两个水稻品种叶瘟抗性主效基因的精细定位与QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻瘟病菌(无性世代为Pyricularia grisea,有性世代为Magnaporthe grisea)是危害水稻生产的主要病害之一。利用抗性基因培育水稻抗性品种是克服稻瘟病危害最经济有效的措施。由于稻瘟病菌群体结构和致病性的变化,含单抗性基因品种的抗性容易伴随新的致病型菌株的出现而丧失。因此,挖掘和鉴定广谱的抗性主效基因和抗性数量基因座位,通过分子标记辅助选择聚合有利的抗性基因,培育广谱和持久抗性的水稻品种,是水稻抗稻瘟病育种面临的主要工作。本研究分析了两个水稻抗性品种IR24和DV85的抗稻瘟病基因组成,鉴定和定位了3个稻瘟病抗性主效基因和多个抗性QTL。主要研究结果如下:
     1.IR24抗中国稻瘟病菌株的主效基因主要是Pi20(t)和Pib,其中Pi20(t)基因对北方粳稻区的菌株表现广谱抗性(94.2%),对南方籼稻区的菌株的抗谱中等(52.6%),是水稻抗稻瘟病育种的一个优良抗性基因。本研究从160个中国稻瘟病菌株中鉴定了一个能特异性鉴别Pi20(t)基因的菌株98095,利用该菌株接种Asominori(感)×IR24(抗)的重组自交系和F2群体,借助分子标记进行精细定位,鉴定出5个与Pi20(t)基因紧密连锁的SSR标记,即OSR32、RM1337、RM5364、RM7102和RM28050,其中,3个共分离标记RM1337、RM5364和RM7102对Pi20(t)基因选择效率达100%,2个旁侧标记OSR32和RM28050对Pi20(t)基因选择效率达98%以上。这5个分子标记在Pi20(t)基因的供体亲本IR24和一系列国内推广品种之间具有良好的多态性。Pi20(t)基因可以通过分子标记辅助选择直接应用于粳稻抗稻瘟病改良或与互补抗性基因聚合应用于籼稻抗稻瘟病改良。
     2.DV85对中国稻瘟病菌株具有高水平的抗性,其中对北方粳稻区的菌株的抗谱高达92.9%,对籼稻区菌株的抗谱为54.0%,在中国也是一个优良的抗源材料。利用Kinmaze(感)×DV85(抗)的重组自交系、BC1F1 (Kinmaze/DV85//Kinmaze)和F2群体对DV85进行抗性基因分析和基因定位,鉴定出一个新的显性主效抗稻瘟病基因Pidv(t),位于1号染色体长臂末端。通过扩大F2作图群体和开发新标记,将Pidv(t)精细定位于Indel标记C4和SSR标记RM12182区间,与两标记的遗传距离分别为0.5cM和0.1cM,两标记之间的物理距离为66.9kb。Pidv(t)的精细定位为该基因的标记辅助选择和图位克隆奠定了基础。
     3利用91-17-2、97-27-2、59-3、L64-1、CH26和TH16等6个稻瘟病菌株接种两套重组自交系群体—Asominori(?):感)×IR24(抗)的71个重组自交系(群体Ⅰ)和Kinmaze(?):感)×DV85(抗)的81个重组自交系(群体Ⅱ),分别从群体Ⅰ和Ⅱ鉴定出58个抗性QTL和59个抗性QTL分布于1-12号染色体上,其中病斑数(LN)、病斑长(LL)、病叶面积(LA)和病级(LD)等四个性状在群体Ⅰ中分别鉴定出16、13、12和17个抗性QTL,在群体Ⅱ中分别鉴定出16、12、14和17个抗性QTL。34个QTL的抗病等位基因源自IR24,24个QTL的抗病等位基因源自Asominori,29个QTL的抗病等位基因源自DV85,30个QTL的抗病等位基因源自Kinmaze。对表型变异贡献率大的QTL位于IR24的Pib座位和DV85的Pidv(t)座位,抗性QTL与主效基因共同构成了IR24和DV85的抗瘟性能力。两个群体鉴定的QTL均存在聚簇和共座位现象,聚簇现象多发生在主效基因座位区域,而同一菌株的不同致病性状鉴定的QTL常共座位。只有少数抗性座位抗2-3个不同的菌株,因而QTL表现了明显的小种特异性。通过比较分析,两个群体分别有17和15个抗性QTL区域对应存在着前人鉴定的抗稻瘟病QTL或主效基因,而两群体鉴定的QTL之间也存在11个共座位的QTL区域,表明水稻基因组存在保守的广谱抗稻瘟病QTL。这些保守的广谱抗性QTL有助于开展QTL的精细定位以进一步标记辅助选择和图位克隆QTL。
Rice blast disease, caused by Pyricularia grisea (Cooke) Sacc., teleomorph Magaporthe grisea (Hebert) Barr, is one of the most destructive diseases worldwide. Utilization of resistance genes in rice breeding programs is considered an effective and economical strategy to control the disease. However, cultivars carrying a single R gene can only last for a short period of time until the advent of new dominant pathogenic isolates due to the high variability and pathogenicity of M. grisea population. Hence, exploiting wide-spectrum R genes and quantitative resistant loci, and pyramiding them into rice cultivars for developing broad-spectrum and durable resistance to rice blast by marker-assisted selection is a priority in rice breeding programs. In this study, we analyzed the genotypes of blast resistance in cv. IR24 and cv. DV85, and mapped three major blast R genes and some quantitative resistant loci. The main results were as follows:
     1. The resistance of cv. IR24 to Chinese blast isolates are mainly conditioned by R gene Pi20(t) and Pib, among which the Pi20(t) can be used as an superior R gene in rice breeding programs as it confer resistance to a broad spectrum of japonica-isolates (94.2% of 160 isolates) and a moderate spectrum of indica-isolates (52.6% of 160 isolates) in China. The isolates 98095 which could specifically differentiate the Pi20(t) was selected from a total of 160 blast isolates tested, and used to inoculate the recombinant inbred lines(RILs) and F2 population from the cross between Asominori and IR24 to finely map the Pi20(t). As a result, two flanking and three co-segregating SSR markers for Pi20(t), nearby the centromere region of chromosome 12, were identified. These five markers can tag Pi20(t) over 98% accuracy and show high polymorphisms between Pi20(t) donor IR24 and a series of elite cultivars in China. We suggest that these SSR markers can be useful in marker assisted selection for rapidly introducing Pi20(t) into japonica varieties or pyramiding Pi20(t) with other resistance genes into indica varieties.
     2. The indica cv. DV85 has a high level of resistance to Chinese blast isolates as it confer resistance to 92.9% of 98 japonica-derived isolates and 54.0% of 50 indica-derived isolates, this indicate it can also be used in rice breeding programs for blast resistance. Based on the results of genetic analysis and preliminary gene mapping from RILs, BC1F1(Kinmaze/DV85//Kinmaze) and F2 population derived from the cross of Kinmaze(susceptible) and DV85(resistant), we confirm that DV85 harbors a new dominant R gene conferring resistance to the Chinese japonica-derived isolate 97-27-2. The novel R gene was located on the terminal region of long arm of chromosome 1, tentatively designed as Pidv(t). By using an enlarged mapping population from F2 individuals, and by developing InDel markers combined with the released SSR markers, we further finely map the Pidv(t) gene to an 66.9kb interval defined by two markers, C4 and RM12182, with a genetic distance of 0.5 and 0.1 cM, respectively. The fine-mapping of Pidv(t) is favorable to marker-assisted selection and map-based cloning of the gene.
     3 Seventy-one RILs of Asominori×IR24 (populationⅠ) and 81 RILs of Kinmaze×DV85 (populationⅡ) were inoculated with six isolates 91-17-2,97-27-2,59-3, L64-1, CH26 and TH16, respectively. Fifty-eight QTLs were detected in the populations I at the LOD 2.5, of which 34 QTLs derived from the alleles of resistant parent IR24,24 QTLs derived from the alleles of susceptible parent Asominori, and 16,13,12 and 17 QTLs were related to lesion number (LN), lesion length (LL), lesion area (LA) and lesion degree (LD), respectively. In the populationⅡ, fifty-nine QTLs were detected at the LOD 2.5, including 29 QTLs derived from the alleles of resistant parent DV85,30 QTLs derived from the alleles of susceptible parent Kinmaze, and 16,12,14 and 17 QTLs related to LN, LL, LA and LD. The QTLs conferring major effects were mainly located in Pib and Pidv(t) region, thus, QTLs together with the major genes are responsible for the broad-spectrum resistance in IR24 and in DV85, respectively. QTLs are often clustered in the region of major genes, meanwhile, most QTLs detected for different traits for the same isolate are co-located in the same loci. Only few QTLs conferred resistance to 2-3 isolates, and no QTLs conferred resistance to more than 3 isolates. By comparative analysis for QTLs from two RILs populations,17 loci from populationⅠand 15 loci from populationⅡwere found to locate within or near to the same region as other QTLs or major genes identified by other researchers using different mapping populations. Eleven QTLs identified from the two RIL populations were located in the same loci in this study, including 5 loci corresponding to the same location of QTLs identified in other mapping populations. This indicates that some consensus QTLs for blast resistance were harbored in rice genome,which are helpful for fine mapping and map-based cloning of quantitative resistance loci.
引文
Ahn SN, Kim YK, Han SS, et al. McCouch SR. Molecular mapping of a gene for resistance to a Korean isolate of rice blast. Rice Genetics Newsl.,1996,13:74-76.
    Ahn SN, Kim YK, Hong HC, et al. Molecular mapping of a new gene for resistance to rice blast (Pyricularia grisea Sacc.). Euphytica,2000,116:17-22.
    Ahn SN, Tanksley SD. Comparative linkage maps of the rice and maize genomes. Proc. Natl. Acad. Sci. USA,1993,90 (17):7980-7984.
    Ann SW. International collaboration on breeding for resistance to rice blast. In:Rice blast d isease.
    Zeigler R S, Leong S A, Teng P S, ed. CAB International, Wallingford, UK,1994,137-153.
    Araki E, Yanoria MJT, Ebron LA, et al. Mapping of a rice blast resistance gene Pish. Breeding research,
    2003,5 (Suppl.2),333.
    Asaga K. Evaluation standard of rice leaf blast in nursery test (in Japanese). J. Agric. Sci.,1976,31: 156-156.
    Akagi H, Yokozeki Y, Inagaki A, et al.Microsatellite DNA markers for rice chromosomes. Theor. Appl.
    Genet.,1996,93:1071-1077.
    Anarutha CS, Zen K-C, Mew T, et al. Induction of chitinase and beta-1,3-glucanase in Rhizoctonia
    solani-infected rice plants:isolation of an infection-related chitinase cDNA clone. Physiol. Planta, 1996,97:3946.
    Alexander D, Goodman RM, Gut-Rella M, et al. Increased tolerance to two oomycete pathogens in
    transgenic tobacco expressing pathogenesis-related protein 1a. Proc. Nad. Acad. Sci. USA, 1993,90:7327-7331.
    Ashfield T, Ong LE, Nobuta K, et al. Convergent Evolution of Disease Resistance Gene Specificity in Two Flowering Plant Families. Plant Cell,2004,16:309-318.
    Anderson PA, Lawrence GJ, Morrish BC, et al. Inactivation of the flax rust resistance gene M associated
    with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell,1997,9:641-651.
    Baker B, Zambryski P, Staskawicz BJ, et al. Signaling in plant-microbe interactions. Science,1997,
    276:726-733.
    Ballvora A, Ercolano MR, Weiss J, et al.The R1 gene for potato resistance to late blight (Phytophthora
    infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J.,2002,
    30:361-371.
    Bai J, Pennill LA, Ning J, et al. Diversity in nucleotide binding site-leucine-rich repeat genes in cereals.
    Genome Res.,2002,12:1871-1884.
    Berruyer R, Adreit H, Milazzo J, et al. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor. Appl. Genet.,2003,107:1139-1147.
    Bent AF, Kunkel BN, Dahlbeck D, et al. RPS2 of Arabidopsis thaliana:a leucine-rich repeat class of plant disease resistance genes. Science,1994,265:1856-1860.
    Bent AF. Plant Disease Resistance Genes:Function Meets Structure. Plant Cell,1996,8:1757-1771.
    Bendahmane A, Kohn BA, Dedi C, et al. The coat protein of potato virus Ⅹ is a strain-specific elicitor of Rx1-mediated virus resistance in potato. Plant J,1995,8:933-941.
    Bonman JM, Vergael de Dios TI, et al. Physiological specialization of Pyricularia oryzae in the Philippines. Plant Dis.,1986,70:767-769.
    Bonman JM. Durable resistance to rice blast disease-environmental influences. Euphytica,1992, 63:115-123.
    Barman SR, Gowdal M, Venu RC, et al. Identification of a major blast resistance gene in the rice cultivar 'Tetep'. Plant Breeding,2004,123:300-302.
    Bryan GT, Wu KS, Farrall L, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell,2000,12:2033-2046.
    Bittner-Eddy PD, Crute IR, Holub EB, et al. RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J.,2000,21:177-188.
    Brommonschenkel SH, Frary A, Tanksley SD. The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol. Plant Microbe Interact., 2000,13:1130-1138.
    Brueggeman R, Rostoks N, Kudrna D, et al. The barley stem rust-resistance gene Rpgl is a novel disease-resistance gene with homology to receptor kinases. Proc. Nad. Acad. Sci. USA,2002, 99:9328-9333.
    Buschges R, Hollricher K, Panstruga R, et al. The barley Mlo gene:a novel control element of plant pathogen resistance. Cell,1997,88 (5):695-705.
    Cai D, Kleine M, Kifle S, et al. Positional cloning of a gene for nematode resistance in sugar beet. Science,1997,275:832-834.
    Chauhan RS, Farman ML, Zhang H-B, et al. Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Mol. Genet. Genomics,2002,267:603-612.
    Chen D, Zeigler RS, Ahn SW, et al. Phenotypic characterization of the rice blast resistance gene Pi2(t). Plant disease,1996,80:52-56.
    Chen D-H, dela Vina M, Inukai T, et al. Molecular mapping of the blast resistance gene, Pi44(t), in a line derived from a durably resistant rice cultivar. Theor. Appl. Genet.,1999,98:1046-1053.
    Chen M, Presting G, Barbazuk WB, et al. An integrated physical and genetic map of the rice genome. Plant Cell,2002,14:537-545.
    Chen H, Wang S, Xing Y, et al. Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Proc. Natl. Acad. Sci. USA, 2003,100:2544-2549.
    Chen XW, Li SG, Xu JC, et al. Identification of Two Blast Resistance Genes in a Rice Variety, Digu. J. Phytopathology,2004,152:77-85.
    Chen S, Wang L, Que Z, et al. Genetic and physical mapping of Pi37(t), a new gene conferring resistance to rice blast in the famous cultivar St. No.1. Theor. Appl. Genet.,2005,111:1563-1570.
    Chen X, Shang J, Chen D, et al. A B-lectin receptor kinase gene conferring rice blast resistance. Plant l., 2006,46:794-804.
    Chisholm ST, Mahajan SK, Whitham SA, et al. Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of tobacco etch virus. Proc. Natl. Acad. Sci. USA,2000, 97:489-494.
    Chu ZH, Yuan M, Yao JL, et al. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes & Dev.,2006,20:1250-1255.
    Collins N, Drake J, Ayliffe M, et al. Molecular characterization of the maize Rpl-D rust resistance haplotype and its mutants. Plant Cell,1999,11:1365-1376.
    Conaway-Bormans CA, Marchetti MA, Johnson CW et al. Molecular markers linked to the blast resistance gene Pi-z in rice for use in marker-assisted selection. Theor. Appl. Genet., 2003,107:1014-1020.
    Cooley MB, Pathirana S, Wu HJ, et al. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell,2000,12:663-676.
    Datta K. and Muthukrishnan S. Pathogenesis-related Proteins in Plants. Boca Raton, FL, CRC Press, 1999.
    Delaney TP, Uknes S, Vemooij B, et al. A central role of salicylic acid in plant disease resistance. Science,1994,266:1247-1250
    Deng Y, Zhu X, Shen Y., et al. Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theor. Appl. Genet.,2006,113:705-713.
    Deslandes L, Olivier J, Peeters N, et al.Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc. Natl.Acad. Sci. USA,2003,100:8024-8029.
    Dixon MS, Jones DA, Keddie JS, et al. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell,1996,84:451-459.
    Dixon MS, Hatzixanthis K, Jones DA, et al. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell,1998, 10:1915-1925.
    Dodds PN, Lawrence GJ, Ellis JG. Six amino acid changes confined to the leucine-rich repeat beta-strand/beta-turn motif determine the difference between the P and P2 rust resistance specificities in flax. Plant Cell,2001,13:163-178.
    Dong Y, Tsuzuki E, Kamiunten H, et al. Mapping of QTL for embryo size in rice. Crop Science,2003a, 43:1068-1071
    Dong Y, Tsuzuki E, Kamiunten H, et al. Identification of quantitative trait loci associated with pre-harvest sprouting resistance in rice (Oryza sativa L.). Field Crops Research,2003b,81:133-139.
    Dong Y, Tsuzuki E, Lin D, et al. Molecular genetic mapping of quantitative trait loci for milling quality in rice (Oryza sativa L.). Journal of Cereal Science,2004,40:109-114.
    Dong Y, Kamiunten H, Yang Z, et al. Mapping of quantitative trait loci for gibberellic acid response at rice (Oryza sativa L.) seedling stage. Plant Science,2006a,170:12-17.
    Dong Y, Ogawa T, Lin D, et al. Molecular mapping of quantitative trait loci for zinc toxicity tolerance in rice seedling (Oryza sativa L.). Field Crops Research,2006b,95:420-425.
    Ebron LA, Fukuta Y, Imbe T, et al. Estimation of genes in blast resistance in elite indica-type rice(Oryze sative L.) varieties-bred at the international rice research institute. Breed. Sci.,2004,54:381-387.
    Ernst K, Kumar A, Kriseleit D, et al. The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J.,2002,31:127-136.
    Feuillet C, Travella S, Stein N, et al. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc. Natl. Acad. Sci. USA,2003, 100:15253-15258.
    Fjellstrom R, Conaway-Bormans CA, McClung AM, et al.Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea Pathotypes. Crop Sci.,2004,44:1790-1798.
    Fjellstrom R, McClung AM, Shank AR. SSR markers closely linked to the Pi-z locus are useful for selection of blast resistance in a broad array of rice germplasm. Mol. Breeding,2006,17:149-157.
    Flor HH. Current Status of the Gene-For-Gene Concept. Annual Review of Phytopathology,1971, 9,275-296.
    Fujii K, Hayano-Saito Y, Saito K, et al. Identification of a RFLP marker tightly linked to the panicle blast resistance gene, Pb1, in rice. Breeding Science,2000,50:183-188.
    Fukuoka S and Okuno K. QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor. Appl. Genet.,2001,103:185-190.
    Fukuoka S, Shimizu T, Saka N, et al. Molecular cloning of a QTL, pi21, controlling field resistance to blast in rice. Plant & Animal Genomes XV Conference, San Diego, CA,2007, January 13-17.
    Fukuta Y, Araki E, Yanoria MJT, et al. Development of varieties for blast resistance in IRRI-Japan collaborative research project. In:Kawasaki S (ed) Rice Blastt Interaction with Rice and Control. Klumer Academic Publishers Dordrecht, Netherland,2004, p229-233.
    Fukuta Y, Ebron LA, Kobayashi N. Genetic and Breeding Analysis of Blast Resistance in Elite Indica-type Rice (Oryza sativa L.) Bred in International Rice Research Institute. JARQ,,2007,41 (2):101-114.
    Gale MD, Devos KM. Comparative genetics in the grasses. Proc. Natl. Acad. Sci. USA,1998, 95:1971-1974.
    Gaffney T, Friedrich L, Vernooij B, et al. Requirement of salicylic acid for the induction of systemic acquired resistance. Science,1993,261:754-756
    Gassmann W, Hinsch ME, Staskawicz BJ. The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant J.,1999,20:265-277.
    Goff SA, Ricke D, Lan TH, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science,2002,296:92-100.
    Goto I, Jaw Y, Baluch AA. Genetic studies on the resistance to rice plant to blast fungus Ⅳ. Linkage analysis of four genes, Pi-a, Pi-k, Pi-z and Pi-i. Ann. Phytopath. Soc. Japan,1981,47:252-254.
    Goto I. Genetic studies on resistance of rice plant to blast fungus (Ⅶ) blast resistance genes of kuroka. Ann. Phytopath. Soc. Japan,1988,54:460-465.
    Gowda M, Roy-Barman S, Chattoo BB. Molecular mapping of a novel blast resistance gene Pi38 in rice using SSLP and AFLP markers. Plant Breeding,2006,125:596-599.
    Grant MR, Godiard L, Straube E, et al. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science,1995,269:843-846.
    Gu K, Yang B, Tian D, et al. R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice. Nature,2005,435:1122-1125.
    Halterman D, Zhou F, Wei F, et al. The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J.,2001,25:335-348.
    Halterman DA, Wise RP. A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. Plant J.,2004,38: 215-226.
    Hammond-Kosack KE, Jones JDG. Plant disease resistance genes. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1997,48:575-607.
    Hammond-Kosack KE, Jones JDG. Resistance gene-dependent plant defense responses. Plant Cell,1996,8:1773-1791.
    Hayashi K, Yoshida H, Ashikawa I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Theor. Appl. Genet.,2006,113:251-260.
    He C, Fong SHT, Yang D, et al. BWMKI, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol. Plant Microbe Interact.,1999,12:1064-1073.
    Hittalmani S, Parco A, Mew TV, et al. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor. Appl. Genet.,2000,100:1121-1128.
    Huang N, Angels ER, Domingo J, et al. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor. Appl. Genet.,1997,95:313-320.
    Huang L, Brooks SA, Li W, et al. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics,2003,164:655-664.
    Ikeda K, Lei JK, Tsunematsu H, et al. Rice QTL analysis for days to heading using different RI (recombinant inbred) lines. Breed. Sci.,1998,48 (Suppl.1):72. Imbe T, Matsumoto S. Inheritance of resistance of rice varieties to the blast fungus strains virulent to the variety "Reiho". Japan. J. Breed,1985,(35):332-339.
    Imbe T, Ora S, Yanoria MJT, et al. A new gene for blast resistance in rice cultivar, IR24. Rice Genetics Newsl.,1997,14:60-62.
    Imbe T, Tsunematsu H, Kato H, et al. Genetic analysis of blast resistance in IR varieties and resistance breeding strategy. In:Advance in Rice Blast Research, Proceeding of the 2nd International Rice Blast Conference 4-8 August 1998, Montpellier, France. Tharreau D, Lebrun MH, Talbot NJ, Notteghem JL, ed. Dordrecht:Kluwer Academic Publishers,2000,1-9.
    Inukai, T, Nelson RJ, Zeigler RS, et al. Allelism of blast resistance gene in near-isogenic lines of rice. Phytopathology,1994,84:1278-1283.
    Inukai T, Zeigler RS, Sarkarung S, et al. Development of pre-isogenic lines for rice blast-resistance by marker-aided selection from a recombinaant population. Theor. Appl. Genet.,1996,93:560-567.
    IRRI. International rice testing programme. Standard evaluation system for rice,4th edn. Manila, The Philippines:International Rice Research Institute,1996,52.
    International Rice Genome Sequencing Project (IRGSP). The map-based sequence of the rice genome. Nature,2005,436:793-800.
    Iyer AS, McCouch SR. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol. Plant Microbe Interact.,2004,17:1348-1354.
    Jacobs AK, Dry IB, Robinson SP. Induction of different pathogenesis-related cDNAs in grapevine infected with powdery mildew and treated with ethephon. Plant Pathology,1999,48:325-336.
    Jeon J-S, Chen D, Yi G-H, et al. Genetic and physical mapping of Pi5(t), a locus associated with broad-spectrum resistance to rice blast. Mol. Gen. Genomics,2003,269:280-289.
    Jeung JU, Kim BR, Cho YC, et al. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor. Appl. Genet., 2007,115:1163-1177.
    Jia Y, Wang ZH, Singh P. Development of Dominant Rice Blast Pi-ta Resistance Gene Markers. Crop Sci.,2002,42:2145-2149.
    Jia Y, Bryan GT, Farrall L, et al. Natural variation at the Pi-ta rice blast resistance locus. Phytopathology,2003a,93,1452-1459.
    Jia Y. Marker assisted selection for the control of rice blast disease. Pesticide Outlook, 2003b,14:150-152.
    Jia, Y, Wang Z, Fjellstrom RG, et al. Rice Pi-ta gene Confers Resistance to the Major Pathotypes of the Rice Blast Fungus in the United States. Phytopathol,2004,94,296-301.
    Jiang J, Wang S. Identification of a 118-kb DNA fragment containing the locus of blast resistance gene Pi-2(t) in rice. Mol. Gen. Genomics,2002,268:249-252.
    Jiang, GH, Xia ZH, Zhou YL, et al. Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAgammal. Mol Genet Genomics,2006,275,354-366.
    Johal GS and Briggs SP. Reductase activity encoded by the HM1 disease resistance gene in maize. Science,1992,258,985-987.
    Jones DA, Thomas CM, Hammond-Kosack KE, et al. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science,1994,266,789-793.
    Kaji R, Ogawa T, Nishimura M. RFLP mapping of a blast resistance gene, Pit, in rice. Breed Sci.,1997, 47(Suppl 1),37.
    Kao CH, Zeng ZB, Teasdale RD. Multiple Interval Mapping for Quantitative Trait Loci. Genetics, 1999,152:1203-1216.
    Kawasaki T, Henmi K, Ono E, et al. The small GTP-binding protein rac is a regulator of cell death in plants. Proc. Natl. Acad. Sci. USA,1999,96:10922-10926.
    Kawchuk LM, Hachey J, Lynch DR, et al. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc. Natl. Acad. Sci. USA,2001,98:6511-6515.
    Kim ST, Kim SQ, Hwang DH, et al. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, magnapothe grisea. Proteomics,2004,4 (11):3569-3578.
    Kim WY, Kim CY, Cheong NE, et al. Characterization of two fungal-elicitor-induced rice cDNAs encoding functional homologues of the rab-specific GDP-dissociation inhibitor. Planta,1999,210: 143-149.
    Kim Y J, Hwang B K. Isolation of a basic 34kDβ-1,3-glucanase with inhibitory activity against Phytophthora capsici from pepper stems. Physiol. Mol. Plant Pathol.,1997,50:103-115.
    Kinoshita T, Inukai T, Toriyama K. Gene symbols for blast resistance newly revised. Rice Genetics Newsl.,1994,11:16-18.
    Kiyosawa S. Genetic studies on host-pathogen relationship in the rice blast disease. In:the Proceeding of the Symposium "Rice disease and their control by growing resistant varieties and other measures". Tokyo, Japan,1967.
    Kiyosawa S. Genetics of blast resistance. In:Rice Breeding. IRRI, Manila, Philippines,1972, pp 203-225.
    Kiyosawa S, Ikehashi H, Kato H, et al. Pathogenicity tests of Philippine isolates of blast fungus using two sets rice varieties. Japan J Breeding,1981,31:367-376.
    Kiyosawa S. Genetics and epidemical modeling of breakdown of plant disease resistance. Annu. Rev. Phytopathol.,1982,20:93-117.
    Kosambi D. The estimation of map distance from recombination values. Ann. Eugen.,1944,12:172-175.
    Koudande OD, IraQi F, Thomson PC, et al. Strategies to optimize marker-assisted introgression of multiole unlinked QTL. Mammalian Genome,2000,11:145-150.
    Kubo T, Nakamura K, Yoshimura A Development of a series of Indica chromosome segment substitution lines in Japonica background of rice. Rice Genet. Newsl.,1999,16:104-106.
    Lagudah ES, Moullet O, Appels R. Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome,1997,40:659-665.
    Lander ESP, Green J, Abhrahamson A, et al. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1987, 1:174-181.
    Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121:185-199. Lawrence GJ, Finnegan EJ, Ayliffe MA, et al. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell, 1995,7,1195-1206. Lei C, Wang J, Mao S, et al. Genetic analysis of blast resistance in indica variety Zhaiyeqing 8 (ZYQ8). Chinese Journal of Genetics,1996,23 (4):287-293.
    Li CD, Langridge P, Lance RCM, et al. Seven members of the (1-3)-β-glucanase gene family in barley(Hordeum vulgare) are clustered on the long arm of chromosome 3 (3HL). Theor. Appl. Genet., 996,92:791-796.
    Li ZK, Pinson SRM, Marchetti MA, et al. Characterization of quantitative trait loci (QTL) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani). Theor. Appl. Genet.,1995, 91:382-388.
    Li ZK, Luo LJ, Mei HW, et al. A 'defeated' rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae.Mol. Gen. Genet.,1999,261:58-63.
    Li ZK, Sanchez A, Angeles E, et al. Are the dominant and recessive plant disease resistance genes similar? A case study of rice R genes and Xanthomonas oryzae pv. Oryzae races. Genetics,2001, 159:757-765.
    Lin R, Zhao W, Meng X, et al. Rice gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea. Plant Science,2007a,172:120-130.
    Lin F, Chen S, Que Z, et al. The Blast Resistance Gene Pi37 Encodes a Nucleotide Binding Site-Leucine-Rich Repeat Protein and Is a Member of a Resistance Gene Cluster on Rice Chromosome 1. Genetics,2007b,177:1871-1880.
    Lin W Anuratha CS, Datta K, et al. Genetic engineering of rice for resistance to sheath blight. Biotechnology,1995,13:686-691.
    Liu G, Lu G, Zeng L, et al. Two broad-spectrum blast resistance genes, Pi-9(t) and Pi-2(t), are physically linked on rice chromosome 6. Mol. Gen. Genomics,2002,267:472-.480.
    Liu S, Li X, Wang C, et al. Improvement of resistance to rice blast in Zhenshan 97 by molecular marker-aided selection. Acta Botanica Sinica,2003,45(11):1346-1350.
    Liu B, Zhang SH, Zhu XY, et al. Candidate defense genes as predictors of quantitative blast resistance in rice.Mol. Plant Microbe Interact.,2004,17:1146-1152 Liu X Q, Wang L, Chen S, et al. Genetic and physical mapping of Pi36(t), a Novel rice blast resistance gene located on rice chromosome 8. Mol. Gen. Genomics,2005,274:394-401.
    Liu X, Yang Q, Lin F, et al. Identification and fine mapping of Pi39(t), a major gene conferring the broad-spectrum resistance to Magnaporthe oryzae. Mol. Gen. Genomics,2007a,278:403-410.
    Liu X, Lin F, Wang L, et al. The in Silico Map-Based Cloning of Pi36, a Rice Coiled-Coil-Nucleotide-Binding Site-Leucine-Rich Repeat Gene That Confers Race-Specific Resistance to the Blast Fungus. Genetics,2007b,176:2541-2549.
    Lu G, Jantasuriyarat C, Zhou B, et al. Isolation and characterization of novel defense response genes involved in compatible and incompatible interactions between rice and Magnaporthe grisea. Theor. Appl. Genet.,2004,108:525-534.
    Mackill DJ, Bonman JM. Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology, 1992,82(7):746-749.
    Manandhar HK, Mathur SB, Smedegaard-Petersen V, et al. Accumulation of transcripts for pathogenesis-related proteins and peroxidase in rice plants triggered by Pyricularia oryzae, Bipolaris sorokiniana and uv light. Physiological and Molecular Plant Pathology,1999,55:289-295.
    Martin GB, Brommonschenkel SH, Chunwongse J, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science,1993,262:1432-1436.
    McDowell JM, Dhandaydham M, Long TA, et al. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell, 1998,10:1861-1874.
    Mew TW, Borromeo E, Hardy B. Exploiting Biodiversisty for Sustainable Pest Management. Manila, Philippines:International Rice Research Institute,2001.143-157,159-167
    Meyers BC, Chin DB, Shen KA, et al. The major resistance gene cluster in lettuce is highly duplicated and spans several megabases. Plant Cell,1998,10:1817-1832.
    Meyers BC, Kozik A, Griego A, et al. Genome-Wide Analysis of NBS-LRR-Encoding Genes in Arabidopsis. Plant Cell,2003,15:809-834.
    Milligan SB, Bodeau J, Yaghoobi J, et al. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell, 1998,10:1307-1319.
    Miyamoto M, Yano M, Hirasawa H. Mapping of quantitative trait loci conferring blast field resistance in the Japanese upland rice variety Kahei. Breeding Science,2001,51:257-261.
    McCouch SR, Cho YG, Yano M, et al. Report on QTL nomenclature. Rice Genet. Newsl.,1997,14: 11-13
    McCouch SR, Teytelman L, Xu Y, et al. Development and Mapping of 2240 New SSR Markers for Rice (Oryza sativa L.) (Supplement). DNA Res.,2002,9:257-279.
    Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis:A rapid method to detect markers in specific genomic regions by using segregation populations. Proc. Natl.Acad. Sci. USA,1991,88:9828-9832.
    Murray MG, Thompson WF. Rapid isolation of high-molecular-weight plant DNA. Nucl. Acids. Res., 1980,8:4321-4325.
    Multani DS, Meley RB, Paterson AH. Plant-pathogen microevolution:Molecular basis for the origin of a fungal disease in maize. Proc. Natl. Acad. Sci. USA,1988,95:1686-1691.
    Naqvi NL, Chattoo BB. Molecular genetic analysis and sequence characterized amplified region assisted selection of blast resistance in rice, In International Rice Genetics Ⅲ, IRRI, Manila,1996:570-572.
    Nakamura S, Asakawa S, Ohmido N, et al. Construction of an 800-kb contig in the near-centromeric region of the rice blast resistance gene Pi- ta2 using a highly representative rice BAC library. Mol. Gen. Genet.,1997,254:611-620.
    Nelson RJ, Baraoidan MR, Cruz CM, et al. Relationship between Phylogeny and Pathotype for the Bacterial Blight Pathogen of Rice. Applied and environmental microbiology,1994,60:3275-3283.
    Nguyen, TTT, Koizumi S, La TN, et al. Pi35(t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188. Theor. Appl. Genet.,2006,113:697-704.
    Niderman T, Genetet I, Bruyere T, et al. Pathogenesis-related PR-1 proteins are antifungal (isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiol.,1995,108:17-27.
    Ou SH. Rice diseases. Common Wealth Mycology Institute Kew,2nd edn. The Cambridge News Ltd, Cambridge, UK,1985.
    Pan Q H, Wang L, Ikehashi H, et al. Identification of a New Blast Resistance Gene in the indica Rice Cultivar Kasalath Using Japanese Differential Cultivars and Isozyne Markers. Phytopathology, 1996,86(10):1071-1075.
    Pan QH, Wang L, Ikehashi H, et al. Identification of two new genes conferring resistance to rice blast in Chinese native cultivar'Maowangu'. Plant breeding,1998,117:27-31.
    Pan QH, Wang L, Tanisaka T. A new blast resistance gene identified in the Indian native rice cultivar Aus373 through allelism and linkage tests. Plant Pathology,1999,48:288-293.
    Pan Q H, Hu ZD, Takatoshi T, et al. Fing Mapping of the Blast Resistance Gene Pi15, Linked to Pii, on Rice Chromosome 9. Acta Botanica Sinica,2003,45(7):871-877.
    Parker JE, Coleman MJ, Szabo V, et al. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. Plant Cell,1997,9:879-894.
    Paterson AH, Lin YR, Li Z, et al. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science,1995,269 (5231):1714-1718.
    Perez-de-Luque A, Gonzalez-Verdejo CI, Lozano MD, et al. Arabidopsis MAP Kinase 4 Negatively Regulates Systemic Acquired Resistance. Cell,2000,103:1111-1120.
    Penninckx IAMA, Eggermont K, Terras FRG, et al. Pathogen-induced systemic activation of a plant defensive gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell,1996, 8:2309-2323.
    Pflieger S, Palloix A, Caranta C, et al. Defense response genes co-localize with quantitative disease resistance loci in pepper. Theor. Appl. Genet.,2001,103:920-929.
    Pieterse CMJ, Van Wees SCM, Van Pelt JA, et al. JA novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell,1998.10:1571-1580.
    Prashanth GB, Hitalmani S, Srinivasachary, et al. Genetic markers associated with field resistance to leaf and neck blast across locations in rice (Oryza sativa L.). Rice Genetics Newsl.,1998,15:128-130.
    Qu S, Liu G, Zhou B, et al. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics,2006, 172:1901-1914.
    Ramalingam J, Vera Cruz CM, Kukreja K, et al. Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. Mol. Plant Microbe Interact., 2003,16:14-24.
    Rao Z, Wu J, Zhuang J, et al. Genetic dissections of partial resistance to leaf and neck blast in rice (Oryza sativa L.). Acta Genetica Sinica,2005,32(6):555-565.
    Rao ZM, Wu JL, Zhuang JY, et al. Genetic dissection of blast resistances at different growth stages in rice (Oryza sativa L.). Rice Genet Newsl,2002a,19:92-94.
    Rao KK, Lakshminarasu M, Jena KK. DNA markers and marker-assisted breeding for durable resistance to bacterial blight disease in rice. Biotechnology Advances,2002b,20:33-47.
    Ryals J, Neuenschwander UH, Willits MG, et al. Systemic acquired resistance. Plant Cell,1996, 8:1809-1819.
    Sallaud C, Lorieux M, Roumen E, et al. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor. Appl. Genet.,2003,106: 794-803.
    Sanguinetti CJ, Dias NE, Simpson AJG. Rapid silver staining and recover of PCR products separaed on
    polyarylamide gel. Biotechniques,1994,17:915-919.
    Salmeron JM, Oldroyd GE, Rommens CM, et al. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell, 1996,86:123-133.
    Sasaki, R. Existence of strains in rice blast. Journal of Plant Protection.1922,9:633-644.
    Sasahara H, Fukuta Y, FukuyamaT. Mapping of QTLs for vascular bundle system and spike morphology in rice Oryza sativa L. Breeding Science,1999,49,75-81.
    Sato H, Takeuchi Y, Hirabayashi H, et al. Mapping QTLs for Field Resistance to Rice Blast in the Japanese Upland Rice Variety Norin 12. Breeding science,2006,56:415-418.
    Schlumbaum A, Mauch F, Vogeli U, et al. Plant chitinases are potent inhibitors of fungal growth. Nature, 1986,324:365-367.
    Schweizer P, Buchala A, Silverman P, et al. Jasmonate-inducible genes are activated in rice pathogen attack without a concomitant increase in endogenous jasmonic acid levels. Plant Physiol.,1997, 114:79-88
    Sekine KT, Ishihara T, Hase S, et al. Single amino acid alterations in Arabidopsis thaliana RCY1 compromise resistance to Cucumber mosaic virus, but differentially suppress hypersensitive response-like cell death. Plant Mol. Biol.,2006,62:669-682.
    Sesma A, Osbourn AE. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature,2004,431:582-586.
    Sharma TR, Madhav MS, Singh BK, et al. High-resolution mapping, cloning and molecular characterization of the Pi-kh gene of rice, which confers resistance to Magnaporthe grisea. Mol.Gen. Genomics,2005,274:569-578
    Sharp JK, Valent B, Alberstein P. Purification and partial characterization of a glucan fragment that elicits phytoalexin accumulation in sovbean. J. Biol. Chem.,1984,259:11312-11318.
    Shen QH, Zhou F, Bieri S, et al. Recognition Specificity and RAR1/SGT1 Dependence in Barley Mla Disease Resistance Genes to the Powdery Mildew Fungus. Plant Cell,2003,15:732-744.
    Shinshi H, Wenzler H, Neuhaus JM, et al. Evidence for N- and C-terminal processing of a plant defense-related enzyme:Primary structure of tobacco prepro-β-1,3-glucanase. Proc. Natl. Acad. Sci.USA,1988,85:5541-5545.
    Shirano Y, Kachroo P, Shah J, et al. A gain-of-function mutation in an Arabidopsis Toll Interleukinl receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell,2002,14:3149-3162.
    Silue'D, Notteghem JL, Tharreau D. Evidence for a gene-for-gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem. Phytopathology,1992,82:577-580.
    Simons G, Groenendijk J, Wijbrandi J, et al. Dissection of the fusarium 12 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell,1998,10:1055-1068.
    Singh S, Sidhu JS, Huang N, et al. Pyramiding three bacterial blight resistance genes (Xa-5, Xa-13 and Xa-21) using marker-assisted selection into indica rice cultivar PR 106. Theor. Appl. Genet., 2001,102:1011-1015.
    Sirithunya P, Tragoonrung S, Vanavichit A, et al. Quantitative Trait Loci Associated with Leaf and Neck Blast Resistance in Recombinant Inbred Line Population of Rice (Oryza Sativa). DNA Research, 2002,9:79-88.
    Song J, Bradeen JM, Naess SK, et al. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc. Nad. Acad. Sci. USA.,2003,100:9128-9133.
    Song WY, Wang GL, Chen LL, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science.1995,270:1804-1806.
    Sun X, Yang Z, Wang S, et al. Identification of a 47-kb DNA fragment containing Xa4, a locus for bacterial blight resistance in rice. Theor. Appl. Genet.,2003,106:683-687.
    Sun X, CaoY, Yang Z, et al. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J.,2004,37:517-527.
    Su CC, Wan JM, Zhai HQ, et al. A new locus for resistance to brown planthopper identified in the indica rice variety DV85. Plant Breeding,2005,124:93-95.
    Swiderski MR, Innes RW. The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J.,2001,26:101-112.
    Tabien RE, Li Z, Paterson AH, et al. Mapping of four major rice blast resistance genes from'Lemont' and'Teqing'and evaluation of their combinatorial effect for field resistance. Theor. Appl. Genet., 2000,101:1215-1225
    Tabien RE, Li Z, Paterson AH, et al. Mapping QTLs for field resistance to the rice blast pathogen and evaluating their individual and combined utility in improved varieties. Theor. Appl. Genet.,2002,105:313-324.
    Tai TH, Dahlbeck D, Clark ET, et al. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc. Natl. Acad. Sci. USA,1999,96:14153-14158.
    Takeuchi Y, Yoshikawa M, Takeba G, et al. Molecular Cloning and Ethylene Induction of mRNA Encoding a Phytoalexin Elicitor-Releasing Factor,B-1,3-Endoglucanase, in Soybean. Plant Physiol., 1990,93:673-682.
    Takken FL, Thomas CM, Joosten MH, et al. A second gene at the tomato Cf-4 locus confers resistance to cladosporium fulvum through recognition of a novel avirulence determinant. Plant J.,1999,20: 279-288.
    Talbot NJ. On the trial of a cereal killer:Exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol.,2003,57:177-203.
    Talukder ZI, Tharreau D, Price AH. Quantitative trait loci analysis suggests that partial resistance to rice blast is mostly determined by race-specific interactions. New Phytologist,2004,162:197-209.
    Thomas CM, Jones DA, Parniske M, et al. Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell,1997,9:2209-2224.
    Toriyama K, Yunoki T, Shinoda H. Breeding rice varieties for resistance to blast. Ⅱ. Inheritance of high Weld resistance of Chugoku No.31 (Suppl.1). Jpn. J. Breed.,1968,18:145-146.
    Tsunematsu H, Yoshimura A, Harushima Y, et al. RFLP framework map using recombinant inbred lines in rice. Breed Sci.,1996,46:279-284.
    Van der Vossen EA, Van der Voort JN, Kanyuka K, et al. Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens:a virus and a nematode. Plant J.,2000, 23:567-576.
    Van Deynze AE, Nelson JC, O'Donoughue LS, et al. Comparative mapping in grasses:Oat relationships. Mol. Gen. Genet.,1995,249 (3):349-356.
    Valent B, Farrall L, Chumley FG. Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics,1991,127:87-101.
    Velazhahan R, Chen-Cole K, Anuratha CS, et al. Induction of thaumatin-like proteins (TLPs) in Rhizoctonia solani-infected rice and characterization of two new cDNA clones. Physiologia Plantarum,1998,102:21-28
    Vidal S, Cabrera H, Andersson RA, et al. Potato gene Y-1 is an N gene homolog that confers cell death upon infection with potato virus Y. Mol. Plant Microbe Interact.,2002,15:717-727.
    Vijayan P, Shockey J, Levesque CA, et al. A role for jasmonate in pathogen defense of Arabidopsis. Proc. Natl. Acad. Sci. USA,1998,95:7209-7214.
    Wang GL, Mackill DJ, Bonman JM, et al. RFLP Mapping of Genes Conferring Complete and Partial Resistance to Blast in a Durably Resistant Rice Cultivar. Genetics,1994,136:1421-1434.
    Wang Z, Taramino G, Yang D, et al. Rice ESTs with disease-resistance gene- or defense-response gene-like sequences mapped to regions containing major resistance genes or QTLs. Mol. Genet. Genomics,2001,265:302-310.
    Wang C, Su C, Zhai H, et al. Identification of QTLs underlying resistance to a virulent strain of Xanthomonas oryzae pv. oryzae in rice cultivar DV85. Field Crops Research,2005,91:337-343.
    Wang ZX, Yano M, Yamanouchi U, et al. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine rich repeat class of plant disease resistance genes. Plant J.,1999, 19:55-64.
    Warren RF, Henk A, Mowery P, et al. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell,1998,10:1439-1452.
    Whitham S, Dinesh-Kumar SP, Choi D, et al. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell,1994,78:1101-1115.
    Whitham, SA, Anderberg RJ, Chisholm ST, et al. Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock-like protein. Plant Cell, 2000,12:569-582.
    Wisser RJ, Sun Q, Hulbert SH, et al. Identification and Characterization of Regions of the Rice Genome Associated With Broad-Spectrum, Quantitative Disease Resistance. Genetics,2005,169:2277-2293.
    Wilson WA, Harrington SE, Woodman WL, et al. Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids. Genetics, 1999,153:453-473.
    Wu KS, Martinez C, Lentini Z, et al. Cloning a blast resistance gene by chromosome walking. In:Rice Genetics Ill. Proceeding of the Third Internatinnal Rice Genetics Symposium.IRRI,Manila,Philippines, 1996, pp669-674.
    Wu J, Mizuno H, Hayashi T, et al. Physical maps and recombination frequency of six rice chromosomes. Plant J.,2003,36:720-730.
    Wu J-L, Sinha PK, Variar M, et al. Association between molecular markers and blast resistance in an advanced backcross population of rice. Theor. Appl. Genet.,2004,108:1024-1032.
    Wu J, Fan Y, Li D, et al. Genetic control of rice blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates. Theor. Appl. Genet.,2005,111:50-56.
    Wu C, Su S, Peng Y. Molecular cloning and differential expression of an aldehyde dehydrogenase gene in rice leaves in response to infection by blast fungus. Biologia,2007,62:523-528.
    Xiang Y, Cao Y, Xu C, et al. Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theor. Appl. Genet.,2006,113:1347-1355.
    Xiao S, Ellwood S, Calis O, et al. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science,2001,291:118-120.
    Xiong M, Wang SP, Zhang QF. Coincidence in map positions between pathogen-induced defense-responsive genes and quantitative resistance loci in rice. Science in China (Series C),2002,45:518-526.
    Yamazaki M, Tsunematstu H, Yoshimura A, et al. Quantitative trait locus mapping of ovicidal response in rice (Oryza sativa L.) against whitebacked planthopper (Sogatella furcifera Horvath). Crop Sci., 1999,39:1178-1183.
    Yamazaki M, Yoshimura A, Yasui H. Mapping of quantitative trait loci of ovicidal response to brown planthopper (Nilaparvata lugen Stal) in rice (Oryza sativa L.). Breeding Science,2000,50:291-296.
    Yang Q, Saito K, Yang P, et al. Molecular mapping of a new blast resistance gene Pi25(t) possessed in a Japonica rice cultivar, Oryza sativa L cv Yunxi 2. In:Proceedings of the 1st rice blast congress in
    China, Kunming,2001,49-55.
    Yang Z, Sun X, Wang S, et al. Genetic and physical mapping of a new gene for bacterial blight resistance in rice. Theor. Appl. Genet.,2003,106:1467-1472.
    Yang S, Feng Z, Zhang X, et al. Genome-wide investigation on the genetic variations of rice disease resistance genes. Plant Mol. Biol.,2006,62:181-193.
    Yasui H, Yoshimura A. QTL mapping of antibiosis to green leafhopper, Nephotettix virescens Distant and green rice leafhopper, Nephotettix cincticeps Uhier in rice, Oryza sativa L. Rice Genet. Newsl.,1999,16:96-98.
    Yazawa, S, Yasui H, Yoshimura A, et al. RFLP mapmenclature ping of genes for resistance to green rice leafhopper (Nephotettix cincticeps Uhler) in rice cultivar DV85 using near isogenic lines.(In Japanese, with English abstract.) Sci. Bull. Fac. Agric. Kyushu Univ.1998,52:169-175.
    Yi G, Lee S-K, Hong Y-K, et al. Use of Pi5(t) markers in marker-assisted selection to screen for cultivars with resistance to Magnaporthe grisea. Theor. Appl. Genet.,2004,109:978-985.
    Yoshimura S, Yamanouchi U, Katayose Y, et al Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Pro.c Natl. Acad. Sci. USA,1998a,95:1663-1668.
    Yoshimura A, Okamoto M, Nagamine T, et al. Rice QTL analysis for days to heading under the cultivation of Ishigaki island. Breeding Science,1998b,48(suppl 1),73.
    Yu ZH, Mackill DJ, Bonman JM, et al. Tagging genes for blast resistance in rice via linkage to RFLP markers. Theor. Appl. Genet.,1991,81:471-476.
    Yu ZH, Mackill DJ, Bonman JM, et al. Molecular mapping of genes for resistance to rice blast (Pyricularia grisea Sacc.). Theor. Appl. Genet.,1996,93:859-863.
    Yu J,Hu S,Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002,296:79-92.
    Zenbayashi K, Ashizawa T, Tani T, et al. Mapping of the QTL (quantitative trait locus) conferring partial resistance to leaf blast in rice cultivar Chubu 32. Theor Appl Genet,2002,104:547-552.
    Zenbayashi-Sawata K, Ashizawa T, Koizumi S.Pi34-AVRPi34:a new gene-for-gene interaction for partial resistance in rice to blast caused by Magnaporthe grisea. JGen Plant Pathol 2005,71:395-401.
    Zeng ZB. Precision mapping of quantitative trait loci. Genetics,1994,136:1457-1468.
    Zhang Q, Shen BZ, Dai XK, et al. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice, Proc.Natl.Acad.Sci.USA,1994,91:8675-8679.
    Zheng X, Chen X, Zhang X, et al. Isolation and identification of a gene in response to rice blast disease in rice. Plant Molecular Biology,2004,54:99-109.
    Zhou N, Tootle TL, Tsui F, et al. PAD4 Functions Upstream from Salicylic Acid to Control Defense Responses in Arabidopsis. Plant Cell,1998,10:1021-1030.
    Zhou F, Kurth J, Wei F, et al. Cell-autonomous expression of barley Mlal confers race-specific resistance to the powdery mildew fungus via a Rarl-independent signaling pathway. Plant Cell,2001, 13:337-350.
    Zhou JH, Wang JL, Xu JC, et al. Identification and mapping of a rice blast resistance gene Pi-g(t) in the cultivar Guangchangzhan. Plant Pathology,2004,53:191-196.
    Zhou B, Qu S, Liu G, et al. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol. Plant Microbe Interact.,2006,19:1216-1228.
    Zhou E, Jia Y, Singh P, et al. Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genetics and Biology,2007,44:1024-1034.
    Zhu Q, Droge-Laser W, Dixson RA et al. Transcription of plant defence genes. Curr. Opin. Genet.,1996,6,624-630.
    Zhu YY, Chen HR, Fan JH et al. Genetic diversity and disease control in rice. Nature, 2000,406:718-722.
    Zhu M, Wang L, Pan Q. Identification and characterization of a new blast resistance gene located on rice chromosome 1 through linkage and differential analyses. Phytopathology,2004,94,515-519.
    Zhu T, Song F, Zheng Z. Molecular Characterization of the Rice Pathogenesis-related Protein, OsPR-4b, and Its Antifungal Activity Against Rhizoctonia solani. J. Phytopathology,2006,154:378-384.
    Zhuang J-Y, Ma W-B, Wu J-L, et al. Mapping of leaf and neck blast resistance genes with resistance gene analog, RAPD and RFLP in rice. Euphytica,2002,128:363-370.
    董继新,董海涛,李德葆.水稻抗稻瘟性研究进展.农业生物技术学报,2000,8(1):99-102.
    段永嘉,朱有勇,刘二明.稻瘟病抗性遗传规律研究.云南农业大学学报,1989,4(4):293-301.
    刘二明.水稻品种与稻瘟病菌的遗传多样性及稻瘟病持续控制研究.雅安,四川农业大学博士学位论文,2001.
    刘士平,李信,汪朝阳,等.基因聚合对水稻稻瘟病的抗性影响.分子植物育种,2003,1(1): 22-26.
    赵祯梅,赵美琦,马占鸿,等.氮肥对水稻品种一稻瘟菌小种相对寄生适合度的影响.植物病理学报,2001,(3):193-198.
    刘瞳,张学博.水稻对稻瘟病抗性的遗传研究一福建主要籼稻抗源的基因分析.植物病理学报,1990,20(1):41-46.
    彭国亮,罗庆明,冯代贵,等.四川稻瘟病菌致病性变异与病害流行的关系.西南农业大学学报,1996,18(6):561-564.
    凌忠专.中国部分水稻品种的抗瘟性分类.中国农业科学,1984(2):19-27.
    凌忠专,潘庆华,王久林,等.云南梗稻红镰刀谷的抗瘟性分析.见:朱立宏等编.主要农作物抗
    病性遗传研究进展.南京:江苏科学技术出版社,1990,111-115.
    雷财林,王久林,凌忠专.云南粳稻品种毫变-1和扎缅尼-1抗稻瘟病基因分析.中国农业科学,1995,28(4):66-71.
    雷财林,王久林,毛世宏,等.籼稻品种窄叶青8号抗稻瘟病基因分析.遗传学报,1997,24(1)36-41.
    雷财林,王久林,蒋琬如,等.北方粳稻区稻瘟病菌生理小种与毒性及其变化动态的研究.作物学报,2000,26(6):699-776.
    朱小源,杨祁云,杨健源,等.抗稻瘟病单基因系对籼稻稻瘟病菌小种鉴别力分析.植物病理学报,2004,34(4):361-368.
    潘庆华,凌忠专,王久林.两个云南地方粳稻品种抗稻瘟病基因分析.中国水稻科学,1991,5(2):61-66.
    朱立煌,徐吉臣,陈英,等.用分子标记定位一个未知的抗稻瘟病基因.中国科学(B辑),1994,24(10):1048-1052.
    全国稻瘟病生理小种联合试验组.我国稻瘟病生理小种研究.植物病理学报,1980,10(2):71-81
    何祖华,申宗坦.籼稻品种对三个稻瘟病菌小种的抗性遗传.浙江农业大学学报,1989,15(3):261-266.
    翟虎渠,李培富,张红生,等.武粳4号抗稻瘟病基因分析.南京农业大学学报,1998,21(3):1-6.
    丁秀兰,江玲,刘世家,等.利用重组自交系群体检测水稻条纹叶枯病抗性基因及QTL分析.遗传学报,2004,31(3):287-292.
    李培富,翟虎渠,张红生,等.两个太湖流域粳稻地方品种抗稻瘟病的遗传研究.中国水稻科学,1999,13(1):11-14.
    李仕贵,王玉平,黎汉云,等.利用微卫星标记鉴定水稻的稻瘟病抗性.生物工程学报,2000,16(3):324-327.
    李雪华,李新海,郝传芳,等.干旱条件下玉米耐旱相关性状的QTL一致性图谱构建.中国农业科学, 2005,38(5):882-890.
    王坤,文玉能,邱治龙.氮磷钾硅的合理配施对稻瘟病的影响.耕作与栽培,2003(4):40-41.
    王久林,雷财林,蒋琬如,等.籼稻品种浙辐802抗瘟性遗传研究.遗传学报,2000,27(3):235-239.
    王建飞,何新建,张红生,等.太湖流域粳稻地方品种黑壳子粳对稻瘟病抗性的遗传分析.遗传学报,2002,29(9):803-807.
    王毅,姚骥,张征锋,等.基于玉米综合QTL图谱的比较分析及株高QTL的统合分析.科学通报,2006,51:1776-1786.
    王忠华,林卉,Barbara Valent,等.水稻抗稻瘟病菌防卫反应的细胞学分析与防卫基因表达.中国水稻科学,2007,21(4):335-340.
    王忠华,贾育林,吴殿星,等.水稻抗稻瘟病基因Pi-ta的分子标记辅助选择.作物学报,2004,30(12):1259-1265.
    王春连.水稻抗白叶枯病基因Xa23的图位克隆.中国农业科学院研究生院博士学位论文,2006.
    王春明,安井秀,吉村醇,等.水稻叶蝉抗性基因回交转育和CA PS标记辅助选择.中国农业科学,2003,36(3):237-241.
    林代福,余显权,詹相才,等.稻瘟病菌生理小种的研究与应用.山地农业生物学报,1998,17(4):
    200-204.
    林金平,陶家凤,周开达.水稻8480、密阳46抗稻瘟病基因分析.植物病理学报,1992,10(3):497-503.
    张效忠,台德卫.国际水稻研究所的育成品种及其在我国的利用.植物遗传资源学报,2001,2(3):
    56-59.
    张铭铣,骆荣挺,施德,等.抗稻瘟病新种质R917的抗瘟基因遗传分析及其转育研究.核农学报,1997,11(4):193-198.
    张海英,刘勇,刘冬成,等.差异显示法分离水稻抗稻瘟病相关基因.遗传学报,2005,32(7):719-725.
    陈葆棠,彭仲明,徐运启.水稻品种矮梅早3号抗稻瘟病的遗传.遗传学报,1993a,20(4):354-361
    陈葆棠,彭仲明,徐运启.稻瘟病抗源TETEP的抗性遗传及其应用.植物保护学报,1993b,20(3):233-236
    陈志伟,郑燕,吴为人,等.抗稻瘟病基因Pi2紧密连锁的SSR标记的筛选与应用.分子植物育种,2004,2(3):321-325.
    陈学伟,李仕贵,马玉清,等.水稻抗稻瘟病基因Pid(t)1、Pi-b、Pita2的聚合及分子标记选择.生物工程学报,2004,20(5):708-74.
    陈仲中,汪旭升,朱军.基于水稻基因组序列SSR的多态性分析.中国水稻科学,2005,19(4):303-307.
    陈红旗.分子标记辅助聚合3个稻瘟病抗性基因.扬州大学硕士学位论文,2005.
    伍尚忠,朱小源,刘斌,等.籼稻品种三黄占2号的稻瘟病持久抗性评价与遗传分析.中国农业科学,2004,37(4):528-534
    尚俊军.水稻NBS-LRR基因家族分析与抗稻瘟病基因Pid3的克隆.中国科学院研究生院博士学位论文,2007.
    郑康乐,钱惠荣,庄杰云,等.应用DNA标记定位水稻的抗稻瘟病基因.植物病理学报.1995,25(4):307-313.
    徐吉臣,王久林,凌忠专,等.利用QTL定位分析水稻的稻瘟病抗性基因.科学通报,2004,49(3):
    245-251.
    樊叶杨,吴建利,庄杰云,等.应用候选基因定位水稻抗稻瘟病QTL.中国水稻科学,2001,15(4):253-256.
    胡海燕,庄杰云,柴荣耀,等.水稻对不同小种稻瘟菌抗性差异表达基因的鉴定.中国水稻科学,2007,21(1):1-6.
    谭向红,陈学伟,李仕贵,等.籼稻品种地谷抗稻瘟病基因的遗传.遗传学报,2000,27(8):701-705.
    梁斌,余腾琼,徐福荣,等.云南省3个地方稻种的抗稻瘟病性遗传分析.中国农业科学,2002,35(7):784-788.
    倪大虎,易成新,李莉,等.利用分子标记辅助选择聚合水稻基因物Xa21和Pi9.分子植物育种,2005,3(3):329-334.
    付崇允,王玉平,马玉清,等.丽江新团黑谷近等基因系抗稻瘟病分析.作物学报,2006,32(6):799-804.
    汪旭升,吴为人,金谷雷,等.水稻全基因组R基因鉴定及候选RGA标记开发.科学通报,2005,50(11):1085-1089.
    左示敏,殷跃军,张亚芳,等.植物数量抗病基因克隆及其抗性机理的研究进展.分子植物育种,2006,4(5):603-613.
    严建兵,汤华,黄益勤,等.玉米和水稻重要性状QTL的比较研究.遗传学报,2004,31(12):1401-1407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700