玉米品种抗旱生理特性与氮素调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是影响玉米生产的最主要的非生物胁迫因素。通过筛选抗旱玉米品种,进而对其进行生理生化研究,最终进行旱地玉米氮肥管理实现玉米抗旱节水,是研究玉米高产高效的重要课题。本研究采用大田、池栽和盆栽试验,在水分胁迫条件下对玉米苗期、开花期的形态、生长发育和生理生化等性状特征进行了系统研究和分析,初步建立玉米开花期抗旱性鉴定指标,深入研究水分胁迫对玉米形态、生理、生化、产量等指标的影响,系统揭示了玉米抗旱的生理生化特性,阐明玉米苗期水分胁迫下氮素调控生理机制,主要研究结果如下:
     1.干旱胁迫下玉米品种籽粒产量均比对照明显降低,雌雄开花间隔增加,株高和穗位高降低,穗短小,秃尖多,穗粒数少,粒重轻,最终导致产量下降。雌雄开花间隔、保绿性与产量抗旱指数之间呈极显著相关。通过聚类分析将51个品种分为三类:郑单958、粟玉2号、富友9号、先玉335和蠡玉13等5个抗旱性强;晋单50、冀玉9号、秦龙11、陕单9号,浚单20、沈单21和沈玉17等20个旱性中;陕单902、豫玉22、沈单16、陕单308等26个抗旱性差的品种。
     2.以抗旱性差异的12个品种为材料,通过对玉米开花期33个形态、生理性状指标采用灰色关联度、主成分分析和隶属度分析方法,从中筛选出净光合速率(P_n)、实际量子产量(φPSⅡ)、叶绿素含量(Chl)、叶面积、干物质等5项指标对玉米的抗旱性有显著影响,可作为玉米开花期抗旱性鉴定指标。所建立抗旱隶属函数对所选用的12个玉米品种进行了抗旱性预测,发现品种抗旱性排序结果与产量指数排序结果基本一致,表明筛选出的5个指标在开花期对玉米抗旱性进行鉴定是可行的。
     3.干旱胁迫抑制2个玉米品种郑单958(抗旱性强)和陕单902(抗旱性弱)植株生长和相对生长速率,导致整株生物量显著下降。随着干旱胁迫程度加剧,叶片最大净光合速率(P_(nmax))、表观量子效率(AQY)、光饱和点(LSP)、气孔导度(G_s)、气孔限制值(L_s)、最大电子传递速率(ETR_m)、光能利用效率(α)、光系统Ⅱ的实际量子产量(φPSⅡ)和光化学猝灭系数(qP)均下降,而胞间CO_2浓度(Ci),光补偿点(LCP)和非光化学猝灭系数(qN)均升高。干旱胁迫下叶片光合能力和电子传递速率降低是2个玉米品种生物量减少的主要因素。郑单958变幅小于陕单902,表明郑单958植株生长发育和光合特性比陕单902受干旱胁迫的影响小,较高的电子传递速率、较强的光能转化能力和较大的相对生长速率是郑单958适应干旱环境的重要光合生理特性。
     4.干旱胁迫下2个品种根系活力降低和可溶性蛋白含量降低,提高根系超氧化物歧化酶(SOD)活性,增加丙二醛(MDA)含量;随着干旱胁迫程度加剧,陕单902根系活力和可溶性蛋白含量降低幅度大于郑单958;郑单958根系超氧化物歧化酶(SOD)比对照升高幅度大于陕单902,且超氧化物歧化酶(SOD)活性高于陕单902,而陕单902根系MDA含量比对照升高幅度大于郑单958。干旱胁迫下郑单958根系活力﹑根系SOD活性以及根系可溶性蛋白含量较高能够减缓根系衰老进程,延长根系功能期。这可能是抗旱性强的郑单958在干旱环境下仍然能够获得较高产量的根系生理特性。
     5.吐丝期随着干旱胁迫的加剧和时间延长,叶片光合速率、气孔导度、蒸腾速率、光系统Ⅱ的实际量子产量(φPSⅡ)和光化学猝灭系数(qP)均下降下降迅速,陕单902比郑单958降速快、幅度大。花后0-10 d随胁迫时间的延长叶片内SOD,CAT和POD三种酶活性升高,郑单958增加或升高的幅度大。花后10 d后叶片SOD,CAT和POD三种酶活性降低,而MDA含量一直增加,郑单958增幅小于陕单902。在水分条件下,郑单958叶片抗氧化酶系统清除活性氧能力的增强,膜脂过氧化程度轻,有利于维持花后较高的光合产物供应强度和较长的光合持续期。
     6.吐丝期干旱胁迫提高了2个品种花前贮藏同化质运转量、运转率和花前同化物对籽粒的贡献率。郑单958比陕单902花前同化物运转量、运转率和对籽粒贡献率的增幅均较大。而降低了花后光合同化量和收获指数,郑单958的收获指数比陕单902大。干旱胁迫条件下,郑单958较高的花前营养器官贮藏物质运转量、运转率是其高产的物质基础。
     7.干旱胁迫下,适量施氮(225 kg N/hm~2)不仅有利于玉米地上部干物质积累同时有利于玉米根系生长从而显著增加玉米苗期总干物质积累,从而提高水分利用效率。根冠比最小,地上部与地下部生长最为协调。提高了玉米幼苗叶片的Gs、Tr、Fv/Fm、φPSⅡ和qP;降低了胞间CO_2浓度(Ci)和qN;同时,显著提高保护酶活性(SOD、POD和CAT),降低了膜质过氧化程度减少MDA含量,因而全面改善叶片光合功能和内在的生理特性。而施氮不足(0 kg N/hm~2)使玉米遭受干旱和低氮双重胁迫,过量施氮(450 kg N/hm~2)则加重了玉米干旱胁迫的程度,二者均表现出与适量施氮处理相反的变化。
Drought is one of the most major envirnmental stresses influencing grain yield. It is a key and efficiencial biological way to solve the water stress to breed new maize hybrids with both stronger drought tolerance. With three experiments cultivated in pots and in fields, we studied systematically the expression of these characters such as growth and development, morphology, yield and physiological biochemistry of the different genotype maize under water stress though the methods of blurring subordination function, grey correlation degree, analysis of principal component. Appraised the drought resistance of different maize variety based on drought index(DI) of yield, analyzed the correlations between evaluation parameters and tested values of traits and evaluate N application rates management effects on physiological characteristics and grain yield of maize at the seeding stage under water stress. It got the following main conclusions:
     1. Comparing with contrast, the biomass and yield of maize varieties under water stress decreased obviously, and ASI added, leaves area reduced, height of plant and ear position declined, stalk became thinner, ears were shorter and smaller, barren ear tip increased more, number of grain per ear reduced less and grain weight reduced lighter, which leaded to yield decline. ASI and stay green were relatate to drought tolerance index. With comprehensive appraisement and cluster analysis by different parameters and indexes, the droughr tolerance of the hybrids were divided into three types, stronger, medium and softer. Five genotypes, Xianyu 335, Zhengdan958, Suyu2, Fuyou9, Liyu13 were with stronger drought tolerance. Twenty genotypes, Jidan50, Shandan 20, Jiyu 9, Xundan20 and Shenyu17, et al were with medium droughr tolerance. Twenty six genotypes, Shan902, Shandan308,Shendan16 and Yuyu22, et al showed the worst.
     2. Five indexes P_n,φPSⅡ, chlorophyll content, dry matter and leaf area were screened based on thirty three morphological and physiological traits with quantitative analyzing methods. The comprehensive drought resistance of maize varieties were calculated by the subordinate degree of drought index of screen, it was used to drought resistant sequencing in silking date, the two sequencing in accordance with the results of drought index.
     3. The response of plant growth, gas exchange and chlorophyll fluorescence parameters were studied in two different maize hybrids Zhengdan958 (drought resistance) and Shaandan 902 (drought-sensitive) under three different drought stresses (mild drought, moderate drought, severe drought ) and normal irrigation in pot experiment. The results showed that drought stress inhibited the growth of two maize plant growth and the relative growth rate, resulting in a significant decline in biomass. With the increasing degree of drought stress, the maximum leaf net photosynthetic rate (Pnmax), apparent quantum efficiency (AQY), light saturation point (LSP), stomatal conductance (Gs), stomatal limitation (Ls), maximum electron transport rate (ETRm), photosynthetic efficiency (α), PSⅡactual quantum yield (φPSⅡ) and photochemical quenching (qP) were decreased, while the intercellular CO_2 concentration (Ci), light compensation point (LCP) and qN were increased. But the change extents of all parameters were smaller in Zhengdan958 than in Shandan902. This finding indicated that drought stress could significantly decrease the biomass of two maize varieties, possibly caused by reduction in the photosynthetic efficiency of plants. The drought stress damaging effects of plant growth and photosynthesis was minimal on the Zhengdan958 compared to Shaandan902. Under drought stress the Zhengdan958 maintained higher photosynthetic efficiency, stronger light energy transfer capacity and greater relative growth rate may be the major physiological traits in the adapt ability to drought conditions.
     4. Compared with the control, the root shoot ratio was raised in drought-sensitive maize. The rate of root activity of drought-tolerant maize reduced more than drought-sensitive maize. Root SOD activity was higher than that in the control plant. In addition, root MDA content increased but root soluble protein content decreased in maize. To the increase rate of MDA content and reduced degree of root soluble protein content, drought-sensitive maize were higher than drought-tolerant maize. In a word, root activity, SOD activity and root soluble protein content of drought-resistant maize were high. So these can slower root aging process and extend the period of root function, which may be one of the important role in getting high yield of drought-tolerant maize under drought stress.
     5. Effects of anthesis water stress on photosynthesis, senescense of leaf and matter redistribution in maize. Water stress significantly reduced stomatal conductance, transpitation rates and photosynthetic rate, and Shaandan902 decreased much faster than Zhengdan958. Actual photosynthetic efficiency, and photochemical quenching were much lower, while non-photochemical quenching were much higher under water stress than in control, indicating damage to photosystemⅡ. Compared with CK, water stress reduced the activities of protective enzymes as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), while increased the content of malondiadhyde (MDA), thus enhanced membrane lipid peroxidation. In addition, significant relativities between root activity, root weight, catalase (CAT), the content of malondiadhyde (MDA). Those revealed that depressed anti-oxidative enzyme activities, and leaf photosynthetic characteristics were key physiological mechanisms in affecting the grain yield formation under anthesis water stress.
     6. Effects of anthesis water stress on grain yield in maize. Water stress significantly reduced grain 1000-kernel weight, grain yield. The obvious increase in the amount of pre-anthesis dry matter accumulated, translocation accumulated and contributed to the grain dry matter under water stress. While water stress reduced harvest index. In conclusion, decreased dry matter accumulation translocation were involved in the depressed grain yield in maize under water stress.
     7. Effects of nitrogen on the dry matter weight, nitrogen accumulation and distribution under soil water stress. Soil water stress significantly reduced dry matter weight, but increased the distributive indexes in root, and increased the Root/Shoot ratio. Nitrogen enhanced the compensative capacity.The dry matter weight and WUE were all highest at 225 kg N ha~(-1) level under water stress. P_n, stomatal conductance(G_s) and T_r were declined when the soil relative water content went down under soil water stress. Nitrogen increased P_n, G_s and T_r, in maize leaf under soil water stress. These results suggest that 225 kg N ha~(-1) is the optimal nitrogen application rate under soil water stress in our experiments. F_v/F_m, the quanttun yield of electron transport(φPSⅡ), and the photochemical quenching co-efficient(qP) in maize leaf were all higher at 225 kg N ha~(-1) than other two nitrogen level. 225 kg N ha~(-1) was the best nitrogen application level for improving Pn among three nitrogen levels. The antioxidant enzymes activities were highest, MDA content were the lowest. The deficient(0 kg N ha~(-1)) and excessive nitrogen supply(450 kg N ha~(-1)) are of disadvantaged to the yield formation.
引文
白莉萍,隋方功,孙朝晖.水分胁迫对产量和生理生态的影响[J].生态学报,2004,24(7):1556-1560.
    白向历,齐华,刘明,张振平.玉米抗旱性与生理生化指标关系的研究[J].玉米科学, 2007,15(5) :79-83.
    卜令铎,张仁和,韩苗苗,常宇,薛吉全.玉米苗期光合特性对水分胁迫的响应[J].生态学报, 2010,30(5): 1184-1192.
    陈家宙,王石,张丽丽.玉米对土壤阈值和干旱胁迫的影响[J].中国农业科学,2007,40(3):532-539.
    陈家宙,王石,张丽丽.玉米对土壤阈值和干旱胁迫的影响[J].中国农业科学,2007,40(3):532-539.
    陈军,顾慰连,戴俊英.干旱对于米叶片膜透性及膜脂肪酸组分的影响[J].植物生理学通讯,1990,6(1):39-41.
    陈杰,马兴林,杨文钰.玉米穗期水分胁迫对产量和水分利用效率的影响[J].作物杂志,2005,(2):21-23.
    戴明宏,陶洪斌,王利纳.不同氮肥管理对春玉米干物质生产、分配及转运的影响[J].华北农学报.2008,23(1):154-157.
    戴忠民.氮素代谢对小麦生理特性的影响研究进展[J].河南农业科学,2008,7:10-13.
    董树亭,高荣岐,胡昌浩.玉米花粒期群体光合性能与高产潜力研究[J].作物学报, 1997,23(3):318-325.
    董树亭,王空军,胡昌浩.玉米品种更替过程中群体光合特性的演变[J].作物学报, 2000,26(2):200-204.
    董树亭,胡昌浩、岳寿松等. 1992.夏玉米群体光合速率特性及其与冠层结构、生态条件的关系[J].植物生态学与地植物学学报, 16(4):372-378.
    戴景瑞.我国玉米遗传育种的回顾与展望[M]. 21世纪玉米遗传育种展望. 2001.北京:中国农业科技出版社,1-7.
    戴俊英.玉米不同品种各生育时期干旱对生育时期及产量的影响[J].沈阳农业大学学报,1990. 21(3):181-186.
    曹际玲,王亮,曹青,梁晶,唐昊冶,谢祖彬,刘钢,朱建国,小林和彦.开放式臭氧浓度升条件下不同敏感型小麦品种的光合特性[J].作物学报, 2009, 35(8): 1500-1507.
    陈立松,刘星辉.作物抗旱鉴定指标的种类及其综合评价[J].福建农业大学学报,1997,26(l):48-55.
    池书敏,李广敏,史吉平,董永华,商振清.玉米抗旱机理研究进展[J].河北农业大学学报,1997,20(4):145-149
    戴俊英,顾慰连,沈秀瑛,王畅.玉米不同生育时期的抗旱性[J].植物生理学通讯[J].1989,4(3):18-21.
    付芳婧,赵致,张卫星.水分胁迫下玉米抗旱性与光合生理指标研究[J].山地农业生物学报, 2004, 23(6):471-474.
    付芳婧.玉米抗旱材料的鉴选及抗旱性评价指标的研究[D].贵州大学.2005
    高俊凤.植物生理学试验技术[M].西安:世界图书出版公司. 2000.
    高玉华,郎艳辉,高丽辉,张建华,石春焱,杨凤玲.玉米抗旱品系的筛选及其种质资源的改良和创新的研究[J].玉米科学, 2003, 11(2):20-21.
    高亚军,李生秀,田霄鸿.玉米不同生育阶段不同氮肥水平水分供应对产量的影响[J].作物学报,2006,32(3):415-422.
    蒿宝珍,张英华,姜丽娜,方保停,张菡,李春喜,王志敏.限水灌溉下追氮水平对冬小麦旗叶光合特性及物质运转的影响[J].麦类作物学报, 2010, 30 (5): 863-869.
    葛体达,隋方功,白莉萍,吕银燕,周广胜.水分胁迫下夏玉米根叶保护酶活性变化及其对膜脂过氧化作用的影响[J].中国农业科学, 2005, 38(5): 922-928.
    龚明.作物抗旱性鉴定方法与指标及其综合评价[J].云南农业大学学报.1989,(40):73-80
    顾慰连,沈秀瑛,戴俊秀.玉米不同品种各生育时期对干旱的生理反应[J].沈阳农业大学学报,1990,21(3):186-190.
    郭龙彪,钱前.栽培稻抗旱性的田间评价方法[J].中国稻米,2003,(2),65-66.
    郭卫东,沈向,李嘉瑞,郑学勤.植物抗旱分子机理[J].西北农业大学学报,1999,27 (4 ):102-108.
    郭志强.评价作物抗旱力的简易生理指标[J].山西农业科学,1988, 11:38-40.
    郭相平,康绍忠,索丽生.亏缺调控灌溉对玉米根系生长的影响[J].灌溉排水,2001,20(1):25-27.
    郭天财,姚战军,王晨阳,朱云集.水肥运筹对小麦旗叶光合特性及产量的影响[J].西北植物学报,2004,24(10):1786-1791.
    郭天财,冯伟,赵会杰,朱云集.两种穗型冬小麦品种旗叶光合特性及氮素调控效应[J].作物学报, 2004,30(2):115-121.
    关义新,林葆凌,碧莹.光氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响[J].植物营养与肥料学报, 2002,6(2):152-158.
    何萍,金继运,林葆.氮肥用量对春玉来叶片衰老的影响及其机理研究[J].中国农业科学,1998,31(3):66-71.
    胡昌浩,董树亭,岳寿松. 1993.高产夏玉米群体光合速率与产量关系的研究[J].作物学报,(1):63-69.
    胡瑞法,Meng Erika C H,张世煌等.采用参与式方法评估中国玉米研究的优先序[J].中国农业科学,2003, 37(6):781-787.
    胡兴波,曹敏建,TOSHIO Tsukada.不同耕作管理对土壤水分和玉米籽粒形成的影响[J].玉米科学,2003,11(3):60-62.
    胡荣海.农作物抗旱鉴定方法和指标[J].作物品种资源, 1986, (4): 36-39
    侯玉虹,尹光华,刘作新.土壤水分含量对玉米出苗和生长的影响[J].安徽农学通报,2007,13 (1):70-73.
    侯建华,张建华,陈静.玉米不同生育时期抗旱鉴定指标的研究[J].内蒙古农牧学院学报,1996, 17 (4) :19-22
    黄莺,赵致.杂交玉米品种抗旱性生理指标及综合评价初探[J].种子,2001,(1):12-14.
    霍仕平,曼庆九,宋光英,许明陆.玉米抗旱鉴定的形态和生理生化指标研究进展[J].干旱区农业研究,1995,13(3):67-73
    霍仕平,晏庆九,宋光英,许明陆.玉米抗旱性的遗传和抗旱性品种的性状选择[J].玉米科学,1995, (2): 18-20.
    荆家海.植物生理学[M].西安:陕西科技出版社.1994,13-35.
    贾俊香,贾炜珑,陆欣.转基因玉米苗期抗旱性鉴定方法、指标与综合评价的探讨[J].山西农业大学学报,2003,23(4):319-322.
    贾俊香.转基因玉米抗旱性鉴定方法、指标与综合评价的研究[D].山西农业大学. 2003.
    姜东,于振文,李永庚,余松烈,孔兰静.高产小麦营养器官临时贮存物质积运及其对粒重的贡献[J].作物学报, 2003, 29 (1): 3I-36.
    蒋高明.植物生理生态学[M].北京:高等教育出版社, 2004.
    景蕊莲.作物抗旱研究的现状与思考[J].干旱地区农业研究,1999, 17(2): 79-85.
    兰巨生,胡福顺,张景瑞.作物抗旱指数的概念和统计方法[J].华北农学报,1990,5(2):20-25.
    黎裕,王天宇,刘成,石云素,宋燕春.玉米抗旱品种的筛选指标研究[J].植物遗传资源学报, 2004, 5(3):210-215.
    黎裕,王天宇,石云素,宋艳春.玉米抗旱性的QTL分析研究进展和发展趋势[J].干旱地区农业研究, 2004, 22 (1):32-39.
    刘克礼,盛晋华.春玉米叶片叶绿素含量与光合速率的研究[J].内蒙古农牧学院学报,1989,19(2):48-51.
    刘树堂,东先旺,孙朝辉.水分胁迫对夏玉米发育和产量的影响[J].莱阳农学院学报,2003,20(2):98-100.
    刘庚山,郭安红,任三学.玉米苗期干旱复水后的补偿效应[J].生态学杂志,2004,23(3):24-29.
    刘祖贵,陈金平,段爱旺.不同土壤水分胁迫处理对夏玉米叶片生理特性的影响[J].干旱地区农业研究,2006,24(1):90-95.
    李广敏,唐连顺,商振清,池书敏.渗透胁迫对玉米幼苗保护酶系统的影响及其与抗旱性的关系[J].河北农业大学学报.,1994,17(2):1~5.
    李少昆,王崇桃.玉米生产技术创新·扩散[M]. 2009.北京:科学出版社.
    李少昆,王崇桃.中国玉米生产技术的演变与发展[J].中国农业科学,2009, 42(6): 1941-1951.
    李生秀.植物营养与肥料学科的现状与展望[J].植物营养与肥料学报, 1999,5(3):193-205.
    李潮海,刘奎.遮阴对不同玉米品种光合特性的影响[M].应用生态学报, 2007, 18(6): 1259-1264.
    李耕,高辉远,赵斌,董树亭,张吉旺,杨吉顺,王敬锋,刘鹏.灌浆期干旱胁迫对玉米叶片光系统活性的影响[J].作物学报, 2009, 35(10): 1916-1922.
    李映雪,赵致.玉米抗旱与节水栽培技术研究进展[J].贵州大学学报(农业与生物科学版), 2002, 21(1):51-56.
    李运朝,王元东,崔彦宏,赵久然,郭景伦,段民孝,杨国航.邢锦峰.玉米抗旱性鉴定研究进展[J].玉米科学,2004, 120): 63-68
    李运朝.玉米自交系抗旱性鉴定指标体系研究[D].河北农业大学.2004
    吕丽华,赵明,赵久然.不同施氮量下夏玉米冠层结构及光合特性的变化[J].中国农业科学,2008,41(9):2624-2632.
    林秋萍,贡冬花,李普安,张赞平,付国占,王畅.夏玉米的干旱适应性及其生理机制的研究[J].华北农学院, 1990,5(4):54-60
    刘友良编著.植物水分逆境生理[M].北京:农业出版社,1992.
    路贵和,安海润.作物抗旱性鉴定方法与指标研究进展[J].山西农业科学,1999,27(4):39-43.
    路贵和,戴景瑞,张书奎.不同干旱胁迫条件下我国玉米骨干自交系的抗旱性比较研究[J].作物学报, 2005, 31(10):1284-1288.
    罗淑平.玉米抗旱性及鉴定指标相关分析[J].干旱地区农业研究, 1990,8(3):72-78.
    马兴林,王庆祥,钱成明.不同施氮量玉米超高产群体特征研究[J].玉米科学2008,16(4):158-162.
    马东辉,赵长星,王月福,吴钢,林琪.施氮量和花后土壤含水量对小麦旗叶光合特性和产量的影响[J]. 生态学报, 2007, 28 (2): 1304-1307.
    倪郁,李唯.作物抗旱机制及其指标的研究进展与现状[J].甘肃农业大学学报,2001,36 (1) :14-22.
    潘瑞炽,董愚得编著.植物生理学[M].北京:高等教育出版社,1995: 327-330.
    齐健,宋凤斌,刘胜群.玉米苗期根系和叶片对干旱胁迫的生理响应[J].生态环境,2006,15(6):1264-1268.
    齐学礼,胡琳,董海滨,张磊,王根松,高崇,许为钢.强光和高温同时作用下不同小麦品种的光合特性[J]. 作物学报, 2008, 34(12): 2196-2201.
    山仑,陈培元.旱地农业生理生态基础[M].北京:科学出版社,1998.1-17, 98-105.
    孙年喜,宗学凤,王三根.不同供氮水平对玉米光合特性的影响[J].西南农业大学学报(自然科学版),2005,27(2):389-392.
    沈秀瑛.玉米叶片光合速率与光、养分和水分及产量关系的研究[J].玉米科学,1994,2(3): 56-60.
    上官周平,李世清.旱地作物氮素营养生理生态[M].北京:科学出版社,2004.
    上官周平,陈培元.不同抗旱性小麦渗透调节的研究[J].干旱地区农业研究., 1991.9(4):60-63
    师公贤,张仁和,薛吉全.玉米与抗旱性有关的产量性状遗传研究[J].干旱地区农业研究, 2004,22(4):37-39.
    宋凤斌,戴俊英.玉米根系和叶片发育对水分胁迫的响应与适应[J].干旱区研究, 2005,22(2):256-258.
    宋凤斌,姚远生,戴俊英.玉米对水分胁迫的反应及适应性[J].农业与技术, 1993,(6):16-19.
    宋凤斌,徐世昌.玉米抗性鉴定指标的研究[J].中国生态农业学报, 2004,12(1): 127-129
    孙彩霞,沈秀瑛.作物抗旱性鉴定指标及数量分析方法的研究进展[J].中国农学通报, 2002, 18(1):49-51.
    孙彩霞,沈秀瑛.玉米抗旱性鉴定指标体系及抗旱鉴定指标遗传特性的研究[D].沈阳农业大学,2001.
    孙彩霞,沈秀瑛,郝建军.玉米果穗性状和生理生化指标与抗旱性相关分析[J].沈阳农业大学学报, 1998-19,29 (4 ): 291-296
    孙彩霞,沈秀瑛,郝宪彬,沈峰.根系和地上部生长指标与玉米基因型抗旱性的灰色关联度分析[J].玉米科学,2000,8 (1):31-33.
    孙彩霞,沈秀瑛,刘志刚.作物抗旱性生理生化机制的研究现状和进展[J].杂粮作物,2002,22(5):285-288
    孙彩霞,武志杰,张振平,陈利军.玉米抗旱性评价指标的系统分析[J].农业系统科学与综合研究.2004, 20(l):43-47.
    谭静,杨峻芸,陈洪梅.抗旱玉米育种研究[J].西南农业学报, 2004, 17(增):388-392.
    谭维娜,戴廷波,荆奇,曹卫星,姜东.花后渍水对小麦旗叶光合特性及产量的影响[J].麦类作物学报, 2007, 27(2): 314-317.
    陶世蓉,东先旺,刘海燕.土壤水分胁迫影响植物生长发育[J].西北植物学报, 2000,20(5):812-817.
    唐启义,冯明光.实用统计分析及其数据处理系统[M].北京:科学出版, 2002..
    汪月霞,孙国荣,王建波,曹文钟,梁建生,余政哲,陆兆华. NaCl胁迫下星星草幼苗MDA含量与膜透性及叶绿素荧光参数之间的关系[J].生态学报, 2006, 26(1): 122-125.
    王双,陈家宙,罗勇.施氮水平对不同干旱程度夏玉米生长的影响[J].植物营养与肥料学报2008,14(4):646-651.
    王磊,白由路.不同氮处理春玉米叶片光谱反射率与叶片全氮和叶绿素含量的相关研究[J].中国农业科学.2005,38(11):2268-2276.
    王帅,韩晓日,战秀梅,等.氮肥不同追施方法对春玉米光合特性的影响[J].杂粮作物,2008,28(3):169-171.
    王伟东,王璞,王启现.热胁迫和水分胁迫对玉米灌浆期穗粒数和穗重的影响[J]..黑龙江八一农垦大学学报,2001,13(2):19-24.
    王进军,柯福来,白鸥.不同施氮方式对玉米干物质积累及产量的影响[J].沈阳农业大学学报,2008,39(4):392-395.
    王崇桃,李少昆,韩伯棠.玉米产量潜力实现的限制因素的参与式评估[J].中国软科学,2006, (7):53-59.
    王崇桃,李少昆,韩伯棠.玉米高产之路与产量潜力挖掘[J].科技导报, 2006,24(4):8-11.
    王崇桃,李少昆,赵明.主要增产措施对玉米光合特性与产量的影响[J].玉米科学, 1997,5(2):58-60
    王黄英,郭还威,罗坤,何雪峰.几个玉米品种抗旱性的直接鉴定[J].玉米科学, 2000,8(l):40-41.
    王忠华,李旭展,夏英武.作物抗旱的作用机制及其基因工程改良研究进展[J].生物技术通报, 2002, (1) :16-19
    席章营,吴克宁,王同朝,王晨阳.玉米抗旱性生理生化鉴定指标及利用价值分析[J].河南农业大学学报, 2000,34(1):7-12.
    席章营,吴克宁,王同朝,王晨阳.玉米抗旱性生理生化鉴定指标及利用价值分析[J].河南农业大学学报, 2000, 34(l):8-11.
    许大全.光合作用效率[M].上海:上海科学技术出版社. 2002.
    徐世昌,戴俊英,沈秀瑛.水分胁迫对光合特性和产量的影响[J].作物学报,1995,21(3):356-363.
    肖凯.氮素营养调控小麦旗叶衰老和光合功能衰退的生理机制[J].植物营养与肥料学报,1998,4(4):371-378.
    薛慧勤,甘信民,顾淑媛,孙兰珍.花生种子萌发特性和抗旱性关系的高渗溶液法[J].中国油料,1997.19(3):30-33.
    薛慧勤,孙兰珍,甘信民.花生品种抗旱性综合评价及其抗旱机理的数量分析[J].干旱区农业研究, 1999,17(l):83-87.
    杨国虎.玉米抗旱性的鉴定指标及遗传育种研究进展[J].甘肃农业科技, 2002, 10: 19-21.
    杨静慧,杨焕庭.苹果树植物叶片角质层厚度与植物抗旱性[J].天津农学院学报, 1996.3 (3):27-28
    杨瑞丽.植物抗旱机制研究进展[J].内蒙古科技与经济, 2003, (4) :107-108.
    张宝石,徐世昌.玉米抗旱基因型鉴定方法和指标的探讨[J].玉米科学,1996,4(3):l9-22.
    张宝石,徐世昌,宋凤斌,张威,戴俟英.玉米抗旱基因型鉴定方法和指标的探讨[J].玉米科学.1996, 4(3):19-26
    张吉旺,董树亭,王空军,刘鹏,胡昌浩.大田增温对夏玉米光合特性的影响[J].应用生态学报, 2008, 19(1): 1080-1087.
    张仁和,马国胜,卜令铎,史俊通,薛吉全.不同基因型玉米品种抗旱性鉴定及综合评价[J].种子, 2009, 28(10): 91-93.
    张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报, 1999, 16(4): 444-448.
    张卫星,赵致,柏光晓,付芳婧.玉米不同抗旱高产杂交组合的抗旱性和丰产性研究.玉米科学, 2006, 14(1):94-98.
    张卫星,赵致,朱德峰,柏光晓,付芳婧,曹绍书.水分和N胁迫下玉米杂交种的抗逆性表现及综合评价[J].干旱地区农业研究, 2005, 23(5):17-24.
    张卫星.玉米不同基因型材料抗旱性的鉴定评价及遗传研究[D].贵州大学. 2005
    张绪成,上官周平.不同抗旱性小麦叶片膜脂过氧化的氮素调控机制[J].植物营养与肥料学报,2007,13(1):106-112.
    张福锁编著.协调作物高产与环境保护的养分综合管理技术研究与应用[M].北京:中国农业大学出版社,2008.
    张福锁,王激清,张卫峰,陈新平.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008, (5): 915-924.
    张世煌,胡瑞法.玉米商业育种和制度创新[M].见廖琴主编:中国玉米品种科技论坛.北京:中国农业科技出版社,2001,14-30.
    张雷明,上官周平,毛明策.长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响[J].应用生态学报,2003,14(5):695-698.
    张英普,何武权,韩健.水分胁迫对玉米生理生态特性的影响[J].西北水资源与水工程,1999,10(3):18-21.
    张维强,沈秀瑛.水分胁迫和复水对玉米叶片光合特性的影响[J].华北农学报,1994,9(3)44-47.
    张林春,郝扬,张仁和,薛吉全.干旱复水对玉米苗期光合特性的影响[J].西北农业学报,2010,21(3):18-21.
    赵俊晔,于振文.施氮量对小麦旗叶光喝速率和光化学效率、籽粒产量与蛋白质含量的影响[J].麦类作物学报, 2006,26()5:92-96.
    赵明,王树安,李少昆.论作物产量研究的“三合结构”模式[J].北京农业大学学报, 1995,21(4):359-363.
    赵丽英,邓西平,山仑.渗透胁迫对小麦幼苗叶绿素荧光参数的影响[J].应用生态学报, 2005, 16(7): 1261-1264.
    赵松龄.作物生产是一个种群过程[J].生态学报,1997, 17(1):100-104.
    赵天宏,沈秀瑛,杨德光,马秀芳.灰色关联度分析在玉米抗旱生理鉴定中的应用[J].辽宁农业科学,2003, (1):1-4.
    赵欣欣,于运国,姜江,刘术梅,陈学求.不同玉米杂交种抗旱性比较与评价[J].吉林农业大学学报,2003,25(1):4-7.
    郑江平,王春乙.低温和干旱对玉米苗期生理形成过程[J].应用气象学报,2006,17(1):119-123.
    战秀梅,韩晓日,杨劲峰.不同施肥处理对玉米生育后期叶片保护酶活性及膜脂过氧化作用的影响[J]. 玉米科学,2007,15(1):123-127.
    郑盛华,严昌荣.水分胁迫对玉米苗期生理和形态特性的影响[J].生态学报. 2006, 26(4): 1138-1143.
    Aroca R, Irigoyen JJ, Sánchez-díaz M, Drought enhances maize chilling tolerance.Ⅱ. Photosynthetic traits and protective mechanisms against oxidative stress[J]. Physiologia plantarum, 2003, 117: 540-549
    BAI Li-Ping, SUI Fang-Gong, GE Ti-Da, SUN Zhao-Hui, LU Yin-Yan and ZHOU Guang-Sheng,Effect of Soil Drought Stress on Leaf Water Status, Membrane Permeability and Enzymatic Antioxidant System of Maize[J]. Pedosphere,2006,16(3): 326-332
    Bassetti, P., and M.E. Westgate. 1993. Water deficit affects receptivity of maize silks[J]. Crop Sci. 33:279–282.
    Banziger M, Edmeades G O, Beck D, Bellon M. Breeding for drought and nitrogen stress tolerance in maize: from theory to practice[J]. Mexico D F. Mexico, CIMMYT, 2000.
    Betran F J, Beck D, Banziger M, Edmeades G O. Secondary traits in parental inbreds and hybrids under stress and non-stress environments in tropical maize[J]. Field Crops Research, 2003, 83: 51-65.
    Bi J J, Liu J D , Ye B X, Xie L J. Effects of drought stress on photosynthesis and chlorophyll fluorescence of the summer maize leaf[J]. Meteorological and Environmental Sciences, 2008, 31(1): 10-1.
    Blum A .Plant breeding for stress environment[M].CRC Press,1988:43-77.
    Bolanos.J. Eight cycles of selection for drought tolerance in tropical maize II: Response in yield, Biomass and Radiation[J]. Field crop Res, 1993, 31(3-4):233-252
    Bouslama, M. and W.T. Stress tolerance in soybeans. II Evaluation of three screening techniques for heat and drought tolerance[J]. Crop Sci. 1984,24: 933-937
    Borras L, Otegui M E. Maize kernel weight response to post-flowering source-sink ratio [J] . Crop Science, 2001, 49: 1816-1822.
    Brown R A, Rosenberg N J. Sensitivity of crop yield and water use to change in a range of climate factors and CO2 concentrations: a simulation study applying EPIC to the central USA[J]. Agricultural and Forest Meteorology, 1997, 83:171-203.
    Campos, H., Cooper, M., Habben, J.E., Edmeades, G.O., Schussler, J.R., 2004. Improving drought tolerance in maize: a view from industry[J]. Field Crops Res. 90, 19–34
    Cassman KG, Dobermann A, Walters DT and Yang H. 2003. Meeting cereal demand while protecting natural resources and improving environmental quality[J]. Annual Review of Environment andResources, 28: 315-358
    Cabelguenne M, Debaeke P, Bouniols A, EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybean and winter wheat[J]. Agricultural Systems, 1999, 60: 175-196
    Demmig-Adams B, Adams W W, Baker D H, Logan B A, Bowling D R, Verhoreven A S. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation[J]. Physiologia Plantarum, 1996, 98: 253-264.
    Devos N M. Cultivar difference in plant crop photosynthesis [A]. In: Spiertz J, Kramer T H. Crop physiology and Breeding[M]. Pudoe Wageningen, 1979: 71-74.
    Duvick DN and Cassman KG. 1999. Post-green revolution trends in yield potential of temperate maize in the North-Central United States[J]. Crop Science, 39:1622-1630
    Dwyer L M, Tollenaar M. 1989. Genetic improvement in photosynthetic response of hybrid maize cultivar, 1959 to 1988[J].Canadian Journal of Plant Science, 69: 81-91
    Dwyer L M,Tollenaar M,Houwing L. 1991. A nondestuctive method to monitor leaf greenness in corn[J]. Canadian Journal of Plant Science, 71(2):505-509
    Dwyer L M,Tollenaar M,Stewart D W. 1991. Change in plant density dependence of leaf photosynthesis of maize ( Z ea m ay s L. ) hybrids, 1959 to 1988[J]. Canadian Journal of Plant Science, 71: 1-11
    Duplesiss, P,P, Dijkiuis F,J. The influence of time lag between pollen- shedding and silking on the field of maize[J].South African Journal of Agricultural science,1967,10: 667-474.
    Duvick D N. Plant breeding, an evolutionary conception[J].Crop Sci,1996(36):539-548.
    Eberhart,S.A. Stability parameters for comparing varieties[J].Corp sci,1966,( 6):36-40.
    Edmeades G O, Bolanos J. and Lafitte H R. Progress in breeding for drought tolerance in maize. 47th annual corn and sorghum research conference[J]. 1992, (47):93-111.
    Efeoglu B, Ekmekci Y, Cicek N. Physiological responses of three maize cultivars to drought stress and recovery[J]. South African Journal of Botany, 2009, 75: 34-42.
    Ephrath J E. The effects of drought stress on leaf elongation, photosynthesis and transpiration rate in maize leaves[J]. Photosynthetic, 1991, 25(4): 607-619.
    Evans L T. 1992. From leaf photosynthesis to crop productivity. -In: Murata N. (ed.): Research in Photosynthesis.Vol.Ⅳ, Dordrecht-Boston-London, Kluwer Academic Publishers, 587-594.
    Evans L T. Crop Evolution,Adaptation and Yield [M]. London, U K:Cambridge University Press,1993,54-55.
    Evans J R. Niortgen and Photosynthesis in the flag leaf of wheat [J].Plant Physiolo.1983. (72):297-302.
    Evenson R E.“The economic contributions of agricultural extension to agricultural and rural development”Chapter 4 in Improving agricultural extension [M]. Food and Agriculture Organization of the United Nations Rome. 1997.
    Farquhar G D, Sharkey T D, Stomatal conductance and photosynthesis[J]. Annual Review Plant Physiology, 1982, 33(4): 317-345.
    Farrar, T. J., Nicholson, S. E., and Lare, A. R. The influence of soil type on the relationships between NDVI, rainfall and soil moisture in semiarid Botswana II: NDVI response to soil moisture[J]. Remote Sensing Environ. 1994, 50, 121–133
    Fischer G, Tubiello F N, van Velthuizen H. Climate change impacts on irrigation water requirements:Effects of mitigation, 1990–2080[J]. Technological Forecasting and Social Change, 2007,74(7):1083-1107.
    Finlay, K.W. et al. The analysis of adaptation in plant breeding programmer[J]. Aust. J. agric, res, 1963(14):742-757
    Fischer, K.S, Selection for improvement in maize yield under moisture deficit[J]. field crop Res, 1989.22( 4):227-243.
    Fisher R A, Maurer R .Drought resistance In spring wheat cultivars I. Grain yield responses[J]. Aust J Agrlc Re: 1978, 29:897-902.
    Gan S, Amasino R M. Inhibition of leaf senescence by autoregulated production of cytokinin [J]. Science, 1995, 270(22): 1986-1988.
    Gardner F P, Valle R,McCloud D E. Yield characteristics of ancient races of maize compared to a modern hybrid[J]. Agronomy Journal, 1990, 82: 864-868.
    Grant R.E. , Jackson B.S. , Kiniry J.R.. Water deficit timing effects on yield components in maize[J].Agronom J, 1989,81:61-65.
    Gambin Brenda L., Lucas Borras 1, Mara E. Otegui. Kernel water relations and duration of grain filling in maize temperate hybrids[J]. Field Crops Research,2007,101:1–9.
    Goldhamer DA, Fereres E, Irrigation scheduling of almond trees with trunk diameter sensors[J]. Irrigation Sci, 2004, 23:
    Hall A E. Physiological ecology of crops in relation to light, water and temperature[M]. In: Carroll C. R Vandermeer J. H, Posset P. Agroecology. New York: MC Grav Hill Publishing Company, 1990:191-233.
    Hanson, A.D. and Hitz, W.D. Metabolic responses of mesophytes to plant water deficits[J]. Ann Rew Plant Physiol,1982,33:163-200
    Hardy R F W, Khavelka U D, Quebedeaux B. Increasing crop productivity: the problem, stragtegies approach and selected rate-limitations to photosynthesis Proceeding of 4th International Congress of Photosynthesis[C]. London: Biochemical Society, 1978, 695-719.
    Hillel, D., Rosenzweig, C., 2002. Desertification in relation to climate variability and change[J]. Adv. Agron. 77, 1-38.
    Hsiao, T.C. Plant responses to water stress[J]. Ann Rev Plant Physiol.1973.24:519-570. Jiang D, Dai T, Jing Q, et al. Effects of long-term fertilization on leaf photosynthetic characteristics and grain yield in winter wheat [J]. Photosynthetica, 2004, 42(3): 439-446.
    Ji, L. and Peters, A. J. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices[J]. Remote Sensing Environ. 2003,87, 85-98
    Jones, J.W., B. Zur, and J.M. Bennett. 1986. Interactive effects of water and nitrogen stresses on carbon and water vapor exchange of corn canopies[J]. Agric. For. Meteorol. 38:113-126.
    John, M. Clark. Evaluation of methods for quantification of drought tolerance in wheat[J]. Crop Sci. 1992,32:723-728.
    Kayode G O, and Agboola A A. Effect of different nitrogen levels, plant population and soil nutrient status on yield and yield components of maize (Zea mays L.) in different ecological zones of Nigeria [J]. Fertilizer Research .1981, 2: 177-191.
    Kuchenbuch Rolf O., Keith T. Ingram, and Uwe Buczko, Effects of decreasing soil water content onseminal and lateral roots of young maize plants[J]. J. Plant Nutr. Soil Sci. 2006, 169, 841-848.
    Kozlowski TT,Winget CH,Diurnal and seasonal variation in radio of tree stems[J]. Ecology, 1964,45: 149-155
    Kogan, FN, Operational space technology for global vegetation assessment[J]. Remote Sensing Environ. 2001,82: 1949-1964.
    Laker M C. Effect of soil water stress on stomotal diffusion conductance and leaf water potential in maize at flowering stage[J]. Water SA, 1991, 17(4):255-262.
    Larocque G R. Coup ling a detailed photosynthetic model with foliage distribution and light attenuation functions to compute daily gross photosynthesis in sugar maple stands[J]. Ecology Model, 2002, 148(3): 213-232.
    Lebreton C, Lazic J V, Steed A. Indentification of QTL for drought responses in maize and their use in testing causal relation shaps between traits[J]. Journal of Experimental Botany, 1995, (46):853-865.
    Lebreton C. Identification of QTL for drought responses in maize and their use in testing causal relationships between traits[J]. Journal of Experimental Botany.1995,46:853-865
    Leipner J, Stamo P, Sinsawat V, Fracheboud Y. Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature[J]. Environmental and Experimental Botany, 2004, 52(3): 123-129.
    Lu C, Zhang J , Zhang Q, et al. Modification of photosystemⅡphotochemistry in nitrogen deficient maize and wheat plants [J]. Plant physiology, 2001, 158 (11): 1 423-1 430.
    Mahalashmi,V. Evaluation of stay green Soghum Germplasm lines at ICRISAT[J]. Crops Science, 2002, 42: 965-974.
    Massacci A, Nabiv S M, Pietrosanti L, Nematov S K, Chernikova T N, Thor K, Leipner J. Response of photosynthesis apparatus of cotton to the onset of drought stress under field conditions by gas change analysis and chlorophyll fluorescence imaging[J]. Plant Physiology and Biochemistry, 2008, 46(4): 189-195.
    Maxwen K, Johnson G N. Chlorophyll fluorescence-a practical guide[J]. Journal of Experimental Botany, 2000, 51(3): 659-608.
    McVicar, T. R. and Jupp, D. L. B. The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: a review[J]. Agric.Syst.:1998, 57: 399–468
    MIHAILOVIC N., G. JELIC, R. FILIPOVIC, M. DJURDJEVI. Effect of nitrogen form on maize response to drought stress[J]. Plant and Soil, 1992,144: 191-197.
    Moser Samuel B., Boy Feil, Sansern Jampatong, Peter Stamp.Effects of pre-anthesis drought, nitrogen fertilizer rate, and variety on grain yield, yield components, and harvest index of tropical maize[J]. Agricultural Water Management 81 (2006) 41-58
    Mohammadi M, Karr A L. Membrane lipid peroxidation , nitrogen fixation and leghemoglobin content in soybean root nodules [J]. Journal of Plant physiology, 2001, 158(1): 9-19.
    Nelson CJ. Genetic associations between photosynthetic characteristics and yield: review of the evidence[J]. Plant Physiology Biochemistry, 1988,26:543-554
    Nielsen D. C., Vigil M. F., Benjamin J.G., The variable response of dry land corn yield to soil water content at planting[J]. Agricultural water management 96 (2009) 330–336.
    Nouna BB, Katerji N, Mastrorilli M, Using the CERES-Maize model in a semi-arid Mediterranean environment. New modeling of leaf area and water stress functions[J]. Europ. J. Agronomy, 2003, 19: 115-123
    Otegui, M.E.,F.H. Andrade, E.E. Suero Growth, water use, and kernel abortion of maize subjected to drought at silking[J]. Field Crops Research 40 (1995) 87-94
    Peng S, Huang J, Sheehy J E. Rice yields decline with higher night temperature from global warming[J]. Proceedings of the National Academy of Sciences, 2004,101 (27): 9971-9975.
    Peng S, Gurdev S Khush, Parminder Virk et al. Progress in ideotype breeding to increase rice yield potential[J]. Field crops research, 2008, (108):32-38.
    Pettigrew W T. Potassium deficiency increase specific leaf weightsand leaf glucose levels in field-grown cotton[J]. Agronomy Journal, 1999, 91: 962-968.
    Peters, A. J., Rundquist, D. C., and Wilhite, D. A. Satellite detection of the geographic core of the 1988 Nebraska drought[J]. Agric. Forest Meteorol. 1991, 57:35-47.
    Raes D,Geerts S, Kipkorir E et al., Simulation of yield decline as a result of water stress with a robust soil water balance model[J]. Agricultural Water Management, 2006, 81:335-357
    Recep C,Effect of water stress at different development stages on vegetative and reproductive growth of corn[J]. Field crop research, 2004, 89:1-16.
    Rbert C. Ackerson Comparative physiology and water relation of two corn hybrids during water stress[J]. Crop Sci, 1983,23:278-283.
    Reddy A, Chaitanya K V, Vivekanandan M. Drought-induced responses and antioxidant metabolism in higher plant[J]. Journal of Plant Physiology, 2004, 161(3):1189-1202.
    Robert G.Guei and C.E. Wassom. Genetics of osmotic adjustment in breeding maize for drought tolerance[J]. Heredity, 1993, (71):436-441.
    Santos M G, Ribeiro R V, Machado E C, Pimentel C. Effects of drought stress on photosynthetic parameters and leaf water potential of five common bean genotypes under water deficit[J]. Biologia Plantarum, 2009, 53(3): 229-236.
    Senis S.A., Gnanam A. Isozymes of glucose 262 phosphate dehydrogenase and NAD+2 malate dehydrogenase in shoot froming foliar discs of tobacc[J].Plan Cell physiol. 1981,22:968-975.
    Sergi MB, Lenonor A, Drought-induced changes in the redox state of alpha-tocopherol, ascorbate and the diterpene carnosic acid in chloroplasts of labiatae species differing in carnosic acid contents[J]. Plant physiol.,2003, 131:1816-1825.
    Stone, P.J., D.R. Wilson, J.B. Reid, and G.N. Gillespie. 2001. Water deficit effects on sweet corn: I. Water use, radiation use efficiency,growth, and yield[J]. Aust. J. Agric. Res. 52:103-113.
    Schussler, J.R., and M.E. Westgate. 1991. Maize kernel set at low water potential: I. Sensitivity to reduced assimilates during early kernel growth[J]. Crop Sci. 31:1189-1195.
    Schreiber U, Gademann R, Ralph P J, Larkum A W. Assessment of photosynthetic performance of prochloron in lissoclinum patella in hospite by chlorophyll fluorescence measurements[J]. Plant Cell and Physiology, 1997, 38(2):945-951.
    Selmani A, Wasson C E. Daytime chlorophyll fluorescence measurement in field-grown maize and its genetic variability under well-water and water-stressed conditions[J]. Field Crops Research, 2003, 31(2): 173-184.
    Sharp R E, Poroyko V, Hejlek L G, Spollen W G, Springer G K, Bohnert H J, Nguyen H T. Root growth maintenance during water deficits: physiology to functional genomies[J]. Journal of Experimental Botany, 2004, 55(4):2343-2351.
    Singh, B.R., Singh, D. P. Agronomic and physiological responses of sorghum, maize and pearl millet to irrigation[J]. Field Crops Research,1995,42:57-67.
    Tollenaar M. Genetic improvement in grain yield of commercial maize hybrids grown in Ontario from 1959 to 1988[J]. Crop Science, 1989, 29: 1365-1371.
    Tollenaar M. Physiological basis of genetic improvement of maize hybrids in Ontario from 1959 to 1988[J]. Crop Science, 1991,31:119-124.
    Tollenaar M,Agnilera A. Radiation use efficiency of an old and a new maize hybrid[J]. Agronomy Journal, 1992,84(3):536-541.
    Tollenaar M, Wu J. Yield Improvement in Temperate Maize is Attributable to Greater Stress Tolerance[J]. Crop Science, 1999,39:1597-1604.
    Tollernaar M., Lee, E. A. Yield potential, yield stability and stress tolerance in maize[J]. Field Crop Research. 2002, 75:161-169.
    Valentinuz O R, Tollenaar M. Vertical profile of leaf senescence during the grain-Filling period in older and newer maize hybrids [J]. Crop Science, 2004, 44: 827-834.
    Vicente-serrano SM, Evaluating the impact of drought using remote sensing in a Mediterranean, semi-arid region[J]. Natural Hazards, 2007,40: 173-208.
    Vitale, L, Tommasi, P D, Arena, C, Riondino, M, Forte A, Verlotta, A, Fierro A, Santo, V A, Fuggi, A, Magliulo, V. Growth and gas exchange response to water shortage of a maize crop on different soil types[J]. Acta Physiologiae Plantarum. 2009,96 (2):330–336.
    Wolfe DW, Henderson DW, Hsiao TC et al., 1988, Interactive water and nitrogen effects on senescence of maize: I. leaf area duration, nitrogen distribution, and yield[J]. Agron J.80:859-864.
    Westgate, M.E. 1994. Water status and development of the maize endosperm and embryo during drought[J]. Crop Sci. 34:76–83.
    White A J, Critchley C. Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus[J]. Photosynthesis Research, 1999, 59(3): 63-72.
    Winter, S.R. Evaluation of screening techniques for breeding drought resistance winter wheat[J]. Crop Sci, 1988, 28:512-516.
    Xianshi, G., T.R. Sinclair, and J.D. Ray. 1998. Effect of drought history on recovery of transpiration, photosynthesis, and leaf area development in maize[J]. Soil Crop Sci. Soc. Fla. Proc. 57:83–87.
    Zinselmeier C,Westgate ME, Jeffrey R., Schussler.Low water potential disrupts carbobydrates metabolism in maize (Zea mays L)ovaries[J]. Plant Phsio1., 1995, 107:385-391.
    Zhang L.-X., S.-X. Li, H. Zhang, and Z.-S. Liang J. Nitrogen Rates and Water Stress Effects on Production, Lipid Peroxidation and Antioxidative Enzyme Activities in Two Maize (Zea mays L.) Genotypes[J]. Agronomy & Crop Science 193, 2007,387-397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700