水稻两用核不育系龙S的应用基础研究及其稻瘟病抗性基因定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻瘟病广泛发生在水稻栽培的国家和地区,每年都造成严重损失。迫于寄主的选择压力,稻瘟菌生理小种的致病力往往迅速变异,容易导致主栽品种抗性丧失。因此,新抗病种质资源的发掘、研究和利用是当今水稻抗瘟育种的重要课题,继续选育高产、优质、抗性强、适应性广的突破性新品种仍是今后水稻育种攻关的主要目标。
     本文对龙S的农艺性状、育性转换规律、异交特性、稻瘟病抗性表现、稻瘟病抗性杂种优势、抗稻瘟病基因的遗传特征及稻瘟病抗性基因定位等方面进行研究,得出主要结果如下:
     1.龙S具有理想的株叶形态,剑叶长度在35~43cm之间,剑叶张开角度为6.9°,具有长、直、窄等特点。
     2.龙S属于光温敏核不育系,温度对其育性起主导作用,高温诱导不育,低温诱导可育,不育临界温度为22.5~22.8℃,育性生理临界温度为17.2℃左右,最适宜的繁种温度为19~21.5℃,通过连续两年在长沙地区分期播种试验,其育性稳定,未出现波动。
     3.龙S异交特性优良,其盛花期主要集中在抽穗后2~6d,花时早,午前花率高,最高达到59.09%,日开花高峰期为09:00~14:00;颖花张开角度为30.64°,张开时间达2.5h;柱头生命力强且持续时间长(5d),柱头外露率高,且双边外露率高于单边外露率,包颈粒率低,异交特性较好,龙S包颈低,只有3.3%,对“九二○”反应较敏感,彻底解除抽穗包颈的用量为15~20/667m2,最适喷施时期为稻穗即将破口期。
     4.龙S具有广谱抗稻瘟病特性,在鉴定的41份国内外稻瘟菌小种中,龙S的抗性频率达到100%,尤其对于湖南本地的生理小种具有高水平抗性。
     5.通过对龙S、C815S与8个父本所配组合进行室内及田间的稻瘟病抗性鉴定,与C815S相比,龙S能显著提高杂种F1代稻瘟病抗性水平,所配组合在田间和室内都表现抗病。
     6.通过群体遗传分析,龙S/CO39的F2群体对稻瘟菌菌株IC-17的抗感单株数分离比符合15:1,说明龙S至少含有2对主效抗瘟基因;龙S/CO39及龙S/NPB的F2群体对稻瘟菌菌株318-2及RB7的抗感株系数分离比均符合3:1,说明龙S对这两个菌株的抗性分别为独立遗传的显性单基因控制。
     7.利用848对SSR和SNP引物分析龙S与CO39,NPB之间的多态性,结果表明龙S与CO39之间共有多态引物142对,平均多态检出率为16.75%,龙S与NPB之间共检出多态引物287对,多态检出率为33.84%。
     8.构建龙S与感病亲本NPB杂交F2群体,接种稻瘟菌生理小种318-2进行表型鉴定,采用BSA(Bulk Segregant Analysis)及RCA (Recessive Class Analysis)分析方法将龙S的主效抗瘟基因定位于标记M1与M2之间,距离为1.3cM,这两个标记的物理距离分别位于克隆AP005593同AP005811之间,距离为110kb。通过比较龙S与以前在该位点定位的两个基因Pi5和Pii的抗谱,发现龙S表现出更高更广谱的抗性,结果表明龙S可能具有新的抗瘟等位基因。
     9.利用龙S与感病亲本CO39杂交构建F2群体,并经单粒传种方法构建F3RIL至F6RIL,构建了一份含112个标记的龙S完整遗传连锁图,并结合田间表型,统计分析发现,龙S的田间抗性由8个QTL控制,分别位于:第5号染色体的标记RM8039与RM18516之间,第6号染色体的标记RM190与RM19410之间,第10号染色体的标记RM5304与RM304之间。
     综上所述,龙S具有理想的株叶形态,较低的育性敏感期,优良的异交特性,对稻瘟病表现高抗,是一个理想的两系不育系,本研究精细定位了一个未被报道的广谱抗瘟基因Pi-LS(t)及多个微效基因,为这些基因的克隆及分子辅助育种应用奠定了基础。
Photoperiod and thermo-sensitive genie male sterile (PTGMs) rice plays an important role in hybrid rice breeding. In this study, we sistimaticly evaluated the agronomy traits, critical sterility temperature point, out-crossing characteristic, the broad-spectrum resistance to rice blast fungus of a two-line male sterile line LongS breeded by Rice Institute of Hunan Agricultural University, and also molecularly mapped one major blast resistance gene Pi-LS(t). The main results are presented as follows.
     1. The LongS posesses an ideal plant architecture with a length of 35-43 cm and a 6.9°of opening angle for flag leaf.
     2. LongS is a typical photoperiod and thermo-sensitive genie male sterile line. Temperature is the leading factor for its sterility transistion. The critical sterility temperature point is between 22.5 to 22.8℃, and the physiology sterility temperature is around 17.2℃, the suitable growing temperature for seed increasing is between 19.0 to 21.5℃.
     3. LongS shows an out-crossing superiority. Its peak flowering period is 2 to 6 days after heading. The flowering rate before noon is about 59.09%. The peak daily-flowering period is at 09:00 to 14:00. The opening angle of flower is about 30.64°, and the flowering time lasts 2.5 hours. Its stigma has a strong vitality insisted for 5 days. The stigma exposed rate is high. The clasping spikelet rate is about 3.3%. LongS is sensitive to GA3 which used for releasing the clasping spikelet, the optimal concentration is 15-20 g/667 m2, and the optimal spraying time is on the point of crevasse.
     4. The rice blast resistance evaluation showed that LongS is highly resistant to all 41 rice blast isolates collected from China and four foreign countries and is a elite rice blast resistace germplasm.
     5. The investigation of hybrids resistance using LongS as female line, and another PTGM line C815S as a control, the results indicated that the F1 hybrids originated from the cross between LongS and 8 male parents show a higher rice blast resistance compared to the combinations of C815S.
     6. The genetic analysis using two F2 population derived from the resistant parent of LongS and the susceptible parent of CO39, NPB showed that the segregation ratio of F2 population derived from cross between LongS with CO39 by inoculation with isolate IC-17 is 15 to 1, suggesting that LongS resistance to race IC-17 are controlled by two resistance genes. The segregation ratios of F2 populations crossed between LongS and CO39 or NPB by inoculation with 318-2 and RB7 respectively is 3 to 1, indicating LongS resistance to race 318-2 or RB7 is controlled by single dominant resistance gene.
     7. A total of 848 SSR and SNP markers were used to evaluate the genomic polymorphism between LongS and CO39 or NPB for futher rice blast R gene mapping. the results showed that 142 polymorphic markers were identified between LongS and CO39 with a percentage of 16.75% of the tested markers; and 287 were identified from LongS and NPB with a percentage of 33.84% of the tested markers.
     8. To molecularly map the R gene from LongS, a F2 population crossed by LongS and NPB was used for phenotyping inoculated with a isolate 318-2. and the susceptible plants DNA were genotyped with 287 polymorphic markers through BSA and RCA methods. The linkgae analysis indicated that the R gene was linked to two makers M1 and M2 on chromosome 9 within an interval of 1.3 cM. The gene was temperally designated Pi-LS(t). The resistance spectrum comparasion with two previously mapped R genes Pi5 and Pii on this locus showed that LongS express much more broader resistance spectrum than Pi5 and Pii, suggested that Pi-LS(t) may be a new blast R allelic gene.
     9. A F6RILs population derived from cross of LongS and CO39 was used for genotyping using 114 SSR and SNP markers, a total of 1522.1 cM genetic linkage map was constructed with 23 linkage groups. To futher identify the blast resistance QTLs, the field blast resistance phenotype was evaluated. Combining the phenotype and genotype data,8 minor QTLs were detected using the composite interval mapping (CIM) method, of which located on chromosome 5 between the marker RM8039 and RM18516; chromosome 6 in the interval of marker RM190 and RM19410 and chromosome 10 between the marker RM5304 and RM304.
     Take together with above results, our data indicated that LongS is an elite two-line male sterile with a good plant architechture, low critical sterility temperature, out-crossing superiority and broad spectrum blast resistance with a major dominant blast R gene Pi-LS(t). The identified linkage molecular markers of Pi-LS(t) are useful for futher gene cloning and marker-assisted rice blast resistance breeding.
引文
[1]石明松.晚粳自然两用系选育及应用初报[J].湖北农业科学,1981,(7):1-3.
    [2]付立忠.籼型水稻核不育系对温度敏感性的鉴定[D].浙江大学,2004.
    [3]袁隆平.两系法杂交水稻研究的进展[J].中国农业科学,1990,23(3):1-6.
    [4]卢兴桂,顾铭洪,李成荃.两系杂交水稻理论与技术[M].北京:科学出版社,2001.
    [5]廖亦龙,王丰,李传国,等.两用核不育水稻的选育与利用研究进展[J].作物研究,2002,(5):216-219.
    [6]刘建丰,李春庚.优质抗病水稻光温敏核不育系龙S的选育[J].杂交水稻,2010,25(3):3-4.
    [7]程式华,孙宗修,斯华敏,等.水稻两用系育性转换光温反应型的分类研究[J].中国农业科学,1996,29(4):11-16.
    [8]祁玉良,郭祯,石守设,等.水稻两用核不育系的选育方法与策略探讨[J].河南农业科学,2004,(10):12-15.
    [9]徐孟亮,刘贵权,黄四齐,等.临界温度双低两用核不育水稻96-5-2S的开发应用[J].湖南师范大学自然科学学报,2002,25,(1):68-70.
    [10]廖亦龙,王丰,邹新华,等.籼型光温敏核不育系GD-1S的选育与利用[J].杂交水稻,2003,18(3):8-10.
    [11]雷建国,余传元,肖宇龙,等.水稻优质温敏核不育系“科丰S”的选育及特性[J].江西农业学报,2006,18(1):35-37.
    [12]武晓智,张集文,费震江,等.中籼型水稻两用核不育系佳丰68S的选育及初步利[J].湖北农业科学,2009,48(12):2941-2943.
    [13]杨文才,石天宝,陈运泉,等.水稻低温敏两用核不育系株25S的选育[J].作物研究,2007,(3):199-201.
    [14]陈立云.超级杂交稻育种的创新思维与实践[J].湖南农业大学学报(自然科学版),2007,33(8):21-25.
    [15]邓晓建,李仁端,周开达,等.两系法杂交水稻研究概况[J].种子,1999,(1):28-30.
    [16]罗孝和.两系杂交水稻新组合培两优特青的选育[J].杂交水稻,994,(5):7-10.
    [17]黄农荣,等.广东新选水稻两用核不育系的光温反应和生态适应性[A].广东省水稻 两用核不育系及其杂种优势利用研究1994年度会议论文选编[C],1994,122.127.
    [18]邓启云,符习勤.光温敏核不育水稻育性稳定性研究[J].湖南农业大学学报,1998,24(1):8-13.
    [19]廖伏明,袁隆平.水稻光温敏核不育系起点温度遗传纯化的策略探讨[J].杂交水稻,1996,(6):1-4.
    [20]曾汉来,张端品,卢兴桂,等.实用型光(温)敏不育系不育临界温度升高的原因及低温鉴定效果分析[A].863计划两系杂交水稻专题研讨会暨1996年海南年会论文汇编[C],1996,121-123.
    [21]王风平,徐国才,李香花.釉型光敏不育组合(320015/明恢63)育性QTL位点的分析[J].厦门大学学报(自然科学版),1999,38(3):467-470.
    [22]廖伏明,袁隆平.水稻光温敏核不育系起点温度遗传纯化的策略探讨[J].杂交水稻,1996,(6):1-4.
    [23]何予卿,杨静,徐才国,等.釉型光敏核不育水稻育性不稳定性和育性可转换性的遗传研究[J].华中农业大学学报,1998,17(4):305-311.
    [24]袁隆平.水稻光、温敏不育系的提纯和原种生产[J].杂交水稻,1994,9(6):1-3.
    [25]张繁,肖晓,刘爱民,等.水稻两用核不育系核心种子生产技术研究进展与展望[J].种子,2007,27(10):63-67.
    [26]王伟平,武小金.两系超级杂交稻育种研究进展[J].杂交水稻,2006,21(2):5-9.
    [27]唐文帮,肖应辉,邓化冰,等.水稻两用核不育系C815S的配合力及利用价值[J].湖南农业大学学报(自然科学版),2010,36(4):367-372.
    [28]孟秋成,王权,刘建丰,等.水稻两用核不育系龙S的配合力研究[J].湖南农业大学学报(自然科学版),2010,36(3):250-253.
    [29]靳春鹏.水稻抗瘟基因鉴定及稻瘟菌无毒基因监测[D].吉林大学,2009.
    [30]杨颖忱,张文杰.水稻稻瘟病与气象条件[J].黑龙江科技信息,2009,27:82.
    [31]中国新闻网.广东雷州爆发稻瘟病近六千亩水稻绝收[EB/OL].http://news.163. com/08/0625/00/4F8BEQ2F000120GU.html,2008-06-25/2011-05-10.
    [32]凌忠专.水稻抗稻瘟病育种[M].福州:福建科学技术出版社,1990.
    [33]A Y Rossman,R J Howard,B Valent.Pricularia grisea,the correct name for the rice blast fungus[J],Mycologia,82 (4):509-512.
    [34]张国珍,马秋娟,彭友良.水稻稻瘟病菌有性世代形成条件的优化[J].植物病理学 报.2002,32(2):121-126.
    [35]王雪艳.水稻抗稻瘟病基因Pi-ta多态性研究和Ptr(t)基因的精细定位[D].浙江大学,2009.
    [36]孙国昌.水稻与稻瘟病菌(Magnaporthe grisea)群体互作及病菌群体遗传结构研究[D].浙江大学,2002.
    [37]丁军章.水稻稻瘟病发生特点及防治对策[J].吉林农业,2010年,(8):86.
    [38]H Flor. Current status of the gene-for-gene concept[J]. Annu Rev Phytopathol,1971, 9:275-296.
    [39]Z H Yu, D J Mackill, J M Bonman, et al. Tagging genes for blast resistance in rice via linkage to RFLP markers [J]. Theoretical and Applied Genetics,1991,81: 471-476.
    [40]G L Wang, D J Mackill, J M Bonman, et al. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar[J]. Genetics,1994,136:1421-1434.
    [41]J S Jeon, D Chen, G H Yi, et al. Genetic and physical mapping of Pi-5(t), a locus associated with broad-spectrum resistance to rice blast[J]. Mol Gen Genomics,2003, 269:280-289.
    [42]王建飞.两个粳稻地方品种抗瘟性遗传、抗病基因定位和稻瘟菌DNA指纹类型与致病型的关系研究[D].南京农业大学,2004.
    [43]T Inukai, R S Zeigler, S Sarkarung, et al. Development of pre-isogenic lines for rice blast-resistance by marker-aided selection from a recombinant inbred population[J]. Theoretical and Applied Genetics,1996,93 (4):560-567.
    [44]D H Chen, M dela Vina, T Inukai, et al. Molecular mapping of the blast resistance gene, Pi44(t) in a line derived from a durably resistant rice cultivar Theoretical and Applied Genetics[J].1999,98 (6-7):1046-1053.
    [45]Naweed I Naqvi, Bharat B Chattoo. Development of a sequence characterized amplified region (SCAR) based indirect selection method for a dominant blast-resistance gene in rice[J]. Genome,1996,39 (1):26-30.
    [46]时克.杂交稻恢复系明恢63抗稻瘟病新基因Pimh(t)的精细定位[D].中国农业科学院,2008.
    [47]黄玲.水稻品种湘资3105广谱持久抗稻瘟病基因的定位[D].湖南农业大学,2010.
    [48]李毳,李继萍,柴宝峰,等.微卫星标记的发展及植物研究中的应用[J].郑州航空工 业管理学院学报社会科学版,2004,23(6):199-200.
    [49]黄国庆,郭加沅,肖国樱.SSR标记在水稻遗传育种中的应用[J].江西农业学报,2007,19(4):61-67.
    [50]孟英,许显滨,李炜,等.分子标记(SSR)技术在水稻稻瘟病研究中的应用及展望[J].黑龙江农业科学,2007(2):75-78.
    [51]臧威,张兰兰,张国民.稻瘟病菌SSR反应体系的优化[J].中国农学通报,2007,23(6):174-178.
    [52]李落叶.水稻抗稻瘟病基因Pik-m的定位和克隆[D].西北农林科技大学,2005.
    [53]杨一龙.水稻品种9311稻瘟病抗性基因的鉴定与精细定位[D].中国农业科学院,2010.
    [54]Z X Wang, M Yano, U Yamanouchi, et al. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes[J]. The Plant Journal,1999,19 (1):55-64.
    [55]G T Bryan, K S Wu, L Farrall, et al. A Single Amino Acid Difference Distinguishes Resistant and Susceptible Alleles of the Rice Blast Resistance Gene Pi-ta[J]. The Plant Cell,2000,12 (11):2033-2046.
    [56]X W Chen, J J Shang, D X Chen, et al. A B-lectin receptor kinase gene conferring rice blast resistance[J]. The Plant Journal,2006,46 (5):794-804.
    [57]S H Qu, G F Liu, B Zhou, et al. The Broad-Spectrum Blast Resistance Gene Pi9 Encodes a Nucleotide-Binding Site-Leucine-Rich Repeat Protein and Is a Member of a Multigene Family in Rice[J]. Genetics,2006,172:1901-1914.
    [58]B Zhou, S H Qu, G F Liu, et al. The Eight Amino-Acid Differences Within Three Leucine-Rich Repeats Between Pi2 and Piz-t Resistance Proteins Determine the Resistance Specificity to Magnaporthe grisea[J]. Molecular Plant-Microbe Interactions,2006,19 (11):1216-1228.
    [59]I Ashikawa, N Hayashi, H Yamane, et al. Two Adjacent Nucleotide-Binding Site-Leucine-Rich Repeat Class Genes Are Required to Confer Pikm-Specific Rice Blast Resistance[J]. Genetics,2008,180 (4):2267-2276.
    [60]S K Lee, M Y Song, Y S Seo, et al. Rice Pi5-Mediated Resistance to Magnaporthe oryzae Requires the Presence of Two Coiled-Coil-Nucleotide- Binding- Leucine-Rich Repeat Genes [J]. Genetics,2009,181 (4):1627-1638.
    [61]Shuichi Fukuoka, Norikuni Saka, Hironori Koga, et al. Loss of Function of a Proline-Containing Protein Confers Durable Disease Resistance in Rice[J]. Science, 2009,325 (5943):998-1001.
    [62]Xinqiong Liu, Fei Lin, Ling Wang, et al. The in Silico Map-Based Cloning of Pi36, a Rice Coiled-Coil-Nucleotide-Binding Site-Leucine-Rich Repeat Gene That Confers Race-Specific Resistance to the Blast Fungus[J]. Genetics,2007,176 (4):2541-2549.
    [63]Fei Lin, Shen Chen, Zhiqun Que, et al. The Blast Resistance Gene Pi37 Encodes a Nucleotide Binding Site-Leucine-Rich Repeat Protein and Is a Member of a Resistance Gene Cluster on Rice Chromosome 1[J]. Genetics,2007,177 (3): 1871-1880.
    [64]Bin Yuan, Chun Zhai, Wenjuan Wang, et al. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes [J]. Theoretical and Applied Genetics,2011,122:1017-1028.
    [65]Chun Zhai, Fei Lin, Zhongqiu Dong, et al. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication [J]. New Phytologist,2011,189 (1):321-334.
    [66]Junjun Shang, Yong Tao, Xuewei Chen, et al. Identification of a New Rice Blast Resistance Gene, Pid3, by Genomewide Comparison of Paired Nucleotide-Binding Site-Leucine-Rich Repeat Genes and Their Pseudogene Alleles Between the Two Sequenced Rice Genomes[J]. Genetics,2009,182 (4):1303-1311.
    [67]Yudai Okuyama, Hiroyuki Kanzaki, Akira Abe, et al. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes[J]. The Plant Journal,2011,
    [68]K. Hayashi, N. Yasuda, Y. Fujita, et al. Identification of the blast resistance gene Pit in rice cultivars using functional markers[J]. Theoretical and Applied Genetics,2010, 121 (7):1357-1367.
    [69]Akira Takahashi, Nagao Hayashi, Akio Miyao, et al. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging[J]. BMC Plant Biology,2010,10:175.
    [70]杨勤忠,林菲,冯淑杰,等.水稻稻瘟病抗性基因的分子定位及克隆研究进展[J].中国农业科学,2009,42(5):1601-1615.
    [71]Martin G B, Bogdanove A J, Sessa G. Understanding the functions of plant disease resistance protein[J]. Annu Rev Plant Biol,2003,54:23-61.
    [72]Jinling Liu, Xionglun Liu, Liangying Dai, et al. Recent Progress in Elucidating the Structure, Function and Evolution of Disease Resistance Genes in Plants[J]. Journal of Genetics and Genomics,2007,34 (9):765-776.
    [73]季军,杨四海,田大成.水稻基因组中抗病基因正选择方式及基因转换的研究[J].中国农业科学,2007,40:1856-1863.
    [74]国家水稻数据中心.稻瘟病主效抗性基因列表[EB/OL]http://www.ricedata.cn/ gene/gene_pi.htm,2011-02/2011-05-10.
    [75]Nagao Hayashi, Haruhiko Inoue, Takahiro Kato, et al. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication[J]. The Plant Journal,2010, 64 (3):498-510.
    [76]X Xu, H Chen, T Fujimura, et al. Fine mapping of a strong QTL of Weld resistance against rice blast, Pikahei-1(t), from upland rice Kahei, utilizing a novel resistance evaluation system in the greenhouse[J]. Theor Appl Genet,2008,117:997-1008.
    [77]王忠华.水稻抗稻瘟病基因Pi-ta分子标记的建立及其应用[D].浙江大学,2003.
    [78]刘洋,徐培洲,张红宇,等.水稻抗稻瘟病Pib基因的分子标记辅助选择与应用[J].中国农业科学,2008,41(1):9-14.
    [79]江南.水稻品种Jefferson和谷梅2号广谱抗稻瘟病基因的发掘与定位[D].湖南农业大学,2010.
    [80]邓椋爻.水稻抗白叶枯基因Xa23和抗稻瘟病基因Pi1,Pi2的分子标记辅助育种[D].广西大学,2006.
    [81]郭艳丽.利用MAS技术培育寒区抗稻瘟水稻品种五优稻1号(Pi1/Pi2)[D].黑龙江大学,2009.
    [82]宫超.分子标记辅助选择培育五优稻1号(Pi9)和五优稻1号(crylC*)[D].黑龙江大学,2010.
    [83]林琳.稻瘟病抗性基因的多基因聚合研究[D].四川农业大学,2010.
    [84]潘素君.广谱抗稻瘟病基因Pi9的应用和进化研究[D].湖南农业大学,2006.
    [85]胡燕.利用农杆菌介导法将抗稻瘟病基因Pi-d2导入杂交稻骨干亲本蜀恢527的研究[D].四川农业大学,2008.
    [86]陈德西.抗稻瘟病基因Pi-d2导入水稻提高稻瘟病抗性和一份条斑和颖花异常水稻突变体研究[D].四川农业大学,2007.
    [87]Z H Yu, D J Mackill, J M Bonman, et al. Molecular mapping of genes for resistance to rice blast (Pyricularia grisea Sacc.)[J]. Theoretical and Applied Genetics,1996,93: 859-863.
    [88]陈志伟,官华忠,吴为人,等.稻瘟病抗性基因Pi-1连锁SSR标记的筛选和应用[J].福建稻麦科技,2005,34(1):74-77.
    [89]Yu Z H, Mackill D J, Bonman J M, et al. Tagging genes for blast resistance in rice via linkage to RFLP markers [J]. Theoretical and Applied Genetics,1991,81: 471-476.
    [90]Q H Pan, L Wang, H Ikehashi, et al. Identification of a new blast resistance gene in the indica rice cultivar Kasalath using Japanese differential cultivars and isozyme markers[J]. Phytopathology,1996,86(10):1071-1075.
    [91]Naweed I Naqvi, Bharat B Chattoo. Development of a sequence characterized amplified region (SCAR) based indirect selection method for a dominant blast-resistance gene in rice[J]. Genome,1996,39 (1):26-30.
    [92]雷财林,王久林,毛世宏,等.籼稻品种窄叶青8号抗稻瘟病基因分析[J].遗传学报,1997,24(1):36-41.
    [93]Q H Pan, L Wang, H Ikehashi, et al. Identification of two new genes conferring resistance to rice blast in the Chinese native cultivar 'Maowanggu'[J]. Plant Beeding, 1998,117(1):27-31.
    [94]F Lin, Y Liu, L Wang, et al. A high-resolution map of the rice blast resistance gene Pi15 constructed by sequence-ready markers[J]. Plant Breeding,2007,126 (3): 287-290.
    [95]Q H Pan, L Wang and T Tanisaka. A new blast resistance gene identified in the Indian native rice cultivar Aus373 through allelism and linkage tests[J]. Plant Pathology,1999,48 (2):288-293.
    [96]Q H Pan, T Tanisaka, H Ikehashi. Registration of new gene symbol Pi17(t) in DJ123[J]. Rice Genetics Newsletter,1996,13:12-26.
    [97]S N Ahn, Y K Kim, H C Hong, et al. Molecular mapping of a new gene for resistance to rice blast (Pyricularia grisea Sacc.)[J]. Euphytica,200,116:17-22.
    [98]N Hayashi, I Ando, and T Imbe. Identification of a new resistance gene to a Chinese blast fungus isolate in the Japanese rice cultivar Aichi Asahi[J]. Harmonizing agricultural productivity and conservation of biodiversity,1998,88 (0):822-827.
    [99]T Imbe, S Oba, M J T Yanoria, et al. A new gene for blast resistance in rice cultivar, IR24[J]. Rice Genetics Newsletters,1997,14:60-62.
    [100]S N Ahn, Y K Kim, H C Hong, et al. Molecular mapping of genes for resistance to Korean isolates of rice blast[R]. Korean:In harmonizing agricultural productivity and conservation of biodiversity breeding and ecology. Proceed.8th SABRAO Congress and Annual Meeting of Korean Breeding Society,1997:435-436.
    [101]C Sallaud, M Lorieux, E Roumen, et al. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy[J]. Theoretical and Applied Genetics,2003,106 (5):794-803.
    [102]J Y Zhuang, W B Ma, J L Wu, et al. Mapping of leaf and neck blast resistance geneswith resistance gene analog, RAPD and RFLP in rice[J]. Euphytica,2002,128: 363-370.
    [103]吴建利,柴荣耀,樊叶杨,等.抗稻瘟病水稻材料谷梅2号中主效抗稻瘟病基因的成簇分布[J].中国水稻科学,2004,18(6):567-569.
    [104]M L Zhu, L Wang, Q H Pan. Identification and Characterization of a New Blast Resistance Gene Located on Rice Chromosome 1 Through Linkage and Differential Analyses[J]. Phytopathology,2004,94 (5):515-519.
    [105]R Berruyer, H Adreit, J Milazzo, et al. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1[J]. Theoretical and Applied Genetics,2003,107 (6):1139-1147.
    [106]K Zenbayashi, T Ashizawa, T Tani, et al. Mapping of the QTL (quantitative trait locus) conferring partial resistance to leaf blast in rice cultivar Chubu32[J]. Theoretical and Applied Genetics,2002,104 (0):547-552.
    [107]T T T Nguyen, S Koizumi, T N La, et al. Pi35(t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188[J]. Theoretical and Applied Genetics,2006,113 (4):697-704.
    [108]M Gowda, S R Barman, B B Chattoo. Molecular mapping of a novel blast resistance gene Pi38 in rice using SSLP and AFLP markers[J]. Plant Breeding,2006,125 (6):596-599.
    [109]X Q Liu; Q Z Yang; F Lin et al. Identification and fine mapping of Pi39(t), a major gene conferring the broad-spectrum resistance to Magnaporthe oryzae[J]. Molecular Genetics and Genomics,2007,278 (4):403-410.
    [110]J U Jeung, B R Kim, Y C Cho, et al. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice[J]. Theoretical and Applied Genetics,2007,115 (8):1163-1177.
    [111]Q Z Yang, F Lin, L Wang, et al. Identification and mapping of Pi41, a major gene conferring resistance to rice blast in the Oryza sativa subsp. indica reference cultivar, 93-11[J]. Theoretical and Applied Genetics,2009,118 (6):1027-1034.
    [112]Y C Cho, S W Kwon, J U Jeong, et al. Analysis of resistance genes to blast in known Korean germplasm including weedy and land race rice[R]. China:The 4th International Rice Blast Conference,2007:126.
    [113]X Zhu, S Chen, J Yang, et al. A new member of the blast resistance gene family Pi2/Pi9 was identified in the indica rice cultivar 28-zhan[R]. China:The 4th International Rice Blast Conference,2007:124.
    [114]P Kumar, S Pathania, P Katoch, et al. Genetic and physical mapping of blast resistance gene Pi-42(t) on the short arm of rice chromosome 12[J]. Molecular Breeding,2010,25 (2):217-228.
    [115]S Lee, Y Wamishe, Y Jia, et al. Identification of two major resistance genes against race IE-1k of Magnaporthe oryzae in the indica rice cultivar Zhe733[J]. Molecular Breeding,2009,24(2):127-134
    [116]H M Huang, L Huang, G P Feng, et al. Molecular mapping of the new blast resistance genes Pi47 and Pi48 in the durably resistant local rice cultivar Xiangzi3105[J]. Phytopathology, The paper has been peer reviewed and accepted for publication but has not yet been copyedited or proofread.
    [117]K S Wu, C Martinez, Z Lentini, et al. Cloning a blast resistance gene by chromosome walking[J]. Rice Genetics,1996, (0):669-674.
    [118]R S Chauhan, M L Farman, H B Zhang, et al. Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea[J]. Molecular Genetics and Genomics,2002, 267(0):603-612.
    [119]K Toriyama. Breeding for resistance of major rice disease in Japan [J]. Rice Breeding,1972, (0):253-281.
    [120]J H Zhou, J L Wang, J C Xu, et al. Identification and mapping of a rice blast resistance gene Pi-g(t) in the cultivar Guangchangzhan[J]. Plant Pathology,2004,53 (2):191-196.
    [121]Y W Deng, X D Zhu, Y Shen, et al. Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety [J]. Theoretical and Applied Genetics,2006,113 (4): 705-713.
    [122]伍尚忠,朱小源,刘斌,等.籼稻品种三黄占2号的稻瘟病持久抗性评价与遗传 分析[J].中国农业科学,2004,37(4):528-534.
    [123]郑康乐,钱惠荣,庄杰云,等.应用DNA标记定位水稻的抗稻瘟病基因[J].植物病理学报,1995,25(4):307-313.
    [124]X Xu, N Hayashi, C T Wang, et al. Efficient authentic fine mapping of the rice blast resistance gene Pik-h in the Pik cluster, using new Pik-h differentiating isolates[J]. Molecular Breeding,2008,22 (2):289-299.
    [125]R Fjellstrom, C A Conaway-Bormans, A M McClung, et al. Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes[J]. Crop Science,2004,44:1790-1798.
    [126]Q H Pan, L Wang, T Tanisaka, et al. Allelism of rice blast resistance genes in two Chinese rice cultivars, and identification of two new resistance genes. Plant Pathology,1998,47:165-170.
    [127]I Goto. Genetic studies on resistance of rice plant to blast fungus (VII). Blast resistance genes of Kuroka[J]. Ann Phytopath Soc Japan,1988,54 (1):460-465.
    [128]R E Tabien, Z Li, A H Paterson, et al. Mapping of four major rice blast resistance genes from 'Lemont' and 'Teqing' and evaluation of their combinatorial effect for field resistance[J]. Theoretical and Applied Genetics,2000,101 (8):1215-1225.
    [129]I Goto, A B Ahmed. Genetic studies on resistance of rice plant to blast fungus. VI. Additive effect of blast resistance genes of Sensho under natural infection[J]. Bulletin of the Yamagata University. Agriculture Science,1984,9:273-283.
    [130]H Shinoda, K Toriyama, T Yunoki, et al. Studies on the varietal resistance of rice to blast,6. Linkage relationship of blast resistance genes. (In Japanese, with English summaries.) Bull[J]. Chugoku Agric. Exp. Stn. Ser. A,1971,20:1-25.
    [131]张建福,王国英,谢华安,等.粳稻云引抗稻瘟病基因的遗传分析及其定位[J].农业生物技术学报,2003,11(3):241-244.
    [132]张锦文,谭亚玲,洪汝科,等.高原粳稻子预44抗稻瘟病基因遗传分析和定位[J].中国水稻科学,2009,23(1):31-35
    [133]T Iinukai, D J Mackill, J M Bonman, et al. Blast resistance genes Pi-2(t) and Pi-z may be allelic[J]. Rice Genetics Newsletters,1992,9:90-92.
    [134]谢红军.水稻两用核不用系龙S应用基础研究[D].湖南农业大学,2008.
    [135]杨远柱,唐平徕,符辰建,等.实用早籼型两用核不育系选育策略与进展[J].作物研究,2002,(2):95-99.
    [136]赵庆勇,朱镇,张亚东,等.杂交粳稻品质性状的配合力和杂种优势分析[J].江苏农业学报,2008,24(4):387-393.
    [137]潘素君,戴良英,刘雄伦,等.广谱抗稻瘟病基因Pi9对籼稻的转化研究[J].分子植物育种,2006,4(5):650-654.
    [138]薛石玉,刘建慧.回交法在杂交水稻抗稻瘟病育种中的应用[J].杂交水稻,1999,14(4):9-11.
    [139]李季能,刘建萍,张跃飞.高抗稻瘟病杂交中籼新组合博优141[J].杂交水稻,2003,18(6):59-60.
    [140]王石平,李仕贵,黎汉云,等.高配合力优质水稻恢复系蜀恢527的选育与利用[J].杂交水稻,2004,19(4):12-14.
    [141]Mc Couch S R, Cho Y G, Yano M, et al. Report on QTL nomenclature[J].R ice Genet New sl,1997,14:11-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700