伺服系统摩擦与温度变化干扰的建模及补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伺服系统中存在非线性摩擦,而温度变化不仅影响摩擦,同时还会导致热变形误差的产生,这些均对提高伺服系统的控制和定位精度有严重的影响。随着伺服系统的应用越来越广,对其精度要求也越来越高,减小甚至消除摩擦和温度变化对伺服系统的影响,已成为实现高精度伺服系统所必须解决的关键问题。本文针对这一问题,通过理论分析和实验分析相结合的方法,分别对体现温度影响的摩擦以及丝杠轴向热变形的建模和补偿等方面展开了深入研究。
     首先,完成了体现温度影响的摩擦模型的建模和辨识。采用一种基于稳态误差反推的方法分离并获取伺服系统中存在的转矩纹波和摩擦力矩;利用频谱分析、最小二乘等方法辨识转矩纹波,并通过运动控制器实现其补偿;利用遗传算法实现传统LuGre模型动静态参数的精确辨识;根据实验修正传统LuGre模型中的黏性摩擦,使其在高速阶段也能精确反映伺服系统的摩擦;研究温度变化对摩擦的影响,提出一种利用神经网络对LuGre摩擦模型的静态参数进行建模的方法,从而将温度直接引入摩擦模型,建立了一种体现温度影响的摩擦模型。
     然后,基于该修正模型对伺服系统的摩擦补偿策略展开了研究。一方面,采用前馈PD固定摩擦补偿的控制方法,提高了伺服系统的控制精度;另一方面,针对伺服系统中摩擦模型的参数变化,以及不确定非线性建模误差和其他扰动,提出了一种基于反演设计的自适应反演滑模的摩擦补偿策略,给出了其补偿控制器的设计方法,并证明了其渐进稳定性,实验证明该方法具有较强的适应性和鲁棒性,有效改善了伺服系统的跟踪精度。
     最后,对温度变化引起的丝杠轴向热变形误差进行分析和建模。补偿了螺距误差和反向间隙等几何误差;分析滚珠丝杠副的热特性,得出其热变形不仅由当时其内部热源的状态决定,还受到其之前状态的影响;提出一种采用自回归小波神经网络(SRWNN)进行丝杠轴向热变形误差建模的方法,获得了较好的建模效果,并通过实验验证了模型的有效性。
Nonlinear Friction exists in the servo system. Temperature changes not only affect friction, but also cause to produce thermal deformation error, thus seriously affect control and positioning accuracy of servo system. With wider use of servo system, it requires much higher accuracy. Reduction or elimination errors in the servo system caused by changes in friction and temperature have become a critical issue in the realization of servo system. In this paper, aiming at this problem, combined theoretical analysis with experimental analysis, friction that reflects influence of temperature and modeling and compensation of axial thermal deformation of screw are deeply researched separately.
     First, modeling and identification of friction model that reflect temperature changes are accomplished. Backstepping method based on state error is used to separate and obtain torque ripple and friction moment in the servo system; spectral analysis, least squares and other methods are adopted in the identification of torque ripple, and motion controller is used in the compensation; genetic algorithm is used in the precise identification of dynamic and static parameters in the custom LuGre model; viscous friction in the custom LuGre model is corrected according to experiments, making friction in the servo system is accurately reflected even in high speed; influence on the friction by temperature changes is studied, and based on temperature observation on the key point, method of applying neural network to the modeling of static parameter of LuGre friction model is proposed, thus introducing temperature to the friction model, and friction model that reflects temperature changes is built.
     Then, friction compensation strategy of servo system based on the error correction model is researched. On the one hand, control method of feedforward PD constant friction compensation is adopted, and control accuracy of servo system is improved; on the other hand, aiming at parameter changes of friction model in the servo system, uncertain nonlinear modeling error and other disturbances, adaptive backstepping sliding mode friction compensation method based on the backstepping design is proposed, design method of compensation controllers is provided, and asymptotic stability is verified. Adaptability and robustness of this method is proved by the tests, effectively improve tracking accuracy of servo system.
     Last, axial thermal deformation error of screw caused by temperature variation is analyzed and modeled. Geometric errors such as pitch error and backlash are compensated;thermal characteristics of ball screw assembly is analyzed, and come to a conclusion that thermal deformation not only determined by the state of internal heat source at that time, but also affected by the previous state; method that use self-recurrent wavelet neural network (SRWNN) is presented to model axial thermal deformation error of screw, acquiring good modeling effect, and effectiveness of the model is verified by experiments.
引文
[1]张莉松,胡韦占德,徐立新,伺服系统原理与设计(第三版),北京:北京理工大学出版社,2006,165-167
    [2]敖荣庆,袁坤,伺服系统,北京:航空工业出版社,2006
    [3]向红标,开放式伺服系统的摩擦建模与补偿研究[博士学位论文],天津;天津大学, 2010.
    [4] http://baike.baidu.com/view/267111.htm#3
    [5]骆再飞,蒋静坪,交流伺服系统及其先进控制策略综述,机床与液压,2002,(006):7-10
    [6]韩彦春,交流永磁同步电机伺服控制系统的研究[硕士学位论文],辽宁;辽宁工程技术大学,2008
    [7]黄萌,全数字化高性能交流伺服控制系统的研究[硕士学位论文],西安;西北工业大学,2005
    [8] http://www.gkong.com/zt/zidonghua/page_13.html
    [9]傅桂龙,程筱胜,基于PC的开放式数控系统实现方法,机械设计与制造工程,2000,9 (001): 45-46
    [10]白建华,程文锋,开放式CNC及现代网络制造,机械制造,2002,40 (003):7-10
    [11]黄建岗,开放式运动控制技术的研究[硕士学位论文],天津;河北工业大学,2005
    [12]宁亮,基于PMAC的通用测量仪控制系统的研究与开发[硕士学位论文],天津;天津大学,2007
    [13]向平,黄健,吴萍等,数控运动控制器浅析,机床与液压,2005,(7):61-63
    [14]王爱玲,王俊元,马维金等,现代数控机床伺服及检测技术,北京:国防工业出版社,2009
    [15]唐庆功,永磁同步电机伺服控制系统研究[硕士学位论文],哈尔滨;哈尔滨工业大学,2009
    [16]陈先锋,舒志兵,先进运动控制策略及运动控制新技术,电气时代,2005,(002):129-131
    [17]盖廓,新型控制策略在交流伺服系统中的应用研究[硕士学位论文],天津;天津大学,2007
    [18]刘强,尔联洁,刘金琨,摩擦非线性环节的特性,建模与控制补偿综述,系统工程与电子技术,2002,24 (11):45-52.
    [19]刘金琨,滑模变结构控制MATLAB仿真,北京:清华大学出版社,2005
    [20]Horejs O. Thermo-mechanical model of ball screw with non-steady heat sources.IEEE, 2007. 133-137
    [21]胡旭兰,数控机床机械系统及其故障诊断与维修,北京:中国劳动社会保障出版社,2009
    [22]陈诚,裘祖荣,李醒飞等,伺服系统中滚珠丝杠的温度场模型,光学精密工程,2011,19 (5): 1151-1158
    [23]Ahn Jy, Chung Sc. Real-time estimation of the temperature distribution and expansion of a ball screw system using an observer.roceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2004, 218 (12): 1667-1681
    [24]李永祥,数控机床热误差建模新方法及其应用研究[博士学位论文],上海;上海交通大学,2007
    [25]Aronson R.B. The War Against Thermal Expansion,1996
    [26]丛爽,运动控制中先进控制策略的研究综述,微特电机,1998,26 (1):2-5
    [27]王中华,运动控制中的几种摩擦补偿策略研究[博士学位论文],南京;东南大学2002.
    [28]赵昌龙,高速加工中心主轴及刀具系统热误差综合补偿技术[博士学位论文],长春;吉林大学,2010
    [29]刘慧慧,基于速度相关和LuGre摩擦模型的滑动稳定性分析[硕士学位论文],西安;西安理工大学,2008
    [30]Ngoc C.N., Bruniaux P., Castelain Jm. Modeling friction for yarn/fabric simulation Application to bending hysteresis,2002.
    [31]杨松,高精度机械轴承转台摩擦补偿研究[博士学位论文],哈尔滨;哈尔滨工业大学,2009
    [32]王忠山,高精度机械轴承转台摩擦补偿研究[博士学位论文],哈尔滨;哈尔滨工业大学, 2007
    [33]刘丽兰,刘宏昭,吴子英等,机械系统中摩擦模型的研究进展,力学进展,2008,38 (002):201-213
    [34]Bowden F.P., Tabor D. Friction: an introduction to tribology ,E Krieger Pub.Co., 1982
    [35]Israelachvili J.N. Intermolecular and Surface Forces: Revised Third Edition ,Academic press, 2011
    [36]Coulomb C. A. Théorie des machines simples,Mémoires de Mathématiques et de Physique del’Académie des Sciences, 1785, 161-331
    [37]Janiec M. Friction compensation by the use of friction observer, Lund Institute of Technology, 2004, 5~16
    [38]Stribeck R. Die wesentlichen Eigenschaften der Gleit-und Rollenlager-The key qualities of sliding and roller bearings, Zeitschrift des Vereines Seutscher Ingenieure, 1902, 46 (38,39): 1342-1348,1432-1437
    [39]张从鹏,刘强,直线电机定位平台的摩擦建模与补偿,北京航空航天大学学报,2008,34 (1):47-50
    [40]Tustin A. The effects of backlash and of speed-dependent friction on the stability of closed-cycle control systems,Electrical Engineers-Part IIA: Automatic Regulators and Servo Mechanisms, Journal of the Institution of, 1947, 94 (1): 143-151
    [41]Armstrong-Hélouvry B. Stick-slip arising from stribeck friction, IEEE, 1990. 1377-1382 vol. 2
    [42]Karnopp D. Computer simulation of stick-slip friction in mechanical dynamic systems,Journal of dynamic systems, measurement, and control, 1985, 107 100
    [43]Iurian C. Identification of a system with dry friction,University Politenica de Catalunya, 2005, 45~49
    [44]Armstrong-Hélouvry B., Dupont P., De Wit C.C. A survey of models, analysis tools and compensation methods for the control of machines with friction,Automatica, 1994, 30 (7): 1083-1138
    [45]Dupont P., Hayward V., Armstrong B.,Single state elastoplastic friction models,Automatic Control, IEEE Transactions on, 2002, 47 (5): 787-792
    [46]Haessig D.A., Friedland B. On the modeling and simulation of friction,IEEE, 1990. 1256-1261
    [47]Canudas De Wit C., Olsson H., Astrom K.J., A new model for control of systems with friction ,Automatic Control, IEEE Transactions on, 1995, 40 (3): 419-425
    [48]张剑,含摩擦伺服系统的建模与控制研究[硕士学位论文],合肥;中国科学技术大学,2011
    [49]Lampaert V., Swevers J., Al-Bender F. Modification of the Leuven integrated friction model structure,Automatic Control, IEEE Transactions on, 2002, 47 (4): 683-687
    [50]Fun M.H., Hagan M.T. Modular neural networks for friction modeling and compensation ,IEEE, 1996. 814-819
    [51]覃媛媛,王道波,王志胜,CMAC神经网络在电动伺服摩擦补偿中的应用,兵工自动化,2004,23 (001):41-43
    [52]Garcia C. Comparison of friction models applied to a control valve ,Control Engineering Practice, 2008, 16 (10): 1231-1243
    [53]Choudhury Maa, Shah Sl, Thornhill Nf, Automatic detection and quantification of stiction in control valves ,Control Engineering Practice, 2006, 14 (12): 1395-1412
    [54]黄进,含摩擦环节伺服系统的分析及控制补偿研究[博士学位论文],西安;西安电子科技大学,1998
    [55]魏立新,X-Y数控平台运动摩擦补偿及边缘跟踪力控制研究[博士学位论文],秦皇岛;燕山大学,2006
    [56]向红标,裘祖荣,李醒飞等,精密实验平台的非线性摩擦建模与补偿,光学精密工程,2010,18 (005):1119-1127
    [57]曾鸣,王忠山,王学智,基于非线性摩擦模型参数观测器的自适应摩擦补偿策略的研究,航空精密制造技术,2005,41 (003):17-22
    [58]Canudas De Wit C. Robust control for servo-mechanisms under inexact friction compensation , Automatica, 1993, 29 (3): 757-761
    [59]张伟英,张友安,非线性观测器用于高精度甚低速系统的动态补偿,控制与决策,1989,1 (98):9
    [60]Putra D., Moreau L., Nijmeijer H. Observer-based compensation of discontinuous friction ,IEEE, 2004. 4940-4945 Vol. 5
    [61]Mallon N., Van De Wouw N., Putra D., Friction compensation in a controlled one-link robot using a reduced-order observer ,Control Systems Technology, IEEE Transactions on, 2006, 14 (2): 374-383
    [62]Papadopoulos E.G., Chasparis G.C. Analysis and model-based control of servomechanisms with friction,Journal of dynamic systems, measurement, and control, 2004, 126-911
    [63]Moreno J., Kelly R. Pose regulation of robot manipulators with dynamic friction compensation , IEEE, 2005. 4368-4372
    [64]Robertsson A., Shiriaev A., Johansson R. Friction compensation for nonlinear systems based on the LuGre model, 2004. 1439-1444
    [65]Southward S.C., Radcliffe C.J., Maccluer Cr. Robust nonlinear stick-slip friction compensation,ASME Journal of Dynamic systems, measurement, and control, 1991, 113 (6): 639-645
    [66]Mei Z.Q., Xue Y.C., Zhang G.L., The nonlinear friction compensation in the trajectory tracking of robot , IEEE, 2003. 2457-2462 Vol. 4
    [67]Gilbart J.W., Winston G.C. Adaptive compensation for an optical tracking telescope , Automatica, 1974, 10 (2): 125-131
    [68]Friedland B., Park Y.J. On adaptive friction compensation, Automatic Control, IEEE Transactions on, 1992, 37 (10): 1609-1612
    [69]袭著燕,基于信号特征的数控交流伺服进给系统摩擦建模与补偿研究[博士学位论文],济南;山东大学, 2006,
    [70]袭著燕,张涛,路长厚,数控伺服进给系统中摩擦补偿控制研究进展,现代制造工程, 2006, 1 21-26
    [71]Li W., Cheng X.,Adaptive high-precision control of positioning tables-theory and experiments ,Control Systems Technology, IEEE Transactions on, 1994, 2 (3): 265-270
    [72]李书训,姚郁,王子才,一种自适应摩擦补偿策略研究,电机与控制学报,1999,3 (3):
    [73]Minh T.N., Ohishi K., Takata M., Adaptive Friction Compensation Design for Submicrometer Positioning of High Precision Stage , IEEE, 2007. 1-6
    [74]吴建华,加速度直线伺服系统的快速高精度定位控制[博士学位论文],上海;上海交通大学,2007
    [75]Armstrong B., Amin B, PID control in the presence of static friction: A comparison of algebraic and describing function analysis , Automatica, 1996, 32 (5): 679-692
    [76]Armstrong-Helouvry B., Amin B, PID control in the presence of static friction: exact and describing function analysis, IEEE, 1994. 597-601 vol. 1
    [77]黄进,叶尚辉,含摩擦环节的伺服系统的低速爬行研究,机械设计,1998,(010),39-41.
    [78]黄进,叶尚辉,含摩擦环节伺服系统的分析及控制补偿研究,机械科学与技术,1999,18 (001):1-4
    [79]Armstrong B., Neevel D., Kusik T. New results in NPID control: Tracking,integral control, friction compensation and experimental results , Control Systems Technology, IEEE Transactions on, 2001, 9 (2): 399-406
    [80]张丹,含摩擦环节伺服系统的补偿控制[硕士学位论文],西安;西安电子科技大学, 2008
    [81]梅志千,机电伺服系统中的补偿技术研究[博士学位论文],上海;上海交通大学,2003
    [82]Lee H.S., Tomizuka M. Robust motion controller design for high-accuracy positioning systems , Industrial Electronics, IEEE Transactions on, 1996, 43 (1): 48-55
    [83]Chen W.H., Ballance D.J., Gawthrop P.J. A nonlinear disturbance observer for robotic manipulators,Industrial Electronics, IEEE Transactions on, 2000, 47 (4): 932-938
    [84]Sankaranarayanan S., Khorrami F. Model independent friction compensation, IEEE, 1998. 463-467 vol. 1
    [85]Young K.D. A variable structure control approach to friction force compensation, IEEE, 1998. 2138-2142 vol. 4
    [86]刘金琨,智能控制(第2版),北京:电子工业出版社,2009
    [87]Tzes A., Peng P.Y. Guthy J., Genetic-based fuzzy clustering for DC-motor friction identification and compensation , Control Systems Technology, IEEE Transactions on, 1998, 6 (4): 462-472
    [88]Du H., Nair S.S. Modeling and compensation of low-velocity friction with bounds , Control Systems Technology, IEEE Transactions on, 1999, 7 (1): 110-121
    [89]Lin L.C., Lee G.Y. Hierarchical fuzzy control for C-axis of CNC turning centers using genetic algorithms, Journal of intelligent & robotic systems, 1999, 25 (3): 255-275
    [90]丁汉,吴建华,王英等,高加速度系统的快速高精度定位控制,自然科学进展,2008,18 (010):1143-1150
    [91]赵海涛,数控机床热误差模态分析、测点布置及建模研究[博士学位论文],上海;上海交通大学,2006
    [92]Venugopal R., Barash M., Shaw Mc. Thermal effects on the accuracy of numerically controlled machine tools , CIRP Annals-Manufacturing Technology, 1986, 35 (1): 255-258
    [93]Lo C.H., Yuan J., Ni J. Optimal temperature variable selection by grouping approach for thermal error modeling and compensation, International Journal ofMachine Tools and Manufacture, 1999, 39 (9): 1383-96
    [94]Tuomaala P., Piira K., Vuolle M. A rational method for the distribution of nodes in modelling of transient heat conduction in plane slabs, Building and Environment, 2000, 35 (5): 397-406
    [95]彭祖赠,孙韫玉,模糊(Fuzzy)数学及其应用,武汉:武汉大学出版社,2002
    [96]Suykens J.A.K., De Brabanter J., Lukas L. Weighted least squares support vector machines: robustness and sparse approximation , Neurocomputing, 2002, 48 (1-4): 85-105
    [97]罗佑新,张龙庭等.灰色系统理论及其在机械工程中的应用,长沙:国防科技大学出版社, 2001.
    [98]Lin C.W., Tu J.F., Kamman J. An integrated thermo-mechanical-dynamic model to characterize motorized machine tool spindles during very high speed rotation, International Journal of Machine Tools and Manufacture, 2003, 43 (10): 1035-1050
    [99]Chen J.S., Ling C.C. Improving the machine accuracy through machine tool metrology and error correction, The International Journal of Advanced Manufacturing Technology, 1996, 11 (3): 198-205
    [100]Kang Y., Chang C.W., Huang Y.,等. Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools, International Journal of Machine Tools and Manufacture, 2007, 47 (2): 376-387
    [101]李永祥,杨建国,郭前建等,数控机床热误差的混合预测模型及应用,上海交通大学学报,2007,40 (12):2030-2033
    [102]Yang H., Ni J. Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error, International Journal of Machine Tools and Manufacture, 2005, 45 (4-5): 455-465
    [103]Ramesh R., Mannan Ma, Poo An. Thermal error measurement and modelling in machine tools.:: Part I. Influence of varying operating conditions , International Journal of Machine Tools and Manufacture, 2003, 43 (4): 391-404
    [104]Ramesh R., Mannan Ma, Poo An. Thermal error measurement and modelling in machine tools. Part II. Hybrid Bayesian Network--support vector machine model, International Journal of Machine Tools and Manufacture, 2003, 43 (4): 405-419
    [105]Delbressine Flm, Florussen Ghj, Schijvenaars La. Modellingthermomechanical behaviour of multi-axis machine tools, Precision engineering, 2006, 30 (1): 47-53
    [106]陈莉,基于组合神经网络的数控机床热误差补偿建模的研究[硕士学位论文],太原;太原科技大学,2011
    [107]Huang S.C. Analysis of a model to forecast thermal deformation of ball screw feed drive systems , International Journal of Machine Tools and Manufacture, 1995, 35 (8): 1099-1104
    [108]Kim Sk, Cho Dw. Real-time estimation of temperature distribution in a ball-screw system , International Journal of Machine Tools and Manufacture, 1997, 37 (4): 451-464
    [109]Yun W.S., Kim S.K., Cho D.W. Thermal error analysis for a CNC lathe feed drive system, International Journal of Machine Tools and Manufacture, 1999, 39 (7): 1087-1101
    [110]Wu C.H., Kung Y.T. Thermal analysis for the feed drive system of a CNC machine center , International Journal of Machine Tools and Manufacture, 2003, 43 (15): 1521-1528
    [111]Kodera T., Yokoyama K., Miyaguchi K.,等. Real-Time Estimation of Ball-Screw Thermal Elongation Based upon Temperature Distribution of Ball-Screw , JSME International Journal Series C, 2004, 47 (4): 1175-1181
    [112]夏军勇,胡友民,吴波等,热弹性效应分析与机床进给系统热动态特性建模,机械工程学报,2010,(015):191-198
    [113]Lnc. Delta Tau Data Systems. PMAC2 USER MANUAL, 2004
    [114]Lnc. Delta Tau Data Systems. TURBO PMAC USER MANUAL, 2008
    [115]谢冬,数控伺服系统的发展研究,华章,2011,(14):285
    [116]舒志兵,交流伺服运动控制系统,北京:清华大学出版社,2006
    [117]谢玉春,杨贵杰,崔乃政,高性能交流伺服电机系统控制策略综述,伺服控制,2011,(1):19-22
    [118]安川电机株式会社,Σ-Ⅱ系列SGM□H/SGDM用户手册,2004
    [119]胡寿松,自动控制原理(第四版),北京:科学出版社,2001
    [120]吴大正,杨林耀,西安电子科技大学等,信号与线性系统分析,北京:高等教育出版社,1998
    [121]Kamalzadeh A., Erkorkmaz K. Accurate tracking controller design for high-speed drives , International Journal of Machine Tools and Manufacture, 2007, 47 (9): 1393-1400
    [122]张涛,基于力矩测量的交流伺服工作台摩擦识别与补偿控制[博士学位论文],济南;山东大学,2006
    [123]Gan W.C., Qiu L. Torque and velocity ripple elimination of AC permanent magnet motor control systems using the internal model principle, Mechatronics, IEEE/ASME Transactions on, 2004, 9 (2): 436-447
    [124]莫会成,分数槽集中绕组永磁交流伺服电动机齿槽转矩分析,微电机,2011,44 (8):1-5
    [125]Petrovic V., Ortega R., Stankovic A.M.,. Design and implementation of an adaptive controller for torque ripple minimization in PM synchronous motors, Power Electronics, IEEE Transactions on, 2000, 15 (5): 871-880
    [126]Gan W.C., Qiu L. A gain scheduled robust regulator for torque ripple elimination of AC permanent magnet motor systems, IEEE, 2004. 284-289 Vol. 1
    [127]张文海,李家会,徐丽,永磁直流力矩电机力矩波动的实验分析,微电机,2004,37 (6):64-66
    [128]孙洪鑫,王修勇,陈政清,基于改进遗传算法的LuGre模型参数辨识,武汉理工大学学报,2009,31 (023):113-117
    [129]Wenjing Z. Parameter Identification of LuGre Friction Model in Servo System Based on Improved Particle Swarm Optimization Algorithm, IEEE, 2007. 135-139
    [130]陈剑锋,刘昊,陶国良,基于LuGre摩擦模型的气缸摩擦力特性实验,兰州理工大学学报,2010,36 (003):55-59
    [131]温诗铸,黄平,摩擦学原理,北京:清华大学出版社,2002
    [132]刘正林,摩擦学原理,北京:高等教育出版社,2009
    [133]Carlson Jm, Batista Aa. Constitutive relation for the friction between lubricated surfaces , Physical Review E, 1996, 53 (4): 4153
    [134]董浚修,润滑原理及润滑油,北京:中国石化出版社,1998
    [135]Zhao Z., Xie W., Rad Ab. A Cascaded Fuzzy Model of Friction over Large Temperature Variation, IEEE, 2006. 160-165
    [136]Marton Lorinc, Lantos Bela. A novel approach to deal with temperature dependence of friction in mechanical control systems , 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2010, July 6, 2010 - July 9, 2010 , Montreal, QC, Canada: Institute of Electrical and Electronics Engineers Inc., 2010. 920-925
    [137]海金,Haykin S.S.,叶世伟等,神经网络原理,北京:机械工业出版社,2004
    [138]董长虹,Matlab神经网络与应用,北京:国防工业出版社,2007
    [139]葛哲学,孙志强,神经网络理论与MATLAB R2007实现,北京:电子工业出版社,2007
    [140]牛志刚,张建民,基于Turbo PMAC的数控系统自定义伺服算法的嵌入和实现,新技术新工艺,2005,(7):11-13
    [141]解本铭,鞠红超,基于PMAC打磨机进给伺服系统的研究,制造技术与机床,2009,(004):42-44
    [142]王清华,韩秋实,孙志永等,基于Turbo PMAC数控系统的PID在线调节,微计算机信息,2007,5:12-15
    [143]Reed J.S., Ioannou Pa. Instability analysis and robust adaptive control of robotic manipulators, Robotics and Automation, IEEE Transactions on, 1989, 5 (3): 381-386
    [144]骆再飞,滑模变结构理论及其在交流伺服系统中的应用研究[博士学位论文],浙江;浙江大学, 2003
    [145]卢娜,基于自适应滑模观测器的无刷直流电机无位置传感器控制[硕士学位论文],天津;天津大学,2008
    [146]张馨文,基于反步法的欠驱动船舶直线航迹跟踪控制[硕士学位论文],大连;大连海事大学,2011
    [147]刘兴堂,应用自适应控制,西安:西北工业大学出版社,2003
    [148]王霞,基于X-Y平台的摩擦补偿理论研究[硕士学位论文],河北;河北大学,2005
    [149]林壮,欠驱动水平机械臂滑模变结构控制研究[博士学位论文],哈尔滨;哈尔滨工程大学,2007
    [150]王家军,交流伺服系统的反推式控制策略研究[博士后研究工作报告],浙江;浙江大学,2005
    [151]郭亮,张东升,陶涛等,基于半闭环控制的数控系统反向间隙补偿,组合机床与自动化加工技术,2011,(4):47-50
    [152]夏军勇,热弹性效应和数控机床进给系统热动态特性的研究[博士学位论文],武汉;华中科技大学,2008
    [153]曹永洁,基于激光测试技术的数控机床误差识别与补偿研究[硕士学位论文],浙江;浙江大学,2006
    [154]PMAC用户手册,北京元茂兴控制设备技术有限责任公司,2002
    [155]严宗达,王洪礼,热应力,北京:高等教育出版杜,1993
    [156]夏军勇,胡友民,吴波等,考虑热弹性的滚珠丝杠热动态特性,华中科技大学学报,自然科学版,2008,36 (3):1-4
    [157]Eckert E.R.G., Drake Jr R.M. Analysis of heat and mass transfer , 1987
    [158]Yang H., Ni J. Dynamic modeling for machine tool thermal error compensation . TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING, 2003, 125 (2): 245-254
    [159]李明,基于动态神经网络的非线性自适应逆控制研究[博士学位论文],南京;南京理工大学,2007
    [160]徐丽娜,神经网络控制(第三版),北京:电子工业出版社,2009
    [161]黄宜军,小波神经网络及其在飞控系统中的应用研究[博士学位论文],西安;西北工业大学,2006
    [162]Zhang Q., Benveniste A. Wavelet networks . Neural Networks, IEEE Transactions on, 1992, 3 (6): 889-898
    [163]侯霞,小波神经网络若干关键问题研究[博士学位论文],南京;南京航空航天大学,2006
    [164]Yoo S.J., Park J.B., Choi Y.H. Stable predictive control of chaotic systems using self-recurrent wavelet neural network . Int. J. Control Autom. Syst, 2005, 3 (1): 43-55
    [165]王家军,基于自回归小波神经网络的感应电动机滑模反推控制,自动化学报,2009,35(1):1-8
    [166]陈诚,θFXZ型坐标测量机结构分析与驱动系统热误差模型的研究[博士学位论文],天津;天津大学,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700