引黄灌渠斗口水流量软测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实现引黄灌渠水流量连续自动测量和远程数据传输是实行可交易水权制度和建设数字灌区的重要技术基础之一。引黄灌渠斗口特指引黄干渠通向支渠的放水闸口(简称斗口),按照引黄灌区现行水资源管理办法,灌渠斗口水流量是水资源管理部门与用水单位结算水费的法定依据。利用闸口水工建筑物(灌渠斗口)量水不需要修筑专门的量水设施,可以避免量水设施带来的水头损失等弊端,是最为经济和广泛采用的灌渠量水方法。由于引黄灌渠泥砂含量大、淤积严重、漂浮物多、水流形态变化无常,一般只能通过观测干渠(闸前)和支渠(闸后)若干点水位以及启闸高度,依据闸口水工建筑物的类别和水流形态,选用基于水力学分析的量水公式和现场率定的综合流量系数来估算水流量,具有软测量的典型特征。
     本文基于国家自然科学基金项目“引黄灌渠斗口流量自动测量方法与装置研究”(60165001),主要开展了以下研究工作:
     (1)从实现可交易水权制度和引黄灌区数字化的目标出发,设计了基于短消息服务的引黄灌渠水流量远程监测网络总体方案,并研制了作为该网络重要现场单元的灌渠斗口水流量自动测量装置(ZL200420050359.1)以及与之配套的两种水位测量仪器(智能浮子水位计、智能电子水尺)和闸门开启度(位置)测量机构。为深入研究灌渠斗口水流量软测量的相关问题并对各种软测量模型进行训练和检验,还专门设计并搭建了引黄灌渠斗口缩尺水工模型。
     (2)按照软测量原理和工程开发规范,提出引黄灌渠斗口水流量软测量技术所包含的辅助变量选择、数据预处理、建立软测量模型和软模型在线校正四个方面的基本任务。首先将各种流态对应的量水公式转化为传统机理软测量模型,并由此确定了引黄灌渠斗口水流量软测量的辅助变量。在对各点水位信号特征分析的基础上,提出基于综合支持度的加权平均算法,以有效滤除水位测量数据中的异常值和随机干扰;还针对引黄灌渠斗口的特殊条件,提出了滚动式软测量模型在线校正策略。
     (3)为使基于传统水力学机理的软测量技术转化为可以实际应用的专家系统软件,设计并实现了基于产生式规则的引黄灌渠斗口水流量软测量专家系统。所提出的综合流量系数细分率定法并通过知识库扩充予以实现,使传统机理模型的估计精度和适应性得到一定程度的改善。
     (4)建立了引黄灌渠斗口水流量BP网络软测量模型,并采用水工实验数据对BP网络模型进行训练和检验,证明人工神经网络软测量模型在改善测量精度方面的成效。鉴于BP网络存在学习速度慢、易陷入局部极小以及泛化能力性能差等缺陷,建立了引黄灌渠斗口水流量RBF网络软测量模型,并采用自适应遗传算法(AGA)对RBF网络软测量模型参数进行优化。通过仿真实验证明RBF网络模型比BP网络模型更加适用。为适应嵌入式环境和水流量实时估计的要求,又建立了基于CMAC网络和水力学机理的混合软测量模型。从适应引黄灌渠斗口水流形态多样化以及训练样本稀疏性出发,还提出“分而治之”策略,建立了适应流态变化的软测量混合专家网络,使全流态复杂系统的软测量建模问题转化为针对单一流态简单系统的软测量建模问题。
     (5)针对实际中训练样本稀疏的问题,建立了基于支持向量回归(SVR)的软测量模型,并采用基于粒子群优化算法(PSO)对SVR软测量模型参数进行优化。相同的水工实验数据对采用不同核函数和损失函数的SVR软测量模型进行的仿真训练和性能检验结果表明,SVR软测量模型能够适应样本稀疏条件,比BP和RBF网络软测量模型估算精度高,而且泛化能力可从本质上得到改善。
     (6)现场量水实践和水工实验均表明,目前采用的量水公式在邻近流态边界处误差明显增大,由于实际中缺乏流态边界的训练样本,基于机器学习的软测量模型的泛化能力也会明显降低。在对引黄灌渠斗口水流态边界的模糊特性进行分析的基础上,提出流态区域参考模型以及综合流量系数模糊推理和数据融合相结合的软测量方案。在改善流态模糊边界水流量估计精度和模型适用性方面取得了一定的成效。
     本文的主要贡献与创新点主要体现在以下五个方面:其一,开发了适合引黄灌渠条件的灌渠斗口水流量自动测量装置,为软测量技术实现搭建了较为理想的硬件平台;其二,建立了基于水力学机理和综合流量系数细分率定的软测量专家系统,既为设计引黄灌渠斗口水流量软测量程序制定了一种规范,也为改善水流量估计精度提供了简便有效的方法;其三,选择BP、RBF、CMAC、SVR、AGA和PSO等多种软计算方法,建立了适应嵌入式环境和水流量实时估计以及训练样本稀缺的软测量模型,使软测量模型的估计精度以及适用性和可靠性得到全面改善。第四,提出并实际建立了基于模糊推理技术的混合软测量模型,有效提高了水力学机理模型的适用性和精确度;其五,提出由确定性区域和模糊边界构成的流态区域参考模型,采用基于距离测度的多模型数据融合技术,在提高流态模糊边界水流量估计精度和软测量技术适用性方面进行了有价值的探索。
The continuous and automatic measurement of water discharge at lateral gate of the irrigation channel in the Yellow River and achievement of data remote transmission is one of important technical basis of implementing tradable water rights institution and digital irrigation area. The lateral gate of irrigation channel is specific reference to floodgate hydraulic building at main channel to branch canal in the Yellow River,the water discharge at lateral gate of the irrigation channel is legal base of water fee settlement between water management department and water users. Amongst all measurement methods for water discharge at lateral gate of irrigation channel, the method with floodgate hydraulic structure (the lateral gate) is the most economic one and has been used widely, because special discharge measuring facilities no longer been needed and hereby the flood-peak loss from the discharge measuring facilities can be avoided. Owing to many factors such as high content of mud and sand, heavy siltation, floating-debris, unsteady flow pattern and so on, the discharge at lateral gate of irrigation channel in the Yellow River is usually estimated by the water level at main channel (front of the floodgate), the water level at several points of branch canal (back of the floodgate) and the lift-height of floodgate. That is, the water discharge is calculated by the hydraulic measuring formula witch correspond with type of the hydraulic structure and present flow pattern as well as comprehensive discharge-coefficient from the in-situ calibration. This procedure has typical characteristics of soft-sensing.
     This dissertation is based on the fund project of national natural science (No.60165001)—The reseach on method and device for automatic measurement of water discharge at lateral gate of irrigation channel in the Yellow River. The following research works have been done under this fund project:
     (1) In order to realize tradable water rights institution and digital irrigation area in the Yellow River Basin, a overall scheme of remote discharge monitoring network based on SMS for irrigation channel in the Yellow River is designed, as important field unit, a kind of automatic measuring device for discharge at lateral gate of irrigation channel(ZL200420050359.1) is developed, including tow kinds of water level gauge (intelligent floater water lever sensor and Intelligent electric water-level rule) and measuring mechanism for the open position of floodgate matched with this device. For deep research on relevant problems about soft-sensing for discharge at lateral gate of irrigation channel as well as training and testing various soft-sensing models, a special reduced scale hydraulic model is designed and built.
     (2) Based on soft-sensing principle and engineering development specification, four technical items involved in soft-sensing for water discharge at lateral gate of the irrigation channel in the Yellow River are presented, they are secondary variables selecting, data preprocessing, soft-sensing model building and on-line calibration respectively. Firstly, water measuring formulas corresponding to specific flow patterns are involved into traditional mechanistic soft-sensing models and relevant secondary variables are determined. Based on the characteristic analysis of each water level signals, a comprehensive support degree based weighted average algorithm is proposed to effectively filter outliers and from random disturbance in water level measuring data. In view of special condition of lateral gate of the irrigation channel in the Yellow River, a rolling type on-line calibrating strategy for the soft-sensing models is also proposed.
     (3) In order to change soft-sensing technique based on traditional hydraulics mechanism into practical software, the soft-sensing expert system for discharge at lateral gate of the irrigation channel in the Yellow River is designed and implemented. The meticulous calculation of overall discharge-coefficient proposed and achieved by knowledge base expansion improves estimating precision and adaptability of traditional mechanistic models to some extent.
     (4) BP soft-sensing model for discharge at lateral gate of the irrigation channel in the Yellow River is firstly built, trained and tested by the hydraulic experimental data, the effect of ANN in improvement of estimating precision is proved. In view of disadvantage of BP model such as slower learning speed, easily getting into local minimum and worse generalization performance, corresponding RBF soft-sensing model is built and parameters are optimized by adaptive genetic algorithm(AGA) . The simulation results show that RBF soft-sensing model is more applicable than RBF one. In order to adapt embedded environment and discharge real-time estimation, a kind of hybrid soft-sensing model based on CMAC and hydraulics mechanism is built. Similarly, to meet the variety of flow patterns and the sparseness of training samples at lateral gate of the irrigation channel in the Yellow River, the strategy of dividing and ruling is proposed yet, hybrid soft-sensing expert network suitable to flow pattern variation is built and soft-sensing molding for all flow patterns is changed to soft-sensing molding only for single flow pattern.
     (5) Aiming at sparseness of training sample in engineering practice, a soft-sensing model base on Support Vector Regression(SVR) is built and PSO based optimizing method for soft-sensing model parameters is adopted. Training and testing for SVR base soft-sensing model under same experimental data and different kernel function and loss function, the results show that SVR base soft-sensing model is suitable to sparseness of training sample and estimating precision is higher than BP and the RBF soft-sensing model, Moreover, generalization can be improved essentially.
     (6) The discharge measuring practice on spot and hydraulic experiments indicate that estimating error of discharge measuring formulas recent adopted will increase evidently when approaching the boundaries of two or more than two flow patterns. Owing to lack of training samples at the flow pattern boundaries, the generalization of various soft-sensing model based on machine learning will also decrease significantly. Based on the analysis of fuzzy characteristics of plow pattern boundaries at lateral gate of the irrigation channel in the Yellow River, flower pattern regional reference model and soft-sensing scheme combined overall discharge coefficients fuzzy inference system (FIS) and data fusion are put forward, this soft-sensing scheme has achieved some effects in improvement of estimating precision and applicability of soft-sensing technique for fuzzy flow pattern boundaries.
     Main research achievements and innovative points of this dissertation are included in following five aspects: Firstly, development of automatic measuring device for discharge at lateral gate of irrigation channel witch is suitable to the irrigation channel in the Yellow River Basin and ideal hardware platform is established for implement of soft-sensing technique; Second, foundation of soft-sensing expert system based hydraulics mechanism and meticulous calculation of overall discharge-coefficients, both a kind of regulations for soft-sensing programming is established and a simple effective method for improving discharge estimating is provided; Third, various soft computing method such as BP, RBF, CMAC, AGA, SVR and PSO are selected to build the soft-sensing models witch are suitable for embedded environment, real-time discharge estimation and training sample scarcity, the estimating precision as well as applicability and reliability of the soft-sensing models are fully improved; Fourth, a hybrid soft-sensing model based on fuzzy inference technique is proposed and established, the estimating precision and applicability of the hydraulics mechanism model are improved effectively; Fifth, a kind of flower pattern regional reference model made of definite regions and fuzzy boundaries is proposed and distance measure based multi-model data fusion technique is adopted, valuable exploration has been done in improvement of discharge estimating precision and soft-sensing technique applicability at flow pattern fuzzy boundaries.
引文
【1】.汪恕诚.水权和水市场—谈实现水资源优化配置的经济手段[J].中国水利.2000,(11)
    【2】.Proceedings of 1st International Yellow River Forum on River Basin management[M](Volume V).Yellow River Conservancy Press,2004
    【3】.宁夏水利厅.引黄灌区测量水管理办法(试行),2000
    【4】.蔡武昌,孙淮清,纪纲.流量测量方法和仪表的选用[M].北京:化学工业出版社,2001
    【5】.徐俊林等.明渠流量计算的研究现状和进展[J].上海大学学报.2003,9(3):238-242
    【6】.朱尔明.从美国科罗拉多河看黄河[J].中国水利.2000,3
    【7】.王凯志.取水计量[M].北京:中国计量出版社,2003
    【8】.Grant, D. M. ISCO Open Channel Flow Measurement Handbook 3rd Edition[M], ISCO Environmental Division, Lincoln, NE. 1992
    【9】.International Organization of Standards. Measurement of liquid flow in open channels - Parshall and SANIIRI flumes[S]. ISO 9826:1992(E)
    【10】.F.Thomas. Open channel flow measurement using international standards: introducing a standards programme and selecting a standard[J].Flow Measurement and Instrumentation.2002,13:303-307
    【11】.王长德.量水技术与设施[M].北京:中国水利水电出版社,2006
    【12】. NEZU, I., and RODI, W. Open-channel flow measurements with a laser doppler anemometer[J]. ASCE J. of Hydraulic Engineering. 1986,Vol. 112(5):335-355
    【13】.Thomas H.Yorke,Kevin.Oberg.Measuring river velocity and discharge with acoustic Doppler profilers [J]. Flow Measurement and Instrumentation.2002,13:191-195
    【14】. Wubbo.Boiten. Flow measurement structures[J]. Flow Measurement and Instrumentation.2002,13:203-207
    【15】.S.Dey. Free overall in circular channels with flat base: a methode of open channel flow measurement[J]. Flow Measurement and Instrumentation.2002,13:208-221
    【16】.美国内务部垦务局.现代灌区自动化管理技术实用手册[M].北京:中国水利水电出版社,2004
    【17】.毛广全.美国的灌溉管理[J].北京水利.2000,6:38-39
    【18】.蔡勇.灌区量水实用技术指南[M].北京:中国水利水电出版社,2001
    【19】.王松岭.流体力学[M].北京:中国水利水电出版社,2004
    【20】.张志昌,李国栋,李建中等.用边界层理论计算平底闸孔出流的流量[J].西安理工大学学报.1998,14(3):299-304
    【21】.刘力奂,曾辉斌.一种新的灌区量水方法[J].河海大学学报(自然科学版).2006,34(5):534-536
    【22】.袁新明,洪家宝.平底板水闸闸孔淹没出流的判别和流量计算[J].扬州大学学报(自然科学版),1998,1(3):67-69
    【23】.孙秋明.沿黄灌区目前的量水方法与存在问题及对策[J].山西水利科技.2005年第1期:95-96
    【24】.周玲.基于神经网络的涵闸流量软测量建模研究[D].河海大学硕士学位论文,2002
    【25】.李海青,黄志尧.软测量技术原理及应用[M].北京:化学工业出版社,2000
    【26】.魏文秋,张利平.水文信息技术[M].武汉:武汉大学出版社,2003
    【27】.Chanson,H. The Hydraulics of Open Channel Flow[M].John Wiley and Sons,Inc.1999
    【28】.Munson, B. R., D. F. Young, and T. H. Okiishi. Fundamentals of Fluid Mechanics 3ed[M]. John Wiley and Sons, Inc.1998
    【29】.李炜.水力学[M].武汉:武汉大学出版社,2000
    【30】.王兴奎.河流动力学[M].北京:科学出版社,2004
    【31】.水利部农村水利司.灌溉管理手册[M].北京:水利水电出版社,1994
    【32】.朱嘉英.灌区水管理论文集[M].北京:中国水利水电出版社,2001
    【33】.常云昆.黄河断流与黄河水权制度研究[M].北京:中国社会科学出版社,2002
    【34】.水利量测技术研究会.灌区用水管理与量水技术论文集[M].北京:中国水利水电出版社,1997
    【35】.沈满洪.论水权交易与交易成本[J].人民黄河.2004,26(7):19-22
    【36】.赵卫民,王龙,杨健等.黄河“数字水文”框架[J].人民黄河.2002,5
    【37】.卢胜利,曹家麟,雷崇民等.黄河可交易水权制度与引黄灌溉渠网数字化研究[J].人民黄河.2004,26(7):28-30
    【38】.刘晓岩,朱辰华,王恒斌.黄河下游引黄涵闸远程监控自动化系统建设方案[J].中国水利.2003,(11B):74-76
    【39】.万加福,张文斐,张占松.网络监控系统原理与应用[M].北京:机械工业出版社,2003
    【40】.薛富强.基于短消息的灌区水量水费计征系统的研究[D].西安理工大学硕士学位论文,2005
    【41】.西北第二民族学院,上海大学.灌渠斗口水流量自动测量装置[P]中国专利:ZL 2004 20050359.1,2005-5-25
    【42】.欧洲电信标准协会.AT command set for GSM Mobile Equipment[S].1999
    【43】.吴玉田,王瑞光,郑喜风等.GSM模块TC35及其应用[J].计算机测量与控制.2002,10(8)
    【44】.西北第二民族学院.智能浮子水位计[P].中国专利:ZL 2004 2 0050360.4,2005-5-25
    【45】.周航慈,周立功,朱旻等.PHILPS 51LPC系列单片机原理及应用设计[M].北京:北京航空航天大学出版社,2002
    【46】.魏小龙. MSP430系列单片机接口技术及系统设计实例[M].北京:北京航空航天大学出版社,2002
    【47】.何立民.低功耗单片微机系统设计[M].北京:北京航空航天大学出版社,1994
    【48】.丁俊敏,谢明,贾留元.一种新型的水位测量仪器—遥测电子水尺[J].人民黄河.2000,22(4):27-28,41
    【49】.彭军.传感器与检测技术[M].西安:西安电子科技大学出版社,2003
    【50】.西北第二民族学院.具有闸位指示和编码输出功能的螺旋式启闭机[P].中国专利:ZL2004 2 0050358.7,2005-6-15
    【51】.Babu Joseph;Coleman B. Brosilow. Inferential Control of Processes: Part I.Steady State Analysis and Design[J]. AIChE Journal. 1978,24(3):485-492
    【52】.罗荣富,邵惠鹤.模糊神经网络方法及其在推断控制中的应用[C].第一届全球华人智能控制与智能自动化大会论文集.科学出版社,1993:763-769
    【53】.徐品,柴天佑,王伟.推断控制综述[J].信息与控制.1998,27(3):206-214
    【54】.T.J.Macvoy.Contemplative Stance for Chemical Process Control[J].Automatica. 1992,28(2):441-442
    【55】.王旭东,邵惠鹤.基于神经网络的通用软测量技术[J].自动化学报.1998,24(5):702-706
    【56】.Lofti A.Zadeh.Fuzzy,logic,neural networks and soft computing. One-page course announcement of CS 294-4, spring 1993, the University of California at Berkeley:November 1992
    【57】.张志星,孙春在,水谷英二[日]张志星等译.神经-模糊和软计算[M].西安:西安交通大学出版社,2000
    【58】.Witold Pedrycz. Computational Intelligence-An Introduction[M]. CRC Press,1998.
    【59】.John Holland. Adaptation in Natural and Artificial Systems[M]. MIT Press,1995
    【60】.Nirwan Ansari, Edwin Hou.用于最优化的计算智能[M].北京:清华大学出版社,1998
    【61】.Medsker L. R.. Hybrid intelligent system[M]. Kluwer Academic Publishers,1995
    【62】.Kandel A.,Langholz G.. Hybrid architecture for intelligent system[M]. CRC Press,1992
    【63】.俞金寿,刘爱伦,张克进.软测量技术及其在石油化工中的应用[M].北京:化学工业出版社,2000
    【64】.罗建旭,常青.软测量技术的数据预处理方法研究[J].控制工程.2006,13(4):298-300
    【65】.Hongwei Tong, Cameron M Crorve. Detection of Gross Error in Data Reconciliation byPrincipal Component Analysis[J]. AIChE Journal. 1995,41(7):1712-1722
    【66】.Narasimhan S.and R.S.H.Mah.Generalized Likelihood Ratio Method for Gross Error Identification[J]. AICHE Journal .1987,33(9):1514-1521
    【67】.罗健旭,邵惠鹤.软测量建模数据的过失误差侦破——一种基于聚类分析的方法[J].仪器仪表学报.2005,28(3):238-241
    【68】. Narasimhan S. and R.S.H. Mah.Generalized Likelihood Ratio Method for Gross Error Identification[J]. AICHE Journal. 1987,33(9):1514-1521
    【69】.赵捧,蒋慰孙.神经网络在过失误差检测中的应用[J].仪器仪表学报.1997,18(5):538-541
    【70】.张明君,皮道映,孙优贤.基于工程观点的软仪表开发策略[J].化工自动化及仪表.1996,23(6):34-36
    【71】.焦李成.神经网络的应用和实现[M].西安:西安电子科技大学出版社,1995
    【72】.Chen S. and S.A.Billing. Neural networks for nonlinear dynamic system modeling and identification[J]. International Journal of Control. 1990,56(2): 1686-1691
    【73】.Liu Y, Wu G. Modified RLS training algmitbm for multi-layer feed-forward neural networks[J]. System Engineering and Electronics Technology. 2000,22(1):77-80
    【74】.Zhang J,Morris A J. Nonlinear process modeling using dynamic neuro-fuzzy networks[C]. IEEE Advanced Control of Chemical Processes. Banff, Canada:1997: 353-358.
    【75】.黄席樾,张著洪,何传江等.现代智能算法理论及应用[M].北京:科学出版社,2005
    【76】.黄志尧,金宁德,李海青.层析成像技术在多相流检测中的应用[J].化学反应工程与工艺,1996,12(4):395-405
    【77】.李海青.两相流参数检测及应用[M].杭州:浙江大学出版社,1991
    【78】.吕柏权,李天铎.一种基于小波网络的故障检测方法[J].控制理论与应用.199815(5):802-80
    【79】.Qi Haiyu,Zhou Xing-Gui, Liu Liang-Hong. A hybrid neural network-first principles model for fixed-bed reactor[J]. Chemical Engineering Science. 1999,54(13-14):2521-526
    【80】.Zorzeto L F M, Maciel F R, Wolf-Maciel M R. Process modeling development through artificial neural networks and hybrid models[J]. Computers and Chemical Engineering. 24:1355-1360.
    【81】.李向阳,朱学峰,刘焕彬.间歇制浆蒸煮过程的混合建模方法研究[J].中国造纸学报.2001,16(2):24-28.
    【82】.P.Georgieva, M.J.Meireles, S.Feyo de Azevedo.. Knowledge-based hybrid modeling of a batch crystallization when accounting for nucleation, growth and agglomeration phenomena[J].Chemical Engineering Science.2003,58:3699-3713.
    【83】.Kalos A.,Kordon A.,Smits G.,Werkmeister S.. Hybrid model development methodology
    【84】.赵恒平.混合智能系统及其在软测量建模中的应用[D].华东理工大学博士学位论文,2005
    【85】.孙瑜,周强,王孟效.基于改进型BP神经网络的湿重软测量[J].中国造纸学报.2003,18(1):114-118
    【86】.王军平,敬忠良,王安.基于随机模糊神经网络的刀具磨损量软测量技术[J].信息与控制. 2002,31(6):534-537
    【87】.李向阳,朱学峰,黄道平等.基于定性知识和线性PLS的间歇蒸煮过程Kappa值软测量方法[J].计算机工程与应用.2002,38(16):55-57
    【88】.赵昀,黄志尧.基于神经网络及机理分析的气力输送粉料质量流量软测量[J].仪器仪表学报.2000,21(4):360-363
    【89】.方柏山,谢晓兰,S.Sirisansaneeyakul.木糖醇发酵过程参数的在线软测量[J].天津大学学报.2000,33(5):607-609
    【90】.冀海峰,黄志尧,王保良等.气液两相流系统的小波软测量技术[J].仪器仪表学报.2001,22(3): 12-13
    【91】.高倩,苏宏业,刘瑞兰等.基于PLS软测量技术在加氢裂化产品质量控制中的应用[J].上海交通大学学报.2002,36增刊:135-137.
    【92】.梁维民,刘爱伦,仲蔚等.加氢裂化分馏塔航空煤油干点软测量[J].石油炼制与化工. 2002,(2):39-41.
    【93】.刘漫丹,杜文莉,钱锋.裂解炉燃料气热值的模糊神经网络软测量[J].计算机集成制造系统. 2003,9(5): 412-416
    【94】.杨志.宁夏引黄灌区灌溉管理模式及测流方法的研究[D].西安理工大学硕士学位论文,2004
    【95】.李之田,文和森,任延祯等.灌区量水手册[M].银川:宁夏人民出版社,1982
    【96】.中华人民共和国水利部.水工建筑物测流规范(SL20-92)[S].北京:水利电力出版社,1992
    【97】.武汉水利电力学院水力学教研室.水力计算手册[M].北京:水利电力出版社,1983
    【98】.薛朝阳,胡德保.平底闸平面闸门下孔流流量计算[J].华东水利学院学报.1982年第2期
    【99】.任建民.闸孔出流流态的简易判别计算法[M].甘肃水利水电技术.1999年第2期:32-33,41
    【100】.杨志,陈广宏,张志昌等.宁夏汉延渠斗口闸孔出流的水力学计算[J].陕西水力发电.2001,17(1):47-51
    【101】.邱静,黄本胜,赖冠文.宽顶堰平板门闸孔出流流量系数的研究与应用[J].中国农村水利水电.2002年第9期:41-42
    【102】.杨万海.多传感器数据融合及其应用[M].西安:西安电子科技大学出版社,2004
    【103】.刘君华.现代检测技术与测试系统设计[M].西安:西安交通大学出版社,1999.
    【104】.仲崇权,张立勇,杨素英等.多传感器分组加权融合算法研究[J].大连理工大学学报.2002,42(2):242-245
    【105】.伸崇权,张立勇,杨索英等.基于最小二乘原理的多传感嚣加权融合算法[J].仪器仪表学报.2003,24(4):427-430
    【106】.阎平凡,张长水.人工神经网络与模拟进化计算(第2版)[M].北京:清华大学出版社,2005
    【107】.刘瑞兰.软测量技术若干问题的研究及工业应用[D].浙江大学博士学位论文,2004
    【108】.夏毓常.水工水力学原型观测与模型实验[M].北京:中国电力出版社,1999
    【109】.王福平,卢胜利,雷崇民等.引黄灌渠斗口流量测量数据处理与分析系统[J].计算机工程与应用.2004,40(21):197-200
    【110】.蔡自兴,[美]约翰·德尔金,龚涛.高级专家系统:原理、设计及应用[M].北京:科学出版社,2005
    【111】.Buchanan B G, Shortliffe E H, Rule Based Expert System, The MYCIN Experiments of Stanford Heuristic Programming Project[M] First Edition. New York: Addison-Wesley Publishing Company, 1984:105-180
    【112】.王维娜.专家系统在发酵过程生物量软测量建模中的应用研究[D].北京化工大学硕士论文,2006.6
    【113】.J.P. Ignizio. Introduction to Expert Systems: The Development and Implementation of Rule-Based Expert Systems[M]. New York, NY: McGraw-Hill, 1991
    【114】.蔡自兴,徐光佑.人工智能及其应用(第三版)[M].北京:清华大学出版社,2003
    【115】.胡春宏.明渠挟沙水流运动的力学和统计规律[M].科学出版社,1995
    【116】.Tom M. Mitchell,曾华军等译.机器学习[M].北京:机械工业出版社,2003
    【117】.焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1995
    【118】.Basheer IA, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application[J]. Microbiol Methods. 2000,43(1):3-31
    【119】.Martin Anthony. Neural Network Learning:Theoretical Foundations[M].Cambridge University Press,1999
    【120】.肖少拥,石文俊,胡上序.神经网络的学习问题研究[J].计算机工程与应用.2000,(1):47-48
    【121】.田景文,高美娟.人工神经网络算法研究及应用[M].北京:北京理工大学出版社,2006
    【122】.钟珞,饶文碧,邹承明.人工神经网络及其融合应用技术[M].北京:科学出版社,2007
    【123】.ARNO van Rooij,Lakhmi Jain,Ray Johnson.Neural Network Training Using Genetic Algorithm[M].World Scientific Publishing Co.,1996
    【124】.Zhong L,Yuan J L,Zou C M. Parameter whiten method for neural network modeling for gray problem[C].SPIE,4739,Orland,2002
    【125】.Zhong L. The research of system architecture in expert system[J].Wuhan University Journal of Natural Science.2001,16(1-2)
    【126】.Hisao Ishibuchi,Manabu Nii.Fuzzy Neural Networks Techniques and Their Application[M].Academic Press,1998
    【127】.李建平.小波分析与信号处理—理论、应用及软件实现[M].重庆:重庆出版社,1997
    【128】.阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000
    【129】.苏高利,邓芳萍.论基于MATLAB语言的BP神经网络的改进算法[J].科技通报.2003,19(2):130-135
    【130】.Liu Y, Wu G. Modified RLS training algmitbm for multi-layer feed-forward neural networks[J]. System Engineering and Electronics Technology. 2000,22(1):77-80.
    【131】.R.Hecht-Nieben. Neurocomputing,Reading[M]. MA:Addison-Wesley,1990
    【132】.B.Bolat, T.Yildirim. A data selection method for probabilistic neural networks[J].Electr. Electron.Eng.2004,4 (2):1137–1140.
    【133】.J.S. Sanchez. High training set size reduction by space partitioning and prototype abstraction[J]. Pattern Rec. 2004,37:1561-1564
    【134】.Y. Jiang, Z.H. Zhou. Editing training data for kNN classifiers with neural network ensemble[J], Lec. Notes Comp. Sci. 2004,31(3):356-361
    【135】.王小平,曹立明.遗传算法理论、应用与软件实现[M].西安:西安交通大学出版社,2002
    【136】.M D Vose.The Simple Genetic Algorithm[M].MIT Press, Cambridge, MA, 1999
    【137】.曹俊,朱如鹏.一种改善遗传算法早熟现象的方法[J].上海大学学报.2003,19(3):229-232
    【138】.周育人,王勇.一类改进的遗传算法及其优化性能分析[J].武汉化工学院学报.2003,25(1):93-96
    【139】.付旭辉,康玲.遗传算法的早熟问题探究[J].华中科技大学学报·2003,31(7):45-4
    【140】.陈智军.基于改进型遗传算法的前馈神经网络优化设计[J].计算机工程.2002,28(4):120-129
    【141】.Albus J S. A new approach to manipulation control: The cerebellar model articulation control (CMAC)[J]. J of Dyn Syst,Meas and Contr,1975,97(3):220-227
    【142】.J.S.Ker, YH.Kuo, and R.C.Wen et al: Hardware Realization of,Higher-order CMAC Model for Color Calibration[C]. Proceedings of the 1995 IEEE Intenrational Conference on Neural Networks. 1995: 1656-1661
    【143】.J.K.Penterson:Software Design for Neurocontrol Code[J], J. Intelligent Material Systems and Structures. 1994,Vo1.5:172-185
    【144】.沈宪明,白瑞林,章智慧.基于FPGA的模糊CMAC网络的硬件实现[J].微计算机信息,2006,22(2):178-180
    【145】.Z.-Q.WangJ,Schiano,andM.Ginsberg,Hash codingin CMAC neural networks,in Proceedings of International Conferenceon Neural Networks[C]. 1996:1698-1703
    【146】.Wong Y F,Sideris A.learning convergence in the cerebellar model articulation controller[J].IEEE Trans.Neural Networks.1992,3(1):115-120
    【147】.罗忠等.CMAC学习过程收敛性的研究[J].自动化学报,1997,23(4):455-461
    【148】.苏小红,张明杰,马培军等.CMAC神经网络碰撞问题解决方法的研究[J].计算机研究与发展.2006,43(5):862-866.
    【149】.周旭东,王国栋.模糊小脑模型神经网络[J].自动化学报,1998,24(2):173-177
    【150】.时文飞.基于人工神经网络与PID的复合控制研究[M].重庆大学硕士学位论文,2007
    【151】.Fogelmenr S F. Multi-Modular Neural Network Hybrid Archicture:a Review[C].Proc 1993 Intern Joint Confe on NN,1993:2231-2236
    【152】.Quinlan J R. Induction of Decision Trees[J].Machine Learning.1986,1:81-106
    【153】.熊和金,陈德军.智能信息处理[M].北京:国防工业出版社,2006
    【154】.张学工.关于统计学习理论与支持向量机[J].自动化学报.2000,26(1):32-42.
    【155】.Vapnik V N. The Nature of Statistical Learning Theory[M].New York: Springer-Verlag,1995
    【156】.Vapnik V N. Statistical Learning Theory [M]. New York: John Wiley, 1998
    【157】. N.Cristianiniand J. Shawe-Taylor. An Introduction to Support Vector Machines[M]. Cambridge University Press.2000
    【158】.吴今培,孙德山.现代数据分析[M].北京:机械工业出版社,2006
    【159】.权太范.信息融合神经网络-模糊推理理论与应用[M].北京:国防工业出版社,2002
    【160】.朱国强,刘士荣,俞金寿.支持向量机及其在函数逼近中的应用[J].华东理工大学学报.2002,28(5):555-559.
    【161】.朱国强,刘士荣,俞金寿.基于支持向量机的数据建模在软测量建模中的应用[J].华东理工大学学报.2002,9(28):6-10
    【162】.熊志化,黄国宏,邵惠鹤.基于高斯过程和支持向量机的软测量建模比较及应用研究[J].信息与控制.2004,33(6):754-757
    【163】.Feng R, Shen W,Shao H. A soft sensor modeling approach using support vector machines[C].Proceeding of the American Control Conference.Pisctaway,NJ,USA:IEEE,2003:3702-3707
    【164】.冯瑞,张浩然,邵惠鹤.基于SVM的软测量建模[J].信息与控制.2002,31(6):567-571
    【165】.黄德先,金以慧.基于支持向量机的软测量建模方法[J].信息与控制.2004,33(4):417-421
    【166】.朱永生,王成栋,张优云.二次损失函数支持向量机性能的研究[J].计算机学报.2003,26(8):982-989
    【167】.J Kennedy, R C Eberhart. Particle swarm optimization [C]. Proc IEEE Conference on Neural Networks.Piscataway, NJ,1995(4).1942-194
    【168】.栾丽君,谭立静,牛奔.一种基于粒子群优化算法和差分进化算法的新型混合全局优化算法[J].信息与控制.2007,36(6):708-714
    【169】.刘江华,程君实,陈佳品.支持向量机训练算法综述[J].信息与控制.2002,31(1):45-50.
    【170】.张浩然,韩正之.回归支持向量机的改进序列最小优化学习算法[J].软件学报.2003,14(12):2006-2013.
    【171】.Ma Junshui,Theiler J.,Perkins S. Accurate on-line support vector regression[J]. Neural computation. 2003,15(1):2683-2703.
    【172】.L.A.Zadeh.Fuzzy Sets[J].Informat Control.1965,8:338-353
    【173】.李人厚.智能控制理论和方法[M].西安:西安电子科技大学出版社,1999
    【174】.Takagi T, Sugeno M. Fuzzy identification of system and its application to modeling and control[J]. IEEE Trans Syst, Man Cyber.1985,SMC-15:116-132
    【175】.Mendel, Jerry. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions[M]. Prentice Hall PTR, NJ, USA 2001
    【176】.Krone A, Taeger H. Data-based fuzzy rule test for fuzzy modeling[J]. Fuzzy Sets Syst. 2001,123(3):343-358
    【177】.K. I. Funahashi. On the Approximate Realieation of Continuous Mapping byNeural Networks[J]. Int. Conf NN.1989,2:11-12
    【178】.K. Hornik. Approximation Capabilites of Multilayer Feedforward Network.Neural Networks[J]. Trans.Neural Networks. l991,4(2):251-257
    【179】.B. Kosko. Fuzzy Systems as Universal Approximators[C]. Conf Fuzzy Syste.,San Diego.1992:1151-1162
    【180】.X. J. Zeng, M. G. Singh. Approximation Accruacy Analysis of Fuzzy Systems as Function Approximators[J].IEEE Trans.on Fuzzy Syst.1996,4:44-63
    【181】.S. Galichet, L. Foulloy.Fuzzy Controllers: Synthesis and Equivalences[J]. IEEE Tran.on Fuzzy Syst. 1995,3(2):140-148
    【182】.J.S.R.Jang. ANFIS: Adaptive-network-based fuzzy inference systems[J]. IEEE Trans. On system, Man and Cybernetics. 1993, 23(3): 665-68
    【183】.Dragan Kukolj. Design of adaptive Takagi-Sugeno-Kang fuzzy models[J]. Applied Soft Computing. 2002,2(2):89-103
    【184】.姜长元,朱庆保.基于T-S逻辑的新型模糊神经网络模型[J].南京师范大学学报.2006,6(3):51-55
    【185】.杨长保,聂兰仕,孙远鹏.改进的模糊神经网络模型在储层产能预测中的应用研究[J].吉林大学学报. 2003,33(1):48-51
    【186】.干思权,刘贵平,申祝江.一种改进型T-S模糊神经网络[J].控制工程.2005,12(5):442-445
    【187】.吴艳.多传感器数据融合算法研究[D].西安电子科技大学博士学位论文,2003
    【188】.何友,王国宏等.多传感器信息融合及应用[M].北京:电子工业出版社,2001
    【189】.Rajive Josh,Arthur C. Sanderson.Multisensor Fusion:A minimal Representtion Framework[M].World scientific Publishing Co.,1999
    【190】.Chang Dayong. Applications of the Extent Analysis Method on Fuzzy AHP[J].European Journal Operational Research,TheNetherlands. 1996,95(3):649-655
    【191】.张吉军.模糊层次分析法(FAHP)[J].模糊系统与数学.2000,14(2):80-88
    【192】.胡学骏,罗中良.基于统计理论的多传感器信息融合方法[J].传感器技术.2O02,21(8):38-43.
    【193】.周军,王志胜,周凤岐.基于线性均方估计的数据融合理论[J].宇航学报.2003,24(4):364-367.
    【193】.刘晓东,张恒喜,任建军.基于相对接近度的多指标决策与评价方法及应用[J].南京航空航天大学学报.2001,33(1):100-102
    【195】.孙勇,景博.基于支持度的多传感器一致可靠性融合[J].传感技术学报.2005,18(3):537-539
    【196】.刘先省,胡振涛.基于模糊支持度的分布式多传感器加权融合算法[J].高技术通讯.2006,16(3):227-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700