. B,1998,58:16396.
    [13]Claire Berger, Zhimin Song, Xuebin Li, Xiaosong Wu, Nate Brown, Cecile Naud, Didier Mayou, Tianbo Li, Joanna Hass, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First and Walt A. de Heer. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science,2006,312:1191.
    [14]G. M. Rutter, N. P. Guisinger, J. N. Crain, E. A. A. Jarvis, M. D. Stiles, T. Li, P. N. First and J. A. Stroscio. Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy. Phys. Rev. B,2007,76:235416.
    [15]Siew Wai Poon, Wei Chen, Eng Soon Tok and Andrew T. S. Wee. Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling mi-croscopy. Appl. Rhys. Lett.,2008,92:104102.
    [16]H. Hibino, H. Kageshima, F. Maeda, M. Nagase, Y. Kobayashi and H. Yamaguchi. Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons. Phys. Rev. B,2008, 77:075413.
    [17]Xiaogan Liang, Zengli Fu and Stephen Y Chou. Graphene Transistors Fabricated via Transfer-Printing In Device Active-Areas on Large Wafer. Nano. Lett.,2007, 7:3480.
    [18]Dan Li, Marc B Mullcr, Scott Gilje, Richard B Kaner and Gordon G Wallace. Pro-cessable aqueous dispersions of graphene nanoshects. Nature Nanotechnology, 2008,3:101.
    [19]Sasha Stankovich,Dmitriy A. Dikin, Geoffrey H. B. Dommett, Kevin M. Kohlhaas, Eric J. Zimney, Eric A. Stach, Richard D. Piner. SonBinh T. Nguyen and Rodney S. Ruoff. Graphene-bascd composite materials. Nature,2006,442:20.
    [20]Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar and James Hone. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008,321:385.
    [21]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene. Nature,2005,438:197.
    [22]Yuanbo Zhang, Yan-Wen Tan, Horst L. Stormer and Philip Kim. Experimental observation of the quantum Hall effeet and Berry's phase in graphene. Nature, 2005,438:201.
    [23]A. K. Geim and K. S. Novoselov. The rise of graphene. Nature Materials,2007, 6:183.
    [24]Hubert B. Heersche, Pablo Jarillo-Herrero, Jeroen B. Oostinga, Lieven M. K. Van-dersypen and Alberto F. Morpurgo. Bipolar supercurrent in graphene Nature, 2007,446:56.
    [25]Robert F. Service. Carbon Sheets an Atom Thick Give Rise to Graphene Dreams. Science,2009,324:875.
    [26]Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill and Ph. Avouris.100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science,2010,327:662.
    [27]Sasha Stankovich, Dmitriy A. Dikin, Geoffrey H. B. Dommett, Kevin M. Kohlhaas, Eric J. Zimney, Eric A. Stach, Richard D. Piner, SonBinh T. Nguyen and Rodney S. Ruoff. Graphene-based composite materials. Nature,2006,442:282.
    [28]Dmitriy A. Dikin, Sasha Stankovich, Eric J. Zinmey, Richard D. Piner. Geoffrey H. B. Domniett, Guennadi Evmenenko,SonBinh T. Nguyen and Rodney S. Ruoff. Preparation and characterization of graphene oxide paper. Nature,2007,448:
    [29]Chong-an Di, Dacheng Wei, Gui Yu, Yunqi Liul, Yunlong Guo and Daoben Zhu. Patterned Graphene as Source/Drain Electrodes for Bottom-Contact Or-ganic Field-Effect Transistors. Advanced Materials,2008,20:3289.
    [30]Noejung Park, Suklyun Hong, Gyubong Kim and Seung-Hoon Jhi. Computational Study of Hydrogen Storage Characteristics of Covalent-Bonded Graphenes. J. Am. Chem. Soc,2007,129:8999.
    [31]C. Stampfer, E. Schurtenberger, F. Molitor, J. Gttinger, T. Ihn and K. Ensslin. Tunable Graphene Single Electron Transistor. Nano Lett,2008,8:2378.
    [32]F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov. Detection of individual gas molecules adsorbed on graphene. Nature Materials,2007,6:652.
    [33]J. Zhou, Q. Wang, Q. Sun, X. S. Chen, Y. Kawazoe and P. Jena. Ferromagnetism in Semihydrogenated Graphene Sheet. Nano. Lett.,2009,9:3867.
    [34]P. R. Wallace. The band theory of graphite. Phys. Rev,1947,71:622.
    [35]A H C Neto, F Guinea, M R Peres, K S Novoselov and A K Geim. The electronic properties of graphene. Rev. Mod. Phys.,2009,81:109.
    [36]S. Reich, J. Maultzsch and C. Thomsen. Tight-binding description of graphene. Phys. Rev. B,2002,66:035412.
    [37]S. Datta, Quantum Transport:Atom to Transistor. Cambridge:Cambridge Uni-versity Press.2005.
    [38]Y. H. Wu, T. Yu and Z. X. Shen. Two-dimensional carbon nanostructures:Fun-damental properties, synthesis, characterization, and potential applications. J. Appl. Phys,2010,108:071301.
    [39]Katsuuori Wakabayashi, Mitsutaka Fujita, Hiroshi Ajiki and Manfred Sigrist. Elec-tronic and magnetic properties of nanographite ribbons. Phys. Rev. B,1999,59: 8271.
    [40]Huaixiu Zheng, Z. F. Wang, Tao Luo, Q. W. Shi and Jie Chen. Analytical study of electronic structure in armchair graphene nanoribbons. Phys. Rev. B,2007, 75:165414.
    [41]廖文虎.石墨烯纳米带电光性质及应力调控研究.长沙:湖南师范大学博士学位论文,2010.
    [42]Mitsutaka Fujita, Katsunori Wakabayashi, Kyoko Nakada and Koichi Kusakabe. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn.,1996,65: 1920.
    [43]Kyoko Nakada, Mitsutaka Fujita, Gene Dresselhaus and Mildred S. Dresselhaus. Edge state in graphene ribbons:Nanometer size effect and edge shape dependence. Phys. Rev. B,1996,54:17954.
    [44]Motohiko Ezawa. Peculiar width dependence of the electronic properties of carbon nanoribbons. Phys. Rev. B,2006,73:045432.
    [45]L. Brey and H. A. Fertig. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B,2006,73:235411.
    [46]Young-Woo Son, Marvin L. Cohen and Steven G. Louie. Energy Gaps in Graphene Nanoribbons. Phys. Rev. Lett.,2006,97:216803.
    [47]M. I. Katsnelson, K. S. Novoselov and A. K. Geim. Chiral tunnelling and the Klein paradox in graphene. Nature Phys.,2006,2:620.
    [48]Chunxu Bai and Xiangdong Zhang. Klein paradox and resonant tunneling in a graphene superlattice. Phys. Rev. B,2007,76:075430.
    [49]Alessandro Cresti, Giuseppe Grosso and Giuseppe Pastori Parravicini. Electronic states and magnetotransport in unipolar and bipolar graphene ribbons. Phys. Rev. B,2008,77:115408.
    [50]L. Malysheva and A. Onipko. Spectrum of π Electrons in Graphene as a Macro-molecule. Phys. Rev. Lett.,2008,100:186806.
    [51]Young-Woo Son, Marvin L. Cohen and Steven G. Louie. Half-metallic graphene nanoribbons. Nature,2006,444:347.
    [52]Klein, O. Die reflexion von elektronen an einem potentialsprung nach der rela-tivistischen dynamik von Dirac. Z. Phys.,1929,53:157.
    [53]Andrea F. Young and Philip Kim. Quantum interference and Klein tunnelling in graphene heterojunctions. Nature Physics,2009,5:222.
    [54]J. Milton Pereira, Jr., V. Mlinar, F. M. Peeters and P. Vasilopoulos. Confined states and direction-dependent transmission in graphene quantum wells. Phys. Rev. B,2006,74:045424.
    [55]Vadim V. Cheianov and Vladimir I. Fal'ko. Selective transmission of Dirac elec-trons and ballistic magnetoresistance of n-p junctions in graphenc. Phys. Rev. B.2006,74:041403(R).
    [56]K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim and A. K. Geim. Room-Tempcrature Quantum Hull Effect in Graphene. Science,2007,315:1379.
    [57]毛金海,张海刚,刘奇,时东霞,高鸿钧.Graphene的物理性质和器件应用.物理,2009,38:378.
    [58]K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal'ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin and A. K. Geim. Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene. Nature Physics,2000,2:177.
    [59]T. Matsui, H. Kambara, Y. Niimi, K. Tagami, M. Tsukada and Hiroshi Fukuyama. STS observations of Landau levels at graphite surfaces. Phys. Rev. Lett.,2005, 94:226403.
    [60]Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal,Y.-W. Tan, M. Fazlollahi, J. D. Chudow,J. A. Jaszczak, H. L. Stormer and P. Kim. Landau-level splitting in graphene in high magnetic fields. Phys. Rev. Lett.,2006,96:136806.
    [61]李海东.石墨烯纳米结构中的电子输运性质.吉林:吉林大学博士学位论文,2009.
    [62]E Abrahams, P W Anderson, D C Licciardello and T V Tamakrishnan. Scaling Theory of Localization:Absence of Quantum Diffusion in Two Dimensions. Phys. Rev. Lett.,1979,42:673.
    [63]J Cserti. Minimal longitudinal de conductivity of perfect bilayer graphene. Phys. Rev. B,2007,75:033405.
    [64]K Ziegler. Robust Transport Properties in Graphenc. Phys. Rev. Lett.,2007, 97:266802.
    [65]K Nomura and A H MaeDonald. Quantum Hall Ferromagnetism in Graphene. Phys. Rev. Lett.,2006,96:256602.
    [66]F Miao, S Wijeratne, Y Zhang, U C Coskun, W Bao and C N Lau. Phase-coherent transport in graphene quantum billiards. Science,2007,317:1530.
    [67]M. V. Berry. Quanta] Phase Factors Accompanying Adiabatic Changes. Proc. Roy. Soc. London,1984, A392:45.
    [68]Xiangdong Zhang. Observing Zitterbewegung for Photons near the Dirac Point of a Two-Dimensional Photonic Crystal. Phys. Rev. Lett.,2008,100:113903.
    [69]M. I. Katsnelson. Zitterbewegung, chirality, and minimal conductivity in graphene. Eur. Phys. J. B,2006,51:157.
    [70]Tomasz M. Rusin and Wlodek Zawadzki. Transient Zitterbewegimg of charge car-riers in mono-and bilayer graphene, and carbon nanotubes. Phys. Rev. B,2007, 76:195439.
    [71]Tomasz M. Rusin and Wlodek Zawadzki. Theory of electron Zitterbewegung in graphene probed by femtosecond laser pulses. Phys. Rev. B,2009,80:045416.
    [72]J. Milton Pereira, Jr., P. Vasilopoulos and F. M. Peeters. Graphene-based resonant-tunneling structures. Appl. Phys. Lett.,2007,90:132122.
    [73]Michael Barbier, F. M. Peeters, P. Vasilopoulos and J. Milton Pereira,Jr. Dirac and Klein-Gordon particles in one-dimensional periodic potentials. Phys. Rev. B,2008,77:115446.
    [74]A. R. Akhmerov, J. H. Bardarson, A. Rycerz and C. W. J. Beenakker. Theory of the valley-valve effect in graphene nanoribbons. Phys. Rev. B,2008,77:205416.
    [75]C. W. J. Beenakker. Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys.,2008,80:1337.
    [76]Vadim V. Cheianov, Vladimir Fal'ko and B. L. Altshuler. The Focusing of Electron Flow and a Veselago Lens in Graphene p-n Junctions. Science,2007,315:1252.
    [77]Alessandro Cresti, Giuseppe Grosso and Giuseppe Pastori Parravicini. Valley-valve effect and even-odd chain parity in p-n graphene junctions. Phys. Rev. B,2008, 77:233402.
    [78]Debdeep Jena, Tian Fang, Qin Zhang and Huili Xing. Zener tunneling in semicon-ducting nanotube and graphene nanoribbon p-n junctions. Appl. Phys. Lett., 2008,93:112106.
    [79]Roman V. Gorbachev, Alexander S. Mayorov, Alexander K. Savchenko, David W. Horsell and Francisco Guinea. Conductance of p-n-p Graphene Structures with "Air-Bridge" Top Gates. Nano. Lett.,2008,7:1995.
    [80]M. V. Fistul and K. B. Efetov. Electromagnetic-Field-Induced Suppression of Transport through n-p Junctions in Graphene. Phys. Rev. Lett.,2007,98: 256803.
    [81]Barbaras ozyihnaz, Pablo Jarillo-Herrero, Dmitri Efetov, Dmitry A. Abanin, Leonid S. Levitov and Philip Kim. Electronic Transport and Quantum Hall Effect in Bipolar Graphene p-n-p Junctions. Phys. Rev. Lett.,2007,99:166804.
    [82]L. M. Zhang and M.M. Fogler. Nonlinear Screening and Ballistic Transport in a Graphene p-n Junction. Phys. Rev. Lett.,2008,100:116804.
    [83]Wen Long, Qing-feng Sun and Jian Wang. Disorder-Induced Enhancement of Transport through Graphene p-n Junctions. Phys. Rev. Lett.,2008,101: 166806.
    [84]N. Stander, B. Huard and D. Goldhaber-Gordon. Evidence for Klein Tunneling in Graphenep-n Junctions. Phys. Rev. Lett.,2009,102:026807.
    [85]J. Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz and C. W. J. Beenakker. Sub-Poissonian Shot Noise in Graphene. Phys. Rev. Lett.,2006,96:246802.
    [86]Yu. O. Klymenko and O. Shevtsov. Quantum transport in armchair graphene ribbons:analytical tight-binding solutions for propagation through step-like and barrier-like potentials. Eur. Phys. J. B,2009,69:383.
    [87]W. Schottky. On spontaneous current fluctuations in different electrical conduc-tors. Ann. Phys.,1918,57:541.
    [88]Ya. M. Blanter and M. Buuttiker. Shot noise in mesoscopic conductors. Physics Reports,2000,336:1.
    [89]S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger. Spintronics:A Spin-Based Electronics Vision for the Future. Science,2001,294:1488.
    [90]Nikolaos Tombros, Csaba Jozsa, Mihaita Popinciuc, Harry T. Jonkman and Bart J. van Wees. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature.2007,448:571.
    [91]Sungjae Cho, Yung-Fu Chen and Michael S. Fuhrer. Gate-tunable graphene spin valve. Appl. Phys. Lett.,2007,91:123105.
    [92]Wei Han,K. Pi, W. Bao. K. M. MeCreary, Yan Li, W. H. Wang, C. N. Lau and R. K. Kawakami. Electrical detection of spin precession in single layer graphene spin valves with transparent contacts. Appl. Phys. Lett.,2009,94:222109.
    [93]C. Jozsa, M. Popinciuc, N. Tombros, H. T. Jonkman and B. J. van Wees. Con-trolling the efficiency of spin injection into graphene by carrier drift. Phys. Rev. B,2009,79:081402(R).
    [94]Havard Haugen, Daniel Huertas-Hernando and Arne Brataas. Spin transport in proximity-induced ferromagnetic graphene. Phys. Rev. B,2008,77:115406.
    [95]E. H. Hwang and S. Das Sarma. Graphene magnetoresistance in a parallel magnetic field:Spin polarization effect. Phys. Rev. B,2009,80:075417.
    [96]T. Miyazaki and N. Tezuka. Giant magnetic tunneling effect in Fe/Al2O3/Fe junc-tion. J. Magn. Magn. Mater.,1995,139:L231.
    [97]J. S. Moodera, Lisa R. Kinder, Terrilyn M. Wong and R. Meservey. Large Magne-toresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions. Phys. Rev. Lett.,1995,74:3273.
    [98]W. H. Butler, X.-G. Zhang and T. C. Schulthess. Spin-dependent tunneling con-ductance of Fe|MgO|Fe sandwiches. Phys. Rev. B,2001,63:054416.
    [99]J. Mathon and A. Umerski. Theory of tunneling magnetorcsistance of an epitaxial Fe/MgO/Fe(001) junction. Phys. Rev. B,2001,63:220403(R).
    [100]Ernie W. Hill, Andre K. Geim, Konstantin Novoselov, Frederik Schedin and Peter Blake. Graphene Spin Valve Devices. IEEE Trans. Magn.,2006,42:2694.
    [101]W. H. Wang, K. Pi, Y. Li, Y. F. Chiang, P. Wei, J. Shi and R. K. Kawakami. Magnetotransport properties of mesoscopic graphite spin valves. Phys. Rev. B, 2008,77:020402(R).
    [102]L. Brey and H. A. Fertig. Magnetoresistance of graphene-based spin valves. Phys. Rev. B,2007,76:205435.
    [103]Kai-He Ding, Zhen-Gang Zhu and Jamal Berakdar. Magnetotransport through graphene spin valves. Phys. Rev. B,2009,79:045405.
    [104]Woo Youn Kim and Kwang S. Kim. Prediction of very large values of magnetorc-sistance in a graphene nanoribbon device. Nat. Nanotech.,2008,3:408.
    [105]F. Munoz-Rojas, J. Fernandez-Rossier and J. J. Palacios. Giant Magnetoresistance in Ultrasmall Graphene Based Devices. Phys. Rev. Lett.,2009,102:136801.
    [106]Jiang-chai Chen, Shu-guang Cheng, Shun-Qing Shen and Qing-feng Sun. Elec-tronic transport through a graphene-based ferromagnetic/normal/ferromagnetic junction. J. Phys.:Condens. Matter,2010,22:035,301.
    [107]Ying-Tao Zhang, Hua Jiang, Qing-feng Sun and X. C. Xie. Spin polarization and giant magnetoresistance effect induced by magnetization in zigzag graphene nanoribbons. Phys. Rev. B,2010,81:165404.
    [108]Rui Qin, Jing Lu. Lin Lai, Jing Zhou, Hong Li, Qihang Liu, Guangfu Luo, Lina Zhao, Zhengxiang Gao, Wai Ning Mei and Guangping Li. Room-temperature giant magnetoresistance over one billion percent in a bare graphene nanoribbon device. Phys. Rev. B,2010,81:233403.
    [109]J. C. Slonczewski. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater.,1996,159:L1.
    [110]L. Bcrger. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B,1996,54:9353.
    [111]Jack C. Sankey, Yong-Tao Cui, Jonathan Z. Sun, John C. Slonczewski, Robert A. Buhrman and Daniel C. Ralph. Measurement of the spin-transfer-torque vector in magnetic tunnel junctions. Nat. Phys..2008,4:67.
    [112]Z. Li, S. Zhang, Z. Diao, Y. Ding, X. Tang, D. M. Apalkov, Z. Yang, K. Kawabata and Y. Huai. Perpendicular Spin Torques in Magnetic Tunnel Junctions. Phys. Rev. Lett.,2008,100:246602.
    [113]Christian Heiliger and M. D. Stiles. Ab Initio Studies of the Spin-Transfer Torque in Magnetic Tunnel Junctions. Phys. Rev. Lett.,2008,100:186805.
    [114]Shuai Wang, Yuan Xu and Ke Xia. First-principles study of spin-transfer torques in layered systems with noncollinear magnetization. Phys. Rev. B.2008,77: 184430.
    [115]Shuai Wang, Ling Tang and Ke Xia. Spin transfer torque in the presence of An-dreev reflections. Phys. Rev. B,2010,81:094404.
    [116]Ioannis Theodonis, Nicholas Kioussis, Alan Kalitsov, Mairbek Chshiev and W. H. Butler. Anomalous Bias Dependence of Spin Torque in Magnetic Tunnel Junctions. Phys. Rev. Lett.,2006,97:237205.
    [117]Alan Kalitsov, Mairbek Chshiev, Ioannis Theodonis, Nicholas Kioussis and W. H. Butler. Spin-transfer torque in magnetic tunnel junctions. Phys. Rev. B,2009, 79:174416.
    [118]J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers and D. C. Ralph. Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu/Co Pillars. Phys. Rev. Lett.,2000,84:3149.
    [119]Benhu Zhou, Xiongwen Chen, Haiyan Wang, Kai-He Ding and Guanghui Zhou. Magnetotransport and current-induced spin transfer torque in a fcrromagnctically contacted graphene. J. Phys.:Condens. Matter,2010,22:445302.
    [120]Benhu Zhou, Xiongwen Chen, Bonliang Zhou, Kai-He Ding and Guanghui Zhou. Spin-dependent transport for armchair-edge graphene nanoribbons between ferro-magnetic leads. J. Phys.:Condens. Matter,2011,23:135304.
    [121]J. Schwinger. A theory of fundamental interactions. J. Math. Phys.,1961,2: 407.
    [122]L. P. Kadanoff and G. Baym. Quantum Statistical Mechanics. (Benjamin, New York,1962.
    [123]L. V. Keldysh. Diagram Technique for Noncquilibrium Processes. Sov. Phys. JETP,1965,20:1018.
    [124]Hartmut J. W and Antti-Pekka Jauho. Quantum Kinetics in Transport and Optics of Semiconductors. (Berlin:Springer),1998.
    [125]Yigal Meir and Ned S. Wingreen. Landaucr Formula for the Current through an Interacting Electron Region. Phys. Rev. Lett.,1992,68:2512.
    [126]Zhen-Gang Zhu, Gang Su, Biao Jin and Qing-Rong Zheng. Spin-flip scattering effect on the current-induced spin torque in ferromagnet-insulator-ferromagnet tunnel junctions. Phys. Lett. A,2002,306:249.
    [127]Hai-Feng Mu, Gang Su and Qing-Rong Zheng. Spin current and current-induced spin transfer torque in ferromagnet-quantum dot-ferromagnet coupled systems. Phys. Rev. B,2006,73:054414.
    [128]S. Maekawa. Spin-dependent transport in magnetic nanostructures. J. Magn. Magn. Mater,2004,272-276:e1459.
    [129]P. Bruno. Theory of interlayer magnetic coupling. Phys. Rev. B,1995,52:411.
    [130]Martin A. M. Gijs and Gerrit E. W. Bauer. Perpendicular giant magnetoresistance of magnetic multilayers. Adv. Phys.,1997,46:285.
    [131]M. Julliere. Tunneling Bwtwccn Ferromagnetic Films. Phys. Lett. A,1975,54: 225.
    [132]J. C. Slonczewski. Currents, torques, and polarization factors in magnetic tunnel junctions. Phys. Rev. B,2005,71:024411.
    [133]徐明,纪红萱. 自旋电子学简介及其研究进展大学物理,2006,25:12.
    [134]A. Saffarzadeh and M. Ghorbani Asl. Spin currents and magnetoresistance of graphene-based magnetic junctions. Eur. Phys. J. B,2009,67:239.
    [135]S. Krompiewski. Theoretical studies of spin-dependent electronic transport in fer-romagnetically contacted graphene flakes. Phys. Rev. B,2009,80:075433.
    [136]S. Honda. A. Yamamura, T. Hiraiwa, R. Sato and J. Inoue. Magnetoresistance in ferromagnetic-metal/graphene/ferromagnetic-metal lateral junctions. Phys. Rev. B,2010,82:033402.
    [137]C.P.Ewels,M.I.Heggie and P.R.Briddon.Adatoms and nanoengineering ofcarbon. Chem. Phys. Lett.,2002,351:178.
    [138]Melinda Y. Han, Barbaras ozyilmaz, Yuanbo Zhang and Philip Kim. Energy Band-Gap Engineering of Graphene Nanoribbons. Phys. Rev. Lett..2007,98:206805.
    [139]Zhihong Chen, Yu-Ming Lin, Michael J. Rooks and Phaedon Avouris. Graphene nano-ribbon electronics. Physica E,2007,40:228.
    [140]Decai Yu and Feng Liu. Synthesis of Carbon Nanotubes by Rolling up Patterned Graphene Nanoribbons Using Selective Atomic Adsorption. Nano Lett.,2007,7: 3046.
    [141]Denis A. Areshkin and Carter T. White. Building Blocks for Integrated Graphene Circuits. Nano Lett.,2007,7:3253.
    [142]Z. F. Wang, Qunxiang Li, Q. W. Shi, Xiaoping Wang, J. G. Hou, Huaixiu Zheng and Jie Chen. Ballistic rectification in a Z-shaped graphene nanoribbon junction. Appl. Phys. Lett.,2008,92.133119.
    [143]Z. Z. Zhang, Kai Chang and K. S. Chan. Resonant tunneling through double-bended graphene nanoribbons. Appl. Phys. Lett.,2008,93:062106.
    [144]Yuan Ping Chen, Yue E. Xie and Xiao Hong Yari. Electron transport of L-shapcd graphene nanoribbons. J. Appl. Phys.,2008,103:063711.
    [145]Haidong Li, Lin Wang and Yisong Zheng. Suppressed conductance in a metallic graphene nanojunction. J. Appl. Phys.,2009,105:013703.
    [146]Haidong Li, Lin Wang, Zhihuan Lan and Yisong Zheng. Generalized transfer ma-trix theory of electronic transport through a graphene waveguide. Phys. Rev. B, 2009,79:155429.
    [147]Yuan Ping Chen, Yue E. Xie, L. Z. Sun and Jianxin Zhong. Asymmetric transport in asymmetric T-shaped graphene nanoribbons. Appl. Phys. Lett.,2008,93: 092104.
    [148]Antonis N. Andriotis and Madhu Menon. Transport properties of branched graphene nanoribbons. Appl. Phys. Lett.,2008,93:092104.
    [149]Thushari Jayasekera and JW Mintmire. Transport in multiterminal graphene nan-odevices. Nanotechnology,2007,18:424033.
    [150]L. Rosales, P. Orellana, Z. Barticevic and M. Pacheco. Transport properties of graphene nanoribbon heterostructures. Microelectr. J.,2008,39:537.
    [151]Fangping OuYang, Jin Xiao, Rui Guo, Hua Zhang and Hui Xu. Transport prop-erties of T-shaped and crossed junctions based on graphene nanoribbons. Nan-otechnology,2009,20:055202.
    [152]Kong Xiao-Lan and Xiong Yong-Jian. Resonance Transport of Graphene Nanorib-bon T-Shaped Junctions. Chin. Phys. Lett.,2010,27:047202.
    [153]S. Weingart, C. Bock, U. Kunze, F. Speck, Th. Seyller and L. Ley. Low-tempcrature ballistic transport in nanoscale epitaxial graphene cross junctions. Appl. Phys. Lett.,2009,95:262101.
    [154]Bin Wang,Jian Wang and Hong Guo. Ab initio calculation of transverse spin current in graphene nanostructurcs. Phys. Rev. B,2009,79:165417.
    [155]Benhu Zhou, W. H. Liao, B. L. Zhou, K.-Q. Chen and G. H. Zhou. Electronic transport for a crossed graphene nanoribbon junction with and without doping. Eur. Phys. J. B,2010,76:421.
    [156]Mads Brandbyge, Jose-Luis Mozos, Pablo Ordejon, Jeremy Taylor and Kurt Stokbro. Density-functional method for nonequilibrium electron transport. Phys. Rev. B,2002,65:165401.
    [157]P. S. Damle, A. W. Ghosh and S. Datta. Unified description of molecular conduc-tion:From molecules to metallic wires. Phys. Rev. B,2001,64:201403.
    [158]Brian Larade. Jeremy Taylor, H. Mehrez and Hong Guo. Conductance, I-V curves, and negative differential resistance of carbon atomic wires. Phys. Rev. B,2000, 64:075420.
    [159]龙孟秋.有机功能分子器件电子输运性质的第一原理研究.长沙:湖南大学博士学位论文,2008.
    [160]韩汝珊.分子纳器件研究进展及面临的挑战.北京大学学术报告,2007.
    [161]Qimin Yan, Bing Huang, Jie Yu, Fawei Zheng, Ji Zang, Jian Wu, Bing-Lin Gu, Feng Liu and Wenhui Duan. Intrinsic Current-Voltage Characteristics of Graphene Nanoribbon Transistors and Effect of Edge Doping. Nano. Lett.,2007,7:1469.
    [162]Bing Huang, Qimin Yan, Gang Zhou, Jian Wu, Bing-Lin Gu, Wenhui Duan and Feng Liu. Making a field effect transistor on a single graphene nanoribbon by selective doping. Appl. Phys. Lett.,2007,91:253122.
    [163]Narjes Gorjizadeh, Amir A. Farajian, Keivan Esfarjani and Yoshiyuki Kawazoe. Spin and band-gap engineering in doped graphene nanoribbons. Phys. Rev. B, 2008,78:155427.
    [164]J. U. Nockel. Resonances in quantum-dot transport. Phys. Rev. B,1992,46: 15348.
    [165]M. L. Ladron de Guevara and P. A. Orellana. Electronic transport through a parallel-coupled triple quantum dot molecule:Fano resonances and bound states in the continuum. Phys. Rev. B,2006,73:205303.
    [166]F. Guinea and J. A. Verges. Localization and topological disorder. Phys. Rev. B,1987,35:979.
    [167]Jorge L. D'Amato, Horacio M. Pastawski and Juan F. Weisz. Half-integer and integer quantum-flux periods in the magnetoresistance of one-dimensional rings. Phys. Rev. B,1989,39:3554.
    [168]L. E. F. Foa Torres, H. M. Pastawski and E. Medina. Antiresonances as precursors of decoherence. Europhys. Lett.,2006,73:164.
    [169]李正中.固体理论,北京:高等教育出版社,2002:437-445.
    [170]Eleftherios N. Economou. Green's Functions in Quantum Physics. (3rd edition, University of Crete),2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700