转McCHIT1、alfAFP基因及其双价基因水稻的稻瘟病和纹枯病抗性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是我国也是世界的主要粮食作物,稻瘟病和纹枯病的严重发生是影响其产量和品质的重要因素。生产实践证明:选育和合理栽培抗病品种是防治水稻稻瘟病和纹枯病的最经济、有效措施。因此,多年来人们运用常规育种、杂交育种技术培育出一系列抗病水稻品种,在生产上推广应用发挥了巨大的社会和经济效益。但由于病原菌遗传多样性、抗病基因匮乏、育种周期长等因素,使稻瘟病和纹枯病抗病育种成效大大降低。为提高水稻抗病育种成效,人们采用传统育种技术与组织培养、分子标记辅助育种相结合选育抗病品种,证明能缩短育种周期和提高育种效率,克服了传统育种的一些主要缺点,但育种中仍存在一些难以克服的局限,如抗病基因的缺乏和数量的不足,常使其研究举步维艰,育种成效难以彰显。而转基因技术能弥补这些育种技术的不足,已成为目前丰富水稻抗病种质资源,提高水稻抗病育种成效的有效途径之一。
     本实验室采用根癌农杆菌介导法将苦瓜几丁质酶基因McCHIT1、苜蓿防御素基因alfAFP及其双价基因成功地导入水稻恢复系缙恢35中,通过抗病性鉴定、GUS和PCR检测,得到了一批对稻瘟病、纹枯病抗性明显增强的转alfAFP基因、McCHITl基因、McCHIT1-alfAFP双价基因植株后代。为进一步了解这些转基因水稻植株后代对稻瘟病和纹枯病抗性的遗传变异特性,挖掘其育种利用价值,本研究从T3代起逐代进行稻瘟病和纹枯病抗性鉴定和筛选。对获得的稻瘟病和纹枯病抗性优良转基因稳定株系,一方面进行稻瘟病菌抗谱测定和主要农艺性状考察,另一方面对其所配杂交水稻组合进行稻瘟病抗性鉴定和主要农艺性状考察,以期筛选出稻瘟病抗性、纹枯病抗性和其他农艺性状优良的转基因恢复系材料,为探索广谱抗病育种新途径提供参考。主要的研究结果如下:
     1、转McCHIT1基因、alfAFP基因及其双价基因水稻各世代的抗病性变异
     结合本实验室前期的研究可见,转McCHITl基因、alfAFP基因及其双价基因McCHIT1-alfAFP基因水稻各世代的抗病性变异有基本相同的趋势,即T2代以前的株系在稻瘟病和纹枯病抗性遗传上极不稳定,不同株系间以及同一抗病性优良株系的不同单株间存在较大的抗病性差异;T3代大多数株系的抗病性基本稳定,少部分株系属杂合株系,单株间抗病性仍存在较大的强弱分化;T3代以后随着世代的增加,转基因水稻的稻瘟病和纹枯病抗性遗传逐趋稳定,通过连续多代的抗病性鉴定、GUS检测和优良抗病株系的筛选,至T5代可筛选出抗病性优良的各类型转基因水稻稳定株系。
     2、稻瘟病抗性优良转McCHITl基因、alfAFP基因及其双价基因水稻稳定株系的筛选及其主要农艺性状的表现
     通过对T3、T4、T5代株系的稻瘟病抗性鉴定、筛选和T6代株系的稻瘟病菌抗谱测定,获得稻瘟病抗性较受体对照缙恢35极显著提高、抗谱明显拓宽的转McCHIT1基因水稻稳定株系有C36-2-1、C35-6-2、C10-7-1、C24-4-1、C24-4-2、C21-6-2和C21-3-1等7个株系,转alfAFP基因水稻稳定株系有A3-6-1、A3-6-2、A7-3-1、A7-6-1、A7-6-2、A7-8-1、A4-8-1、A10-4-1等8个株系,转McCHIT1-alfAFP基因水稻稳定株系有AC2-10-1、AC4-2-2、AC7-3-1、AC8-5-1等4个株系。在受体对照感苗瘟、叶瘟和穗颈瘟的发病情况下,这些株系的苗瘟抗性、叶瘟抗性、穗颈瘟抗性达到或接近中抗水平。这些株系的总群抗病频率比受体对照之值(36.50%)高出15个百分点以上,与受体对照相比,多数株系增加了对ZE群生理小种的抗性,提高了对ZA.ZB.ZG.ZF等4个种群生理小种的抗性,对稻瘟病菌表现出比较广谱的抗性。采用“逐代增加选择压,抗中选抗”的方法,可筛选出稻瘟病抗性优良、抗谱明显拓宽的转基因稳定株系。
     农艺性状考察表明,各稻瘟病抗性优良转基因水稻株系的主要农艺性状已趋稳定,但与受体对照相比,不同类型转基因株系的主要农艺性状均发生了不同程度的变异。转McCHIT1基因水稻株系与受体对照相比变异较大,主要趋势为,转基因株系的播始历期较短,植株较矮,单株有效穗数较多,穗长较短,每穗粒数较多,穗着粒较密,结实率较低,千粒重较小,而单株实粒重则趋势不明,较高、较低的变化均有,其中,以播始历期、株高、结实率和千粒重等4个性状的差异较为显著而普遍。转alfAFP基因水稻株系与受体对照相比,除单株有效穗数差异不显著,播始历期显著较长、显著较短均有,植株株高显著较高、显著较矮均有外,在其他性状上的主要趋势与转McCHT1基因水稻株系的一致,其中,在播始历期、结实率、株高等3个性状上存在较为广泛而显著的差异。转McCHIT1-alfAFP基因水稻株系与受体对照相比,穗粒数、穗着粒密度等2个性状差异不显著,播始历期较长、较短均有,单株有效穗数较多,单株粒重较大,在结实率和千粒重等2性状上与转McCHIT1-alfAFP基因水稻株系的一致,其中,以千粒重、播始历期、株高、穗长的差异较为显著而普遍。结合水稻恢复系选育的要求,综合比较,C36-2-1、C21-6-2、C21-3-1、A-7-3-1、A7-8-1、AC2-10-1和AC4-2-2等7个株系是综合农艺性状较好的抗稻瘟病转基因株系。
     3、稻瘟病抗性优良转McCHIT1基因、alfAFP基因及其双价基因水稻稳定株系所配组合的稻瘟病抗性及其主要农艺性状表现
     转基因株系所配组合的稻瘟病抗性鉴定和农艺性状考察结果表明,各抗病性优良转基因株系所配杂交水稻组合的稻瘟病抗性极显著优于受体对照和感病转基因株系所配组合,其优良抗病性能较好地传递给F1代,但转alfAFP基因株系的优良抗病性传递能力相对较好,所配组合的穗颈瘟抗性较强,达到或接近中抗水平。各抗病性优良转基因株系所配杂交水稻组合的主要农艺性状已趋稳定,与受体对照所配组合相比,除个别株系所配组合在个别或少数考察性状上与受体对照所配组合存在显著或极显著差异外,多数抗病性优良转基因株系所配组合在主要农艺性状上与受体对照所配组合相当。这与抗病性优良转基因株系的主要农艺性状与受体对照有较大差异不一致。综合比较,C21-6-2、C21-3-1、C36-2-1、A7-3-1、A7-8-1、AC2-10-1、AC4-2-2和AC7-3-1等8个抗病性优良转基因株系与水稻不育系II-32A所配组合是丰抗结合较优的转基因杂交水稻组合。
     4、纹枯病优良抗性转McCHITl基因、alfAFP基因及其双价基因水稻稳定株系的筛选
     通过对T3、T4、T5代株系的纹枯病抗性鉴定、筛选,获得了C36-2-1、C35-6-2、C10-7-1、C24-4-1、C10-2-1、C24-2-1、C24-2-2、C21-13-2等8个纹枯病抗性优良(病情指数值低于45%以下)的转McCHIT1基因株系,其中,C36-2-1、C10-7-1、C21-6-2、C21-3-1等4个株系属纹枯病和稻瘟病抗性均优良的转McCHIT1基因株系;获得了A3-6-1、A3-6-2、A7-6-1、A4-8-1、A10-4-1、A3-2-2、A2-9-3等7个纹枯病抗性优良(病情指数值低于45%以下)的转alfAFP基因株系,其中,A3-6-1、A3-6-2、A7-6-1、A4-8-1、A10-4-1等5个株系属纹枯病和稻瘟病抗性均优良的转alfAFP基因株系;获得了AC2-10-1、AC4-2-2、AC7-3-1、AC3-2-1、AC6-2-2等5个纹枯病抗性优良(病情指数值低于45%以下)的转McCHIT1-alfAFP基因株系,其中,AC2-10-1、AC4-2-2、AC7-3-1等3个株系属纹枯病和稻瘟病抗性均优良的转McCHIT1-alfAFP基因株系。
     5不同转McCHIT1基因、alfAFP基因及其双价基因水稻稳定株系的抗病性强弱分化的原因分析
     稻瘟病菌抗谱分析表明,稻瘟病抗性优良的7个转McCHIT1基因株系、8个转alfAFP基因株系和4个转McCHIT1-alfAFP基因株系的稻瘟病抗性显著或极显著优于受体对照和其他转基因株系的主要原因是,其对稻瘟病菌总群的抗谱明显较宽,特别是对优势种群B群和重要种群A群的生理小种具有较高的抗病频率。
     几丁质酶活性分析表明,抗病性优良转McCHIT1基因株系在接种纹枯病菌前后的总几丁质酶活性显著或极显著高于受体对照和感病转基因株系的总几丁质酶活性,其接种前后1d的总几丁质酶活性是受体对照的3.4-4.2倍,是感病转基因株系2.1-2.7倍,接种2d后随着受体对照的总几丁质酶活性的快速提高,抗病性优良转基因株系的总几丁质酶活性较受体对照的倍率有所下降,为1.8-2.9倍,但抗病性优良转基因株系的总几丁质酶活性较接种2d前有所提高,但不显著,说明抗病性优良转基因株系的McCHIT1基因得到了较强程度的组成型表达,同时内源几丁质酶基因也能得到一定程度的诱导性表达。因此,感病转基因株系的McCHIT1基因未能高水平的组成型表达,是其抗病性显著弱于抗病性优良转基因水稻株系的原因,反之,抗病性优良转基因水稻株系的抗病性显著或极显著高于受体对照和其他转基因株系的生理原因是其McCHIT1基因得到了高水平的组成型表达。
Rice is an important food crop all over the world. Rice blast and sheath blight are important diseases influencing rice yield and quality. It has been approved that breeding and planting resistant cultivars is the most economical and effective way to control rice blast and sheath blight.To date, a series of rice varieties with resistance to disease were bred by various conventional methods, which exit enormous social and economic function in agricultural production. However, as the result of genetic diversity of nosophyte, absence of resistance genes and long breeding circle in traditional methods, the breeding effect for disease resistance was lower to a great degree. To improve breeding effect in rice, conventional breeding methods connected with tissue culture and molecular marker assisted selection technique were applied to breeding for disease resistance. Though overcoming large amount of defects in traditional breeding, some issues were still existed, i.e. insufficient genes for disease resistance. Just the transgenic technique can remedy the deficiency, and has become an effective approach in breeding for disease resistance.
     In our laboratory, disease resistance genes McCHIT from balsam pear (Momordica charantia L.), alfAFP from clover (Medicago sativa L.) and their bivalent gene (McCHIT1-alfAFP) were transferred to rice restorer line Jinhui35 by Agrobacterium-mediated transformation method. By detection of disease resistance and GUS as well as PCR, we obtained a set of transgenic rice plants harboring McCHITl, alfAFP and McCHIT1-alfAFP gene whose descendants obviously strong resistance to blast and sheath blight. For further understanding the inherited character of the genes in transgenic plant descendant and screening stable plant descendant with blast and sheath blight resistance, estimating and screening resistance to blast and sheath blight were done from T3 in the study. Once the stable and outstanding transgenic plants with blast and sheath blight resistance were obtained, on the one hand, their resistance spectrum and main agronomic traits were valued, on the other hand, hybrid rice F1 crossed by sterile lines with them were appraised by the same targets involved above. We expect screening excellent transgenic rice restorer and exploring a novel route for broad-spectrum disease resistance. The main results were as follows:
     1. Genetic variation of disease resistance for rice transgenic plants harboring McCHITl,alfAFP and McCHIT1-alfAFP in various generations
     Together with the prophase study results, there were same trends basically in disease resistance of different generations for transgenic plants harboring McCHITl, alfAFP and McCHIT1-alfAFP gene. At the low generation, especially before T2 generation, resistance inheritance for blast and sheath blight were unstable, exhibiting larger difference among various lines even plants within the same line. At T3 generation, disease resistance was stable basically for most lines, only unstable for a few heterozygosis plants in which resistance still exist polarization among plants. With the increasing of generation after T3, transgenic lines to resistance were gradually stable. In T5 generation, different types of stable transgenic plants with excellent disease resistance were screened out by successive detection of disease resistance and GUS test.
     2. Stable and noticeable M. grisea-resistance transgenic rice lines harboring McCHITl, alfAFP and McCHITl-alfAFP gene and its major agronomic characteristics
     Based on the analysis of resistance to rice blast in T3, T4 and T5 generations and on identification of resistance spectrum incubated by M. grisea in T6 generation. transgenic plant lines increasing resistance and extended resistance-spectrum to rice blast were screened as follows:seven McCHITl-transgenic rice lines i.e. C36-2-1, C35-6-2, C10-7-1, C24-4-1, C24-4-2, C21-6-2 and C21-3-1, eight alfAFP-transforming rice lines i.e. A3-6-1, A3-6-2, A7-3-1, A7-6-1, A7-6-2, A7-8-1, A4-8-1 and A10-4-1, and four McCHIT1-alfAFP-transforming rice lines i.e. AC2-10-1, AC4-2-2, AC7-3-1 and AC8-5-1. These lines demonstrated the mid-level resistance to leaf and neck blast as well as resistance in seedling stage to leaf blast or at least closely. In detail, when the wild-type control was highly sensitive to M. grisea was of a disease, transgenic plants were slightly destroyed no matter leaf and neck blast or leaf blast at seedling stage. The value of disease-resisted frequency increased more than 15% in transgenic plant lines compared with the control of wild type 36.50%, and the majority of transgenic rice acquired the resistance to ZE groups and enhanced the resisted-level to ZA, ZB, ZG and ZF groups by identification of broad-spectrum resistance. Consistently, excellent transgenic rice lines could be found based on the method of selection pressure increased from generation to generation and mid-resistance lines kept.
     After self-pollination of generations, the key agronomic characteristics have inherited inherited stably in despite of the distinct differences between transgenic lines. In the case of McCHITl gene over-expression, compared with the wild type, the transgenic lines mainly showed the shorten life cycle, dwarfism, decreased effective panicle number per plant, reduced panicle length, increased grain number and seed density per panicle, poorly seed setting, lower weight of 1000-seeds and filled seeds per plant, interestingly, four of which demonstrated universal and significant difference with these of the wild type, that is life cycle span, plant height, seed setting and 1000-seeds weight. As for transgenic plant alfAFP gene over-expression, effective panicle number per plant showed no significant difference between wild type and transgenic lines, life cycle showed significant longer or shorter and plant height increased or decreased significantly in the transgenic rice compared with those of wild type control, and other agronomic traits changed consistently with the plants of McCHIT1 gene over-expression, of which, life cycle, seed setting ratio and plant height were severely reconstructed. When McCHITl-alfAFP genes were transformed to rice, the progeny of transgenic lines displayed no significantly difference in grain number and seed density per panicle, other agronomic characteristics such as life cycle, effective panicle number per plant and seed weight per plant were significantly negatively or dominantly affected in some off-springs of transgenic plant, and the changing of seed setting ratio and 1000-seeds weight was consistent with rice plant harboring McCHITl and alfAFP respectively. For all agronomic traits,1000-seeds weight, life cycle, plant height, panicle length and seed setting ratio were wildly and severely influenced at the McCHIT1-alfAFP-transforming rice. Given the breeding of rice restorer lines, seven lines C36-2-1, C21-6-2, C21-3-1, A-7-3-1, A7-8-1, AC2-10-1 and AC4-2-2 were excellent transgenic plant lines against to rice blast.
     3. M. grisea resistance and agronomic traits analysis of hybrid rice varieties crossed with screened transgenic lines as male, harboring McCHITl, alfAFP and McCHITl-alfAFP gene respectively.
     Hybrid combinations were acquired by crossing predominant transgenic lines as males, rice blast resistances were performed and agronomic characteristics were identified subsequently. The results showed as follows:M. grisea resistances were remarkably increased in hybrid combinations with the male of M. grisea-resisted transgenic lines than in those with wild type control or M. grisea-unresisted transgenic lines as male, particularly for alfAFP over-expression lines, the combinations were nearly coincided with transgenic line in neck-blast resistance, revealed mid-resistance level at least closely, which suggested the resistance could be inherited to F1 generations dominantly in the transgenic rice. In essence, the main agronomic traits were inherited stably and equivalent to the wild-type control in F1 generations, significant discrepancies were only detected in single or several traits of the combinations crossed with exceptive transgenic lines by comparison with these of wild type, this result disaccord with the multiple mutations of major agronomic characteristics in transgenic lines. Taken together, the hybrid combinations with excellent productive traits and higher resistance to M. grisea were bred by crossing CMS line II-32A with transgenic lines of C21-6-2, C21-3-1, C36-2-1, A7-3-1, A7-8-1, AC2-10-1, AC4-2-2 and AC7-3-1 respectively.
     4. Identification of rice sheath blight resistance transgenic lines harboring McCHIT1, alfAFP and McCHIT1-alfAFP gene respectively
     Eight plant lines were screened against to rice sheath blight (the value of disease index less than 45%) by T3, T4 and T5 generation identification of McCHITl-transforming rice, which were C36-2-1, C35-6-2, C10-7-1, C24-4-1, C10-2-1, C24-2-1, C24-2-2 and C21-13-2, of which, four lines i.e. C36-2-1, C10-7-1, C21-6-2, C21-3-1 showed predominant resistance to both rice blast and rice sheath blight. By over-expression of alfAFP gene, seven transgenic lines acquired rice sheath blight resistance (the value of disease index less than 45%), they were A3-6-1, A3-6-2, A7-6-1, A4-8-1, A10-4-1, A3-2-2 and A2-9-3, comparably, five of which showed double resistance including AC2-10-1, AC4-2-2, AC7-3-1, AC3-2-1 and AC6-2-2. As for McCHIT1-alfAFP genes, only five transgenic lines i.e. AC2-10-1, AC4-2-2, AC7-3-1, AC3-2-1 and AC6-2-2 exhibited the value of disease index less than 45% by identification of rice sheath blight resistance, of which, AC2-10-1, AC4-2-2 and AC7-3-1 revealed double resistance to both rice blast and rice sheath blight.
     5. Analysis of the differentiation of resistance strength to M. grisea and R.solani. among different stable transgenic lines harboring McCHITl,alfAFP and McCHIT1-alfAFP gene respectively.
     The analysis of grisea resistance spectrum showed that 7 McCHITl-transforming rice lines have excellent blast resistance, the blast resistance of 8 alfAFP-transforming lines and 4 McCHIT1-alfAFP-transforming lines represent a highly significant compared with control and other transgenic lines. The mainly reason is that the anti-spectrum of the total population of magnaporthe grisea are significantly wider, especially the physiological race of dominant group B and important group A have higher frequency of resistance.
     The analysis of chitinase activity showed that the chitinase activity of good disease resistance in McCHITl-transforming lines before and after inoculation Rhizoctonia solani were more significant than those of control control and other transgenic lines. The total chitinase activity were 3.4 to 4.2 times as much as the receptor at 1 d after inoculation and 2.1 to 2.7 times as much as susceptible transgenic plants. With the rapidly increase of the total chitinase activity of receptor at 2d after inoculation. The total chitinase activity of good disease resistance of transgenic decreased compared with the times of control were 1.8 to 2.9. But the total chitinase activity increased more than 2 d before, which showed that the McCHIT-transforming plants with excellent disease resistance have strong constitutive expression. Meanwhile, endogenous chitinase gene can be induced to express. Susceptible McCHIT1-transforming lines have not been a high level of constitutive expression, which is the reason why the disease resistance of susceptible transgenic plants was significantly weaker than excellent disease resistance of transgenic rice lines. Otherwise, the disease resistance of excellent disease resistance of transgenic rice was significantly higher than those of control or the other transgenic lines. The reason of physiological reasons is that McCHITl has a higher constitutive expression in McCHIT-transforming rice with excellent disease resistance than in the susceptible transgenic lines.
引文
[1]Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT. Beachy RN. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science,1986.232 (4751):738-743
    [2]Agrawal GK, Jwa NS, Rakwal R. A novel rice (Oryza sativa.L) acidic PR1 gene highly responsive to cut, phytohormones. and protein phosphatase inhibitors. Biochem Biophys Res Commun,2000a,274:157-165
    [3]Agrawal GK, Rakwal R, Jwa N S. Rice(Oryza sativa L.)OsPR1b gene is phytohormonally regulated in close interaction with light signals. Biochem Biophys Res Commun,2000b.278:290-298
    [4]Albar L, Bangratz-Reyser M, Hebrard E, Ndjiondjop MN, Jones M, Ghesquiere A. Mutations in the eIF(iso)4G translation initiation factor confer high resistance of rice to Rice yellow mottle virus. Plant J,2006,47(3):417■ 426
    [5]Alexander D, Goodman RM., Gut-Rella M, Glascock C, Weymann K, Friedrich L, Maddox D, Ahl-Goy P, Luntz T, Ward E. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Nat Acad Sci USA.1993,90(15):7327-7331
    [6]Altman DW, Stelly DW, Mitten DM. Quantitative trait variation in phenotypically normal regenerants of cotton. In Vitro Cell Dev Biol,1991.27:132-138
    [7]Anand A, Zhou T, Trick HN, GillBS, Bockus W W, Muthukrishnan S. Greenhouse and field testing of transgenic wheat Plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. Exp.Bot,2003.54:1101-1111
    [8]Bartnicki-Garcia S. Cell Wall Chemistry, Morphogenesis, and Taxonomy of Fungi. Annu Rev Microbiol, 1968,22(1):87-108
    [9]Beachy RN, Loesch-Fries S, Turner NE. Coat Protein-mediated resistance against virus infection. Annu Rev Phytopathol,1990,28:451-454
    [10]Belkhadir Y, ubramaniam R S, Dangl J L. Plant disease resistance protein signaling:NBS-LRR proteins and their partners. Curr Opin Plant Biol,2004,7(4):391-399
    [11]Benedict JH, Sachs ES, Altman DW. Field performance of cottons expressing transgenic CrylA insecticidal proteins for resistance to Heliothis virescens and Helicoverpa zea (Lepidoptera:Noctuidae). J Econ Entomal, 1996.89:230-238
    [12]Bonas U, Lahaye T. Plant disease resistance triggered by Pathogen-derived molecules:refined models of specific recognition. Curr Opin Microbiol,2002,5:44-50
    [13]Brogue K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R. Transgenic plant with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science,1991,254:1194-1197
    [14]Buchel AS, Linthorst HJM. PR-1:A Group of Plant Proteins Induced Upon Pathogen Infection. In:Datta SK, Muthukrishnan S. eds. Pathogenesis-related Proteins in Plants. Boca Raton, FL:CRC Press Pathogenesis- Related Proteins in Plants,1999,21-47
    [15]Callaway A, Giesman-Cookmeyer D, Gillock E T, Sit TL, Lommel SA. The multifunctional capsid proteins of plant RNA viruses. Annu, Rev Phytopathol, 2001.39:419-460
    [16]Campbell MA, Fitzgerald HA, Ronald PC. Engineering pathogen resistance in crop plants. Transgenic Res 2002,11:599-613,
    [17]Century KS, Lagrnan RA, Adkisson M, Morlan J, Tobias R, Sehwartz K, Smith A, Love J, Ronald PC, Whalen MC. Short communication:developmental control Xa21-mediated disease resistance in rice. Plant J.,1999, 20(2):231-236
    [18]Century KS, Lagrnan RA, Adkisson M, Morlan J, Tobias R, Sehwartz K, Smith A, Love J, Ronald PC, Whalen M C. Short communication:developmental control Xa21-mediated disease resistance in rice. Plant J, 1999,20(2):231-236
    [19]Chen X. Shang J, Chen D, Lei C. Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L. AB-lectin receptor kinase gene conferring rice blast resistance. Plant J,2006,46(5):794-804
    [20]Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH, Park CY. Kim JC, Park BO, Koo SC, Yoon HW, Chung WS, Lim CO, Lee SY, Cho M J. BWMK1, a rice mitogen-activated protein kinase, ocates in the nucleus and mediates Pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol, 2003,132:1961-1972
    [21]Chern M, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC. Over expression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant-Microbe Interact,2005,18: 511-520
    [22]Chittoor JM, Leach JE, White FF. Dierential induction of a peroxidase gene family during infection of rice by Xanthomonas oryzae pv.oryzae. Mol. Plant Microbe Interact,1997,10:861-871
    [23]Christon. Particle bombardmeni. Methods Cell Biol,1995,50:375-382
    [24]Chu Z, Fu B, Yang H. Xu C, Li Z, Sanehez A, Park YJ, Bennetzcn JL, Zhang Q, Wang S. Trageting xal3, a recessive gene for bacterial blight resistance in rice. Theor Appl Genet,2005,112(3):455-461
    [25]Chu Z, Ou YY, Zhang J, Yang H, Wang S. Genome-wide analysis of defense-responsive genes in bacterial blight resistance of rice mediated by the recessive R gene Xal3. MoL Genet Genomics,2004,271 (1):111-120
    [26]Coca M, Penas G, Gomez J, Campo S, Bortolotti C, Messeguer J, Segundo B S. Enhanced resistance to the rice blast fimgus Magnaporthe grisea conferred by expression of aecropin A gene in transgenic rice. Plania,2006, 223(3):392-406
    [27]Dangl JL. Jones JDG. Plant pathogens and integrated defence responses to infection. Nature,2001,411(6839): 826-833
    [28]Dasgupta 1, Hull R, Eastop S, Poggi PC, Blakebrough M, Boulton MI, Davies JW. Rice tungro bacilliform virus DNA independenily infects rice after Agrobaeterium mediated transfer. J. Gen Virol,1991.72:1215-1221
    [29]Datta K, Baisakh N, Thet KM, Tu J, Datta SK. Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. TheorAppl Genet,2002,106(1):1-8
    [30]Datta K, Koukolikova-Nicola Z, Baisakh N, Oliva N, Datta SK. Agrobacterium-mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theor Appl Genet,2000,100:832-839
    [31]Datta K, Tu J, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta S K. Enhanced resistence to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sei,2001,160(3):405-414
    [32]Datta K, Velazhahan R, Oliva N, Onal, Mew T, Khush GS, Muthuhishnan S, Datta S. Over-expression of the cloned rice thaurnatin-like protein(PR-5)gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. TheorAppl Genet,1999,98:1138-1145
    [33]Davey MR, Kothari SL, Zhang H, Rech EL, Cocking EC, Lynch PT.Transgenic rice:characterization of protoplast derived plants and their seed progeny. Journal of Experimental Botany,1991,42(9):1159-1169
    [34]De Jong A J, Cordewener J, Schiavo F L, Terzi M, Vandekerckhove J, Van Kammen A, De Vries S C. A carrot somatic embryo mutant is rescued by chitinase. Plant Cell,1992,4(4):425-433
    [35]Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M. Kessmann H, Ward E, Ryals J. A central role of salicylic acid in plant disease resistance. Science,1994,266(5188):1247-1250
    [36]Flor HH. Current stauts of the gene-for-gene concept. Annu Rev Phytopathol,1971,9:275-296
    [37]Francois IEJA, De Bolle MFC, Dwyer G, Goderis IJWM,Woutors PFJ, Verhaert PD, Proost P, Schaaper WM,Cammue BPA, Broekaert WF. Transgenic expression in Arabidopsis of a polyprotein construct leading to productionof two different antimicrobial proteins. Plant Physiol,2002,128(4):1346-1358
    [38]Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes E W, Kessmann H, Ryals J. Requirement of salicylic acid for the induction of systemic acquired resistance. Science,1993,261 (5122):754-756
    [39]Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM,Stark DM, Shah DM, Liang J, Rommens C M. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotehnol,2000,18(12):1307-1310
    [40]Golemboski DB, Lomonossoff GP, Zaitlin M. Plants transformed with tobacco mosaic virus nonstruc-tural geneb sequence are resistant to the virus.Proc Null Acad Sci USA,1990.87:6311-6315
    [41]Gowri G, Paiva N L, Dixon R A. Stress responses in alfalfa (Medieago sativa L.) 12. Sequence analysis of phenylalnine ammonia-lyase (PAL) cDNA clones and appearance of PAL transcripts in elieitor-treated cell cultures and developing plants. Plant Mol Biol,1991,17(3):415-429
    [42]Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z. Wang GL,White FF, Yin Z. R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice. Nature,2005,435(7045):1122-1125
    [43]Gust AA, Brunner F, Nurnberger T. Biotechnological concepts for improving plant innate immunity. Curr Opin Biotechnol,2010,21:204-210
    [44]Ham KS, Kauffmann S, Albersheim P, Darvill AG. Host-pathogen interactions. XXXIX. A soybean pathogenesis-related protein with beta-1,3-glucanase activity releases phytoalexin elicitor-active heat-stable fragments from fungal walls. Mol Plant-Microbe Interact,1991,4(6):545-552
    [45]Han S,Wu Z, Yang H, Wang R, Yie Y, Xie L, Tien P. Ribozyme-mediated resistance to rice dwarf virus and the transgene silencing in the Progeny of transgenic rice plants. Transgenic Res,2000,9(3):195-203
    [46]Harnmond-Kosack KE and Parker JE. Deciphering plant-pathogen communication:fresh perspectives of molecular resistance breeding. Curr opin Biotechnol,2003,14:177-193
    [47]Hayakawa T, Zhu Y, ltoh K, Kimura Y, Izawa T, Shimamoto K, Toriyama S. Genetically engineered rice resistant to rice stripe virus, an insect-transmitted virus.Proc Natl Acak Sci USA,1992,89(20):9865-9869
    [48]Hayashimoto A, Li Z, Murai N. A polyethylene glycol-mediated protoplast transformation system for the production of fertile transgenic rice plants. Plant Physiol,1990,93:857-863
    [49]He C, Fong SH, Yang D, Wang GL. BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol Plant Mricrobe Interact,1999,12:1064-1073
    [50]He Z, wang ZY, Li J, Zhu Q, Lamb C,Ronald P, Chory J. Perception of brassinosteroids by the exra-cellular domain of the receptor kinase BRI1.Science,2000,288 (5475):2360-2363
    [51]Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice(Oryza sativa L.)mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA.Piant J,1994,6:271-282
    [52]Huet H, Mahendra S, Wang J, Sivamani E, Ong CA, Chen L, de Koebko A, Beachy RN Fauquet C. Near immunity to rice tungro spherical virus achieved in rice by a repliease-mediated resistance strategy. Phytopathol, 1999,89:1022-1027
    [53]International Rice Research Institute. Standard Evaluation System for Rice (SES). Los Banos, Philippines:IRRI, 2002. pp 14-18
    [54]Iyer AS, MeCouch SR. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol Plant Microbe Interact,2004,17(12):1348-1354
    [55]iyer-Pascuzzi AS, MeCouch SR. Recessive resistance genes and the Oryza sativa-Xanthomonas oryzae pv. oryzae pathosystem. Mol Plant Microbe Interact.2007,20(7):731-739
    [56]Jach G, Gornhardt B, Mundy J, Logemann J. Pinsdorf E, Leah R, Schell J, Maas C. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal'proteins in transgenic tobacco. Plant J,1995,8(1):97-109
    [57]Jefferson RA.Assaying chimeric genes in plants:The GUS gene fusion system. Plant Mol Biology Rep,1987,5: 387-405
    [58]Jha S, Tank HG, Prasad BD, Chattoo BB. Expression of Dm-AMP1 in rice confers resistance to Magnaportheoryzae and Rhizoctonia solani. Transgenic Res,2009,18(1):59-69
    [59]Jia YL, McAdams SA, Bryan GT, Hershey HP, Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J,2000,19(15):4004-4014
    [60]Jin W, Horner HT, Palmer RG Genetics and cytology of a new genie male-sterile soybean [Glycine max (L.) Merr.]. Sexual Plant Rep,1997,10(1):13-21
    [61]Johal GS. Reductase activity encoded by the H M,disease resistance gene in maize.Science,1992,258:985-987
    [62]Jongedijk E, Tigelaar H, Van Roekel JSC, Bres-Vloemans SA, Dekker I, Van Denelzen PJM, Cornelissen BJC, Melchers LS. Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica,1995,85:173-180
    [63]Kanzaki H,Nirasawa S,Saitoh H,Ito M.Nishihara M,Terauchi R.Nakamura I. Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor Appl Genet,2002.105:809-814
    [64]Kawasaki T, Henmi K, Ono E, Hatakeyama S, Iwano M, Satoh H, Shimamoto K. The small GTP-binding protein rac is a regulator of cell death in plants. Proc Natl Acad Sci USA,1999,96(19):10922-10926
    [65]Kim JK, Jang IC, Wu R, Zuo WN, Boston RS, Lee YH, Ahn IP, Nahm BH. Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight. Transgenic Res,2003,12(4):475-484
    [66]Kobe B, Kajava V. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol,2001,11:725-732
    [67]Kouassi NK, Chen L, Sire C, Bangratz-Reyser M, Beachy RN, Fauquet CM, Brugidou C. Expression of rice yellow mottle virus coat protein enhances virus infection in transgenic plants. Arch Virol,2006,151(11):2111-2122
    [68]Kuranda MJ, Robbins PW. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. JBiologChem,1991,266(29):19758-19767
    [69]Lee SW, Han SW, Bartley LE, Ronald PC. From the Academy:Colloquium review. Unique chara-cteristics of Xanthomonas oryzae pv. Oryzae AvrXa21 and implications for plant innate immunity. Proc Natl Acad Sci USA, 2006.103(49):395-400
    [70]Leuhrsen KR. Insertion of Mul elements in the first intron of the Adh 1-S gene of maize results in novel RNA processing events. Plant Cell,1990,2:1225-1238
    [71]Levy M, Correa-Victoria F J, Zeigler R S, Xu S, Hamer JE. Genetic diversity of the rice blast fungus in a disease nursery in Colombia. Phytopathology,1993,83:1427-1433
    [72]Li P, Pei Y, Sang XC, Ling YH, Yang ZL, He GH. Transgenic indica rice expressing a bitter melon (Momordica charantia) class I chitinase gene (McCHIT1) confers enhanced resistance to Magnaporthe grisea and Rhizoctonia solani. Eur J Plant Pathol,2009,125:533-543
    [73]Lin W. Anuratha CS, Datta K. Potrykus I, Muthukrishnan S, Datta SK. Genetic engineering of rice for resistance to sheath blight. Biotech,1995.13:686-691
    [74]Lindeberg M, Cartinhour S. Myers CR, Schechter LM. Schneider DJ, Collmer A. Closing the circle on the discovery of genes encoding Hrp regulon members and typelllsecretion system effectors in the genomes of three model Pseudomonas syringae strains. Mol Plant Microbe Interact,2006,9(11):1151-1158
    [75]Liu CW. Lin CC.Chen JJ, Tseng MJ. Stable chloroplast transformation in cabbage (Brassica oleracea L.var. capitata L.) by particle bembardment. Plant Cell Rep,2007,10):1733-1744
    [76]Liu J, Liu X, Dai L, Wang G. Recent Progress in Elucidating the Structure, Function and Evolution of Disease Resistance Genes in Plants. J of Gene and Geriomics,2007,34(9):765-776
    [77]Liu M, Sun ZX. Zhu J, Xu T, Harman GE, Lorito M. Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from trichoderma atroviride. Zhejiang Univ Sci,2004, 5(2):133-136
    [78]Lorang JM, Sweat TA, Wolpert TJ. Plant disease susceptibility conferred by a"resistance"gene. Proc Natl Acad Sci USA,2007,104:14861-14866
    [79]Lynch PT, Jones J, Blackhall NW. Davey MR, Power JB, Cocking EC, Nelson MR, Bigelow DM, Orum TV, Schuh W. The phenotypic characterization of R, generation rice plants under field and glasshouse condition. Euphytica,1995,85:395-401
    [80]Mackey D. Holt BF, Wiig A, Dangl JL. RIN4 Interacts with pseudomonas syringae type Ⅲ effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell,2002,108(6):743-754
    [81]Maruthasalam S, Kalpana K, Kumar KK, Loganathan M, Poovannan K, Raja JA, Kokiladevi E, Samiyappan P, Sudhakar D, Balasubram P. Pyramiding transgenic resistance in elite indica rice cultivars against the sheath blight and bacterial blight. Plant Cell Rep,2007,26(6):791-804
    [82]Mauch F, Mauch-Mani B, Boller T. Antifungal hydrolases in Pea tissue:Ⅱ. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol,1988,88(3):936-942
    [83]Mauch F, Hadwiger LA, Boller T. Ethylene:Symptom, not signal for the induction of chitinase and β-1. 3-glucanase in pea pods by pathogens and elicitors. Plant Physiol,1984,76:607-611
    [84]Melchers LS, Stuiver M H. Novel genes for disease-resistance breeding. Plant Biol,2000,3:147-152
    [85]Midoh N, Iwata M. Cloning and characterization of a probenazole inducible gene for an intracellular pathogenesis related Protein in rice. Plant Cell Physiol,1996,37:9-18
    [86]Ming XT, Wang LJ, An CC,Yuan HY,Chen ZL. Resistance to rice blast(Pyricularia oryzae) caused by the expression of trichosanthin gene in transgenic rice plants transferred through agrobacterium method. Chin Sci Bull,2000,19:1774-1778
    [87]Neuhaus JM, Sticker L, Meins FJr, Boller T. A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci USA.1991.88:10362-10366.
    [88]Niderman T, Genetet I, Bruyere T, Gees R, Stintzi A, Legrand M, Fritig B, Mosinger E. Pathogenesis-related PR-1 proteins are antifungal. Isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiol,1995.108(1): 17-27
    [89]Nishimura M, Somerville S. Resisting attack.Science.2002,295(5562):2032-2033
    [90]Nishizawa Y, Nishio Z, Nakazono K. Enhanced resistance to blast in transgenic japonica rice by constitutive expression of rice chitinase. Theor Appl Genet,1999,99:83-90
    [91]Oard JH, Linscombe SD, Braverman MP, Jodari F, Blouin DC, Leech M, Kohli A, Vain P, Cooley JC, Christou P. Development, field evaluation, and agronomic performance of transgenic herbicide resistant rice. Mol Breed, 1996,2:359-368
    [92]Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamono K. Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA,2001,98:759-64
    [93]Ou S H. Pathogen variability and host resistance in rice blast disease. Annu Rev Phytopathol,1980,18: 167-187
    [94]Ou S H. Rice Disease,2nd edn. Kew, Surrey, England:Commonwealth Mycological Institute,1985,pp 109-201
    [95]Peng J, Kononowicz H, Hodges T K. Transgenic indica rice plants. Theor Appl Genet,1992,83:855-863
    [96]Penninckx I AMA, Eggermont K, Terras FRG, Thomma BPHJ, Samblanx GWD, Buchala A, Metraux JP, Manners JM, Broekaert WF. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell,1996,8(12):2309-2323
    [97]Petnicki-Ocwieja T, Schneider DJ, Tam VC, Chancey ST, Shan L, Jamir Y, Schechter LM, Janes MD, Buell CR, Tang X, Collmer A, Alfano JR. Genomewide identification of proteins secreted by the Hrp type Ⅲ protein secretion system of pseudomonas syringae pv.Tomato DC3000. Proc Natl Acad Sci USA,2002,99(11):7652-7657
    [98]Pieterse CMJ, VanLoon LC. Salicylic acid-independent plant defence pathways.Trends Plant Sci,1999,4:52-7
    [99]Pinto YM, Kok RA, Baulcombe DC. Resistance to rice yellow mottle virus (RYMV) in cultivated African rice varieties containing RYMV transgenes. Nat Biotechnol,1999.17(7):702-707
    [100]Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate and jasmonate-dependent signaling. Mol Plant Microbe Interact,2007.20(5):492-499
    [101]Reinmmann C, Dudler R. cDNA cloning and sequence analysis of a pathogen induced thaumatin-like protein from rice(Oryza sativa).Plant Physiol,1993,101:1113-1114
    [102]Saha P, Dasguptal, Das S. A novel approach for developing resistance in rice against phloem limited viruses by antagonizing the phloem feeding hemipteran vectors. Plant Mol Biol,2006,62(4-5):735-752
    [103]Sakamoto K, Tada Y, Yokozeki Y, Akagi H, Hayashi N. Fujimura T, Ichikawa N. Chemical induction of disease resistance in rice is correlated with the expression of a gene encoding a nucleotide binding site and leucine-rich repeats. Plant Mol Biol, 1999,4,0(5):847-855
    [104]Sakamoto K, Tada Y, Yokozeki Y, Akagi H, Hayashi N, Fujimura T, Ichikawa N. Chemical induction of disease resistance in rice is correlated with the expression of a gene encoding a nucleotide binding site and leucine-rich repeats. Plant Mol Biol,1999,40(5):847-855
    [105]Savary S, Teng PS, Willocquet L, Nutter FWJr. Quantification and modeling of crop losses:a review of purposes. Annu. Rev. Phytopathol,2006,44:89-112
    [106]Savary S,Willoequet L, Elazegui FA, Castilla N P, Teng P S.(2000)Rice pest constraints in tropical Asia: quantification of yield losses due to rice pests in a range of Production situations. Plant Dis,2000,84:357-369
    [107]Reissig JL, Strominger JL, Leloir LF. A modified colorimetrie method for the estimation of N-acetylamino sugars.J of Biol Chem,1955,217:959-966.
    [108]Shah JM, Raghupathy V,Veluthambi K. Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens.Biotechnol Lett.2009,31:239-244
    [!09]Shao F, Golstein C, Ade J, Stoutemyer M, Dixon. lnnes RW. Cleavage of Arabidopsis PBS1 by a bacterial type Ⅲ effector. Science.2003.301:1230-1233
    [110]Shao M, Wang J, Dean RA, Lin Y Gao X, Hu S. Expression of a harpin-encoding gene in rice confers durable nonspecific resistance to Magnaporthe grisea. Plant Biotechnol J,2008.6(1):73-81
    [111]Simmons CR, Litts JC, Huang N, Rodriguez RL. Structure of a rice beta-glueanase gene regulated by ethylene, cytokinin, wounding, salicylic acid and fungal elicitors. Plant Mol Biol,1992,18:33-45
    [112]Sivamani E, Huet H, Shen P, Ong CA, de-Kochko A, Fauquet C, Beachy RN. Rice plants (Oryza sativa L.) containing Rice tungro spherical virus (RTSV)coat protein transgene are resistant to virus infection. Mol Breed. 1999,5:177-185
    [113]Song WY, Pi L Y, Wang GL, Gardner J, Holsten T, Ronald PC. Evolution of the rice Xa21 disease resistance gene family. Plant Cell,1997,9(8):1279-1287
    [114]Song WY, Wang GL, Chen L L, Kim HS, Pi L Y, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P. A Receptor Kinase-like Protein encoded by the rice disease resistance gene Xa21. Science,1995, 270:1804-1806
    [115]Steiglitz H. Role of β-1,3-giucanase in post-meiotic microspore release. Dev Biol,1977,57:87■97
    [116]Stelly DM,Altman DW, Kohel RJ, Rangan TS, Commiskey E. Cytogenetic abnormalities of cotton somaclones from callus culture.Genome.1989.32:762-770
    [117]Sun XL, Cao YL,Yang ZY, Xu CG, Li XH. Wang SP, Zhang QF. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. Oryzae in rice, eneodes an LRR receptor kinase-like protein.Plant J,2004,37(4): 517-527
    [118]Swathi Anuradha T, Divya K, Jami SK, Kirti PB. Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep,2008,27(11):1777-1786
    [119]Takai R, Matsuda N, Nakano A, Hasegawa K, Aklmoto C, Shibuya N, Minami E. EL5, a rice N-acetyl chitooligosaccharides elieitor-responsive RING-H2finger Protein, IS a ubiquitin ligase which functions in vitro in co-operation with an elieitor-responsive ubiquitin-conjugating enzyme,OsUBC5b.Plant J,2002,30:447-455
    [120]Talbot NJ. On the trail of a cereal killer:Exploring the biology of Magnaporthe grisea. Annu Rev Microbiol, 2003,57:177-202
    [121]Tang X, Frederick RD, Zhou J, Halterman DA,Jia Y, Martin GB. Initiation of plant disease resistance by physical interaction of AvrPto and resistance by physical interaction of AvrPto and Pto kinase. Science,1996, 274:2060-2063
    [122]Terras FR, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, van Leuven F, Vanderleyden J, Cammue BP A, Broekaert WF. Small cysteine-rich antifungal proteins from radish: their role inhost defense. Plant Cell,1995,7(5):573-588
    [123]Theis T. Stahl U. Antifungal proteins:targets, mechanisms and prospective applications. Cellular and Molecular Life Sciences (CMLS),2004.61(4):437-455
    [124]Tu J, Datta K, Khush GS, Zhang Q. Datta SK. Field performance of Xa21 transgenic indica rice(Oryza saliva L.). IR72.Theor Appl Genet,2000,1:15-20
    [125]Tu J. Zhang G, Datta K, Xu C,He Y,Zhang Q,Khush GS.Datta SK. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis 8-endotoxin. Nat Biotech,2000,18:1101-1104
    [126]Vain P, Worland B, Richard G. Expression of an engineered cysteine proteinase inhibitor (Oryzacystatin-1-D86) for me matode resistance in transgenic rice plants. Theor Appl Genet,1998,96:266-271
    [127]Vain P. Trends in GM crop, food and feed safety literature. Nat. Biotechnol,2007,25(6):624-626
    [128]van der Biezen EA, Jones J. The NB-ARC domain:A novel signalingmotif shared by plant resistance gene products and regulators of cell death in animals. Current Biology,1998,8:226-227
    [129]Van den Elzen PJM, Jongedijk E, Melchers LS, Cornelissen BJC:Virus and fungal resistance:from laboratory to field. Phil Trans R SocLond B 1993,342:271-278
    [130]Van Lijsebetens M, Vanderhaeghen R, Van Montagu M. Insertional mutagenesis in Arabidopsis thaliana: isolation of a T-DNA-linked mutation that alters leaf morphology. Theor Appl Genet,1991,81:277-284
    [131]van Long LC. Bakker PAHM, Pieterse CMJ. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol,1998,36:453-483
    [132]van Loon LC. Rep M, Pieterse CMJ. Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol,2006,44:135-162
    [133]van Loon LC, Van Strien EA. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol, 1999.55(2):85-97
    [134]Van Ooijen G, van den Burg HA, Comelissen BJ, Takken FL. Structure and faction of resistance proteins in solanaceous plants.Annu Rev Phytopathol,200,45:43-72
    [135]Vigers AJ, Roberts WK, Selitrennikof CP. A new family of plant antifungal proteins. Mol Plant-Microbe Interact,1991,4:315-323
    [136]Vijayan P, Shockey J, Andre Levesque C, James Cook R, Browse J. A role for jasmonate in pathogen defense of Arabidopsis. Proc Null Acad Sci USA 1998,95(12):7209-7214
    [137]Walling L L. Induced resistnace:from the basic to the applied. Trends in Plant Sci.,2001,6(10):445-447
    [138]Wang G L, Ruan DL, Song WY, Sideris S, Chen L, Pi LY, Zhang S, Zhang Z, Fauquet C, Gaut BS, Whalen MC, Ronald PC. Xa21D encodes a receptor-like molecule with a leueine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell,1998,10(5):765-779
    [139]Woloshuk CP, Meulenhoff JS, Sela-Buurlage M, van den Elzen PJM, Cornelissen BJC. Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell,1991,3(6):619-628
    [140]XiaoY, Li X, Yang X, Luo M, Hcu L, Guo S, Luo X, Pei Y. Cloning and characterization of a balsam pear class I chitinase gene (Mcchitl) and its ectopic expression enhances fungal resistance in transgenic plants. Biosci Biotechnol Biockem,2007,71 (5):1211-1219
    [141]Xiong L, Yang YDisease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell,2003,1115:745-759
    [142]Xu Y, Zhu Q, Panbangrcd W, Shirasu K, Lamb C. Regulation, expression and function of a new basic chitinase gene in rice(Oryza sativa L.).Plant Moil Biol,1996,30(3):387-401
    [143]Yang B, Sugio A, White F F. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA,2006,103(27):10503-10508
    [144]Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z X, Konol, Kurata N, Yano M, Iwata N, Sasaki T. Expression of Xal, a bacterial blighi-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA,1998,95(4):1663-1668
    [145]Zhai W, Chen C, Zhu X, Chen X, Zhang D, Li X, Zhu L. Analysis of T-DNA-Xa21 loci and bacterial blight resistance effects of the transgene Xa21 in transgenic rice. Theor Appl Genet,2004,109(3):534-542
    [146]Zhang J, Peng Y, Guo Z. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Research,2008,18(4): 508-521
    [147]Zhang S. Song W Y, Chen L, Ruan D, taylor N, Ronald P, Beachy R, Fauquet C. Transgenic elite Indica rice varieties, resistant to Xanthomonas oryzae pv.Oryzae.Mol. Breed,1998,4:551-558
    [148]Zhang S, Warkentin D, Sun B, Zhong H, Sticklen M. Variation in the inheritance of expression among subclones for unselected (uidA) and selected(bar) transgenes in maize (Zea may s L). Theor Appl Genet,1996, 92:752-761
    [149]Zhu Q, Dabi T, Beeche A, Yamamoto R, Lawton MA, Lamb CJ. Cloning and properties of a rice gene encoding phenylalanlne ammonia-lyase. Plant Mol Biol,1995a,29:535-550
    [150]Zhu Q, Dabi T, Lamb C. TATA box and initiator functions in the accurate transeripion of a plant minimal promoter in vitro.Plant Cell,1995b,7(10):1681-1689
    [151]Zhu Q, Maher EA, Masoud S, Dixon RA, Lamb CJ.Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Technology 1994,12(8):807-812
    [152]Zhu Y J, Agbayani R, Moore P H. Ectopic expression of Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor. Planta,2007,226(1):87-97
    [153]蔡新忠,徐幼平,郑重.植物病原物无毒基因及其功能.生物工程学报,2002,18(1):5-9
    [154]陈德西,陈学伟,雷财林,马炳田,王玉平,李仕贵.转Pi-d2基因水稻对稻瘟病的抗性分析.中国水稻科学,2010,24(1):31-35
    [155]陈双臣,刘爱荣,邹志荣.转葡聚糖酶和防御素基因的番茄植株及其对番茄灰霉病的抗性.植物保护学报,2006,33(4):357-362
    [156]程式华,李建.现代中国水稻.北京:金盾出版社,2007.pp393-422
    [157]崔海瑞,王忠华,舒庆尧,吴殿星,夏英武,高明尉.转Bt基因水稻克螟稻杂交转育后代农艺性状的研究中国水稻科学.2001,15(2):101-106
    [158]方中达.植病研究方法.中国农业出版社,1998.pp46,368-371,379
    [159]冯道荣.许新萍.范钦,李宝健,雷财林,凌忠专,获得抗稻瘟病和纹枯病的转多基因水稻.作物学报,2001,27(3):293-300
    [160]盖钧镒.试验统计方法,第二版.北京:中国农业出版社,2000.pp35-126,157-179
    [161]高必达.植物几丁质酶的分子生物学研究进展.湖南农业大学学报.1996.22(6):587-601
    [162]高必达.转几丁质酶基因防植物病害研究:进展、问题与展望.生物工程进展,1999,19(2):21-28
    [163]郭建夫,黄永相,彭贤力,袁红旭,蒋世河,许新萍,张建中.基因枪法转化水稻E32后代非目标农艺性状变异的研究.热带亚热带植物学报.2007.15(4):284-289
    [164]郭玉双,张艳菊,朱延明,李杰,柏锡,张淑珍,吴书音,李海燕.转几丁质酶和核糖体失活蛋白双价基因大豆的获得与抗病性鉴定.作物学报.2006,32(12):1841-1847
    [165]何龙飞,韦善清,卢升安,陈芳远,易小平,莫宇星,黄天进,王爱勤.转SCK基因水稻后代农艺性状变异的研究.广西农业生物科学,2002,21(2):73-77
    [166]何祖华.植物生理与分子生物学(第三版).植物抗病的分子生理.2007.586-616
    [167]华志华,汪晓玲Cecropin B转基因水稻及其后代抗白叶枯病研究初报.中国水稻科学,1999,13(2):114-116
    [168]黄大年.田文忠.转抗菌肽B基因水稻植株的获得与鉴定.高技术通讯,1996,6(5):4-6
    [169]黄大年,王慧中,郭龙彪.水稻转基因研究及其育种.北京:中国农业科学技术出版社,2006.pp1-5
    [170]黄富.程开禄,彭国亮,罗庆明,陈国华,朱永昌.四省水稻品种抗稻瘟病性规范化鉴定评价体系.中国农业大学学报,1998.3(增刊):22-26
    [171]黄富.叶华智,谢戎,刘成元.优质和抗稻瘟病的水稻种质资源筛选.作物学报.2006,32(10):1549-1553
    [172]孔政.赵德刚.苦瓜几丁质酶基因-益母草抗菌肽基因遗传转化黑麦草.分子植物育种,2008,6(2):281-285
    [173]李桦.水稻稻瘟病苗瘟、叶瘟、穗颈瘟相关关系的探讨.植物保护学报.]991,18(4):293-297
    [174]李平.利用苦瓜几丁质酶和苜蓿防御素基因提高水稻抗病性的研究:[博士学位论文].西南大学,2008.1-111
    [175]李平,桑贤春,裴炎,何光华.植物防御素基因alfAFP(M.sativa)在毕赤酵母中的分泌表达及对水稻病原菌的抑制.中国农业科学,2009,42(3):869-875
    [176]廖乾生,林福呈,李德葆.植物防御素及其研究进展.浙江大学学报(农业与生命科学版),2003.29(1):113-118
    [177]林春晶,董英山,林秀峰,王继春,田文忠,储成才.转抗稻瘟病基因水稻遗传和表达的初步研究分子植物育种.2006,(4)2:167-173
    [178]刘梅,覃宏涛,孙宗修,徐同.转基因水稻中ThEn-42基因的稳定遗传及其抗病性的提高.农业生物技术学报,2003,11(6):444-449
    [179]罗小英,曾雪嘉,肖月华、罗明.杨星勇,裴炎.抗菌肽和几丁质酶基因提高烟草对黑胫病菌和赤星病菌的抗性研究.植物病理学报,2005,35(3):249--255
    [180]毛碧增,李德葆,李群,何祖华.转化双价防卫基因获得抗纹枯病水稻.植物生理与分子生物学报,2003.29(4):322-326
    [181]闵绍楷,中宗坦,熊振民.水稻育种学.北京:中国农业出版社,1996.pp269-275
    [182]潘学彪,陈宗祥,徐敬友,童蕴慧,王子斌,潘兴元.不同接种调查方法对抗纹枯病遗传研究的影响。江苏农学院学报,1997,18(3):27-32
    [183]裴庆利,王春连,刘丕庆,王坚.赵开军.分子标记辅助选择在水稻抗病虫基因聚合上的应用.中国水稻科学,2011,25(2):119-129
    [184]裴炎,杨星勇,卢晓风,夏玉先,李先碧.免疫亲和层析法纯化苦瓜几丁酶.中国生物化学与分子生物学报,1999,15(6):953-956
    [185]彭洪江,彭仕钟,吴先丽.水稻稻瘟病叶瘟与穗颈瘟相关性分析.西南农业学报,1995,4(8):79-83
    [186]全国稻瘟病生理小种联合试验组.我国稻瘟病菌生理小种研究.植物病理学报,1980,10(2):71-82
    [187]施德,孙潄沅,申宗坦.水稻品种对叶瘟和穗瘟的抗性反应及遗传初探.浙江农业学报1989,1(2):94-96
    [188]孙国昌,柴荣耀,水稻品种与稻瘟病菌群体互作的选择作用研究.植物病理学报,1999,29(1):45-49’
    [189]孙学辉,路铁刚,贾士荣.黄大年.水稻中富含亮氨酸的重复序列和核苷酸结合位点(LRR2NBS)基因家族的生物信息学分析.中国农业科学,2004,37(1):1-7
    [190]唐柞舜,李良材,田文忠.(2001)基因枪法转基因水稻后代农艺性状的表现.中国农业科学,2001,34(6)581--586
    [191]王春连,戚华雄,潘海军,李进波,樊颖伦,章琦,赵开军.水稻抗白叶枯病基因Xa23的EST标记及其在分子育种上的利用.中国农业科学,2005,38(10):996-2001
    [192]王关林.植物基因工程原理与技术.北京:科学出版社,1998.pp15-18
    [193]王慧中,华志华.转抗菌肽B基因和bar基因籼稻植株的再生.中国水稻科学,2000,14(3):129-132
    [194]王忠华,崔海瑞,舒庆尧,叶恭银,星,明尉,英武.Bt水稻“克螟稻”杂交后代中转基因的遗传表达及育种利用.农业生物技术学报,2000,8(1):89-94
    [195]吴刚.崔海瑞,舒庆尧,叶恭银,夏英武,高明尉I Altosaar李毅.转基因水稻中转录水平cryAb基因的沉默及其阶段复活中国科学C辑,2001,31(6):487-496
    [196]肖拴锁,王钧.水稻中超氧诱导与稻瘟菌抗性及苯丙氨酸解氨酶、几丁酶、p-1,3-葡聚糖酶活性诱导的关系.中国水稻科学,1997(2):93-102.
    [197]谢小波,崔海瑞,沈圣泉,吴殿星,夏英武,舒庆尧.水稻转基因植株后代中外源基因异常分离的研究.遗传学报,2002,29(11):1005-1011
    [198]许明辉,唐祚舜,谭亚玲,田颖川,李成云,张树华,陈正华,田文忠.几丁质酶-葡聚糖酶双价基因导入滇型杂交稻恢复系提高稻瘟病抗性的研究.遗传学报,2003a,30(4):330-334
    [199]许明辉,李成云,李进斌,谭学林,田文忠,唐祚舜.转溶菌酶基因水稻稻瘟病抗谱分析·中国农业科学,2003b,36(4):387-392
    [200]杨祁云.许新萍,朱小源,冯道荣,李宝健.(2003)转基因水稻对稻瘟病的抗性研究.植病理学报,33(2):162-166
    [201]余贤美,艾呈祥,郑服丛.水稻C039几丁质酶基因的克隆.热带作物学报,2008,29(1):64-67
    [202]余贤美,李锐,郑服丛.水稻C039β-1,3-葡聚糖酶基因的克隆.热带作物学报,2006,27(2):68-73
    [203]翟文学,朱立煌.水稻白叶枯病抗性基因的研究与分子育种.生物工程进展,1999,19(6):9-15
    [204]张海平,王学德,邵明彦,袁淑娜,华水金,倪密.棉花农杆菌基因转化体系的优化和转苜蓿抗菌肽基因(alfAFP)植株的获得.农业生物技术学报,2009,17(6):1020-1026
    [205]张哲,姜华,王艳丽,孙国昌.稻瘟菌无毒基因研究进展.遗传,2011,33(6):591-600
    [206]周永力,翟文学,章琦,王春连,田文忠,潘学彪,朱立煌.Xa21转基因水稻对白叶枯病的抗性及其遗传.植物病理学报,2001,31(2):123-129
    [207]朱华晨,许新萍,肖国樱,袁隆平,李宝健.利用四价抗病基因提高超级杂交稻的抗性中国科学C辑生命科学,2006,36(4):320-327
    [208]左清凡,张建中,袁红旭,许新萍,李宝健.抗稻瘟病转基因水稻竹转68的选育杂交水稻,2001.14(3):11-12
    [209]左示敏,王子斌,陈夕军,顾芳.张亚芳,陈宗祥,潘学彪.水稻纹枯病改良新抗源YSBR1的抗性评价.作物学报,2009.35(4):608-614

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700