金属板件等离子体弧柔性成形技术的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属板件等离子体弧柔性成形是近几年发展起来的金属板材成形技术,是一种新兴的、有广阔发展前景的板材柔性成形技术,其核心是:以等离子体弧为热源,通过合理控制弧柱功率、扫描轨迹和速率,使材料内部形成可控的温度梯度进而产生非均匀热应力场,使板材成形为预期要求的形状。该方法不需要花费大量的时间和资金来制造工模具,对降低新产品的开发成本、缩短开发周期具有积极意义,尤其在新车开发等大型板件多品种小批量成形生产中,具有广阔的应用前景。
     本研究针对金属薄板等离子体弧柔性成形研究中存在的问题,采用理论分析、数值计算和实验测试相结合的方法,以建立等离子体弧柔性成形数值计算模型、技术参数关系、实验手段等关键技术为重点,以复杂三维曲面成形和成形精度控制为目标,研究了等离子体弧板材柔性成形的应变场、热参数、扫描间距、路径规划等重要问题,实现了复杂曲面和目标圆弧面的加工成形。论文的主要研究工作如下:
     分析了等离子体弧柔性成形技术的研究现状,论述了等离子体弧弯曲成形的两种基本形式——正向弯曲和反向弯曲及其成形机理和控制方法,分析了温度梯度机理、屈曲机理和增厚机理产生的机制及作用过程,结果表明在温度梯度机理、屈曲机理与耦合机理条件下,垂直于扫描线方向的横向应力和板材上下表面塑性应变的不均匀分布是板材弯曲变形的主要因素;板材既产生绕扫描线弯曲也产生垂直扫描线弯曲变形,弯曲成形的变化大小主要取决于塑性区的大小。
     为定量描述等离子体弧作用下金属板材的传热规律和应力应变状态,在重点研究了模型选取、移动热源模拟、材料特性和载荷施加等问题的基础上,建立了等离子体弧柔性成形过程的瞬态温度场有限元模型和应力应变场热弹塑性有限元模型;对温度场分布、应力应变状态以及形变规律进行了计算和分析,得出了在各种参数组合条件下的薄板温度场和应力应变场。
     为解决金属板复杂曲面三维成形问题,根据成形目标形状,基于大变形弹塑性有限元理论,计算出双曲率曲面及冠面成形应变场,根据主应变矢量方向与扫描路线的垂直关系,完成了球冠面和马鞍形曲面的等离子体弧扫描路径规划;在建立了加热区应变值与等离子体弧功率和扫描速度之间关系数据库和等离子体弧柔性成形实验装置的基础上,将数控技术与等离子体弧柔性成形技术相结合,实现等离子体弧扫描速度以及弧柱热能加载的调整,成形出球冠面和马鞍形面的目标形状,为复杂曲面的成形奠定了设计制造基础。
     为保证光滑连续圆弧面的成形质量,在数值计算和实验的基础上,确定了扫描间距、扫描顺序的选取原则,证明较小的扫描间距会得到连续性较好的塑性应变场,可以有效提高成形件的成形质量;给出了成形光滑连续圆弧面主要参数γ与扫描间距、成形圆弧半径的关系,数值模拟和实验采用渐进式等离子体弧扫描成形的方法,成形出了符合预期半径要求的连续圆弧面。对成形中出现的棱角效应进行了机理分析和数值计算,结果表明棱角效应是板材沿扫描线方向受几何约束产生了较小的压应变及在扫描线上、下表面的收缩量不同所造成;提出了通过分段扫描解决棱角效应的方法,明显提高了成形质量。
     研究了等离子体弧柔性成形试件的金相组织,结果表明较低功率的等离子体弧柔性成形会使板材晶粒细化,有利于改善材料的显微组织结构,采用合适的参数加工能在一定程度上改善成形件的机械性能。
     利用BP神经网络对板材成形进行了预测。通过实验数据的训练,建立了等离子体弧金属板材柔性成形效果与加工工艺参量的神经网络预测模型,并利用此模型进行了成形弯曲角度和扫描次数的预测,弯曲角度的预测误差小于5%,而扫描次数的预测误差小于2%。应用灰色系统理论与时序分析,对金属板的动态角度变形进行预测,当参与模型预测的观测序列为最新序列时,可保持较高精度的短期预测,预测误差小于3%。上述工作为成形精度的控制奠定了基础。
Bending forming of sheet metal is an advanced processing technique for sheet metal developed in recent three years, which is newly emerging and promising. The core of the technology is that it takes plasma arc as heat source to form a controllable temperature gradient and an inhomogeneous thermal stress field through controlling arc-power, scanning path and scanning speed reasonably. Thus, the expected goal can be satisfied. The flexible forming without mould and external force is one of the advantages. The traditional technology does not only cost a lot of time and money, but also take up considerable human resource. So, the new technology will do goods to reduction of production costs and shortening developing time of new product, especially the production of multi-type and small batch of the large-scale sheets such as cars.
     The research status domestic and overseas of flexible forming of sheet metal with plasma arc and the mechanism and features of plasma arc were introduced in the paper. Two basic forms of the FFUPA, bending towards and away from plasma arc, were stressed. Temperature gradient mechanism, buckling mechanism and upsetting mechanism and causes induced were also analyzed. Further more, technology problem of the flexible forming using plasma arc was brought forward.
     In order to show the inner relations among part accuracy, arc characteristics and scanning path, and solve the technology problems such as power, scanning path and scanning speed, finite element method analytical model of thermo-elasto-plastic stress during plasma arc scanning was established. The plasma arc was treated as a jumping heat source with small steps, which was loaded on the small metal, according to its process of floating scanning. Transient responses of stress and elasto-plastic large deformation were solved. Distribution of temperature field, stress state and result of deformation were calculated. The thesis developed a 3-D FEM simulation model of plasma arc forming which included a nonlinear thermal-structural analysis and the calculates of the temperature field and stress- strain field of metal plate under different series of process parameter. It had also analyzed the influence of process parameters on temperature field and stress- strain field.
     The stress- strain field induced by the forming of doubly curved surface was calculated using large-deformation elastic FEM to make sheet-metal form better comply with the object shape. Scanning paths of heat source were designed, including spherical-crown and saddle-shaped surfaces. The mechanisms of edge effects induced in the experiments had been discussed and the solutions were brought forward to form the proper sheet metals through forming experiments and numerical analysis.
     The principle of selection of scanning interval is determined to improve the forming quality of smooth continuous arc surface on the base of simulation computation and experiment. The minimized scanning space can obtain strain-plastic fields with good continuity. The geometrical relationship between circular arc bending part and V-shape was investigated. In this paper, the author advanced the relationship between a parameterγand the degree of circular arc smoothness firstly. A simulation program of circular arc flexible forming of sheet metal using plasma arc was programmed using the ANSYS Parametric Design Language (APDL). The numerical simulation and experiments adopted increased forming method using plasma arc. The results gained were consistent with the required shapes after several V-shape bends.
     For angular effects in the experiment the mechanism analysis and numerical calculations are performed. The warp is mainly induced by the smaller compression strain caused by geometric constraint and different shrinkage between top and bottom surface. The solution of angular effects is brought forward and the satisfied sheets are formed.
     Based on the above analysis, the experimental facility of bending forming using plasma arc was built up. In order to form complex 3D surfaces, flexible forming with plasma arc and CNC were combined to realize the adjustment of plasma arc heat loading under the conditions of speed variation. Thus, the spherical-crown and saddle-shaped surfaces were demonstrated. Consequently, the basic rules and key technology of bending forming using plasma arc in practical work were obtained and the application level of the flexible forming using plasma arc had been further improved. The effects of the main parameters including power, scanning speed, scanning distance and scanning sequence had been investigated.
     Metallurgical analysis of the formed sheet metal was executed on the basis of mass of experimental data, and the change of microstructure of sheet metal after hot working could be mastered to make sure that the grain refining were induced by bending forming. Accordingly, the material microstructure was improving and the mechanical properties were superior to original materials.
     BP neural network was applied to flexible forming with plasma arc on the base of MATLAB. Inputs and outputs to the neural network were properly chosen. The mathematical model between the forming effect and experimental parameter was established, which was used of the forecast of bending angle and scanning times. The prediction error of bending angle is less than 5% and that of scanning times is less than 2%. The grey system theory and time series analysis was applied to forecast the dynamic deformability of angle. When observation sequence is the latest, it can keep the short-term prediction with a high accuracy. The prediction accuracy is.less than 3%.
引文
[1]梁炳文,陈孝戴,王志恒.扳金成形性能[M].北京:机械工业出版社,1999:53-76.
    [2]熊火轮,胡世光.板料成形中的计算机辅助技术[M].北京:航空航天大学出版社,1994:35-97.
    [3]邓陟,王先进,陈鹤峥.金属薄板成形技术[M].北京:兵器工业出版社,1993:6-180.
    [4]徐卫平,罗家文.钢制船舶建造的水火弯板[J].造船技术,1998,3(9):12-13.
    [5]Nomoto T.Development of Simulator for Plate Bending by Line Heating[J].Journal of Zosen Kyokai,1990,168:527-535.
    [6]Ueda Y,Murakaw H,Mohamed R A.Development of Computer-Aided Process Planning System for Plate Bending by Line Heating[J].Journal of Ship Production,1994,10(4):577-586.
    [7]Moshaiov A,Shin J G.Modified,Strip Model for Analyzing the Line Heating Method- Part2:Thermo-Elastic-Plastic Plates[J].Journal of Ship Research,1991,35(3):266-275.
    [8]Ang C D,Moon S C.Algorithm to determine heating lines for plate forming by line heating method[J].Journal of Ship Production,1998,14(4):238-245.
    [9]Ang C D,Seo S,Ko D E.Study on the prediction of deformations of plates due to line heating using a simplified thermal elasto-plastic analysis[J].Journal of Ship Production,1997,13(1):22-27.
    [10]Rashwan A M.Prediction of heating lines for bending shell plating of ship structure:(Part Ⅰ)uniform curved surfaces[J].Alexandria Engineering Journal,1998,3:A175-A183.
    [11]Yu G,Anderson R J,Maekawa T,Patrikalakis N M.Efficient simulation of shell forming by line heating[J].International Journal of Mechanical Sciences,2001,43(10):2349-2370.
    [12]刘玉君,王东,纪卓尚,邓燕萍.水火弯板工艺参数优化设计[J].大连理工大学学报,2000,40(2):207-209.
    [13]汪建华,戚新海,徐磊.水火弯板的热弹塑性数值模拟[J].造船技术,1996,2(12):13-15.
    [14]金泉林.板热应力弯曲的若干变形规律的数值模拟研究[J].塑性工程学报,1999,6(4):1-8.
    [15]董大栓,柳存根,谭家华.水火弯板计算中高斯分布热源模型各参数的实验确定[J].上海交通大学学报,2001,35(10):1459-1463.
    [16]向祖权,张庆英,王呈方.基于计算机视觉的水火弯板线变形测量系统的设计与实现[J].武汉理工大学学报,2002,26(1):86-88.
    [17]Y Namba.Laser forming in space[J].In:Proe.of Int.Conf.On Laser'85ed.C P Wang,1986:403-407
    [18]H Frackiewcz.A method of bending metal objects[J].European Patent Application,0317830 A2,1988.
    [19]H Frackiewcz,W Kalita.Laser forming of sheet metal[J].VEIBerichte,1990,867:317-328.
    [20]H Frackiewcz,W Trampezynski.Shaping of tubes by laser beam[J].ISATA 25~(th),1992:373-380.
    [21]Geiger M,Vollersen F.Mechanism of Laser Forming[J].Ann.CIRP,1993,42(1):301-304.
    [22]Geiger M.Synergy of Laser Material Processing and Metal Forming[J].Ann CIRP,1994,43(2):563-570.
    [23]Hennige T,Holzer S,Vollertsen F,Geiger M.On the working accuracy of laser bending[J].Journal of Materials Processing Technology,1997,2(71):422-432.
    [24]Cheng P J,Lin S C.Analytical model for the temperature field in the laser forming of sheet metal[J].Journal of Materials Processing Technology,2000,2(1):260-267.
    [25]An.K.Kyrsanidi,Th B Kermanidis.Numerical and experimental investigation of the laser forming process[J].J.of material processing technology,1999,3(87):281-290.
    [26]Cheng P J,Lin S C.Using neural networks to predict bending angle of sheet metal formed by laser[J].International Journal of Machine Tools and Manufacture,2000,40(8):1185-1197.
    [27]Y.Lawrence Yao.Recent development in laser material processing[J].Proc.ICFDM'2000,Hangzhou,China,2000,6:17-19.
    [28]http://www.personal.dundee.ac.uk/gathomoso/research.htm.
    [29]Vollertsen,M.Geiger.FDM and FEM simulation of laser forming:a comparative study[J].Advanced technology of plasticity(4~(th)ITCP).1993,8:1793-1798.
    [30]M.T.Kao.Elementary study of laser sheet forming of single curvature[J].Master thesis,Department of power mechanical engineering,Tsing Hua University,1996,2:45-110.
    [31]F.Vollertsen.An analytical model for laser bending[J].Laser Eng,1994:261-276.
    [32]F.Vollertsen,M.Rodle.Model for the temperature gradient mechanism of laser bending[J].Laser assisted net shape Eng,1994,5:371-378.
    [33]Cheng P J,Lin S C.An analytical model to estimate angle formed by laser[J].Journal of material processing technology,2001,108:314-19.
    [34]季忠.板料激光弯曲成形及其数值模拟[J].金属成形工艺.1998,16(1):24-30.
    [35]李纬民,Manfied Geiger Frank Vollertsen.金属板材激光弯曲成形规律的研究[J].中国激光,1998,25(9):859-864.
    [36]An.K.Kyrsanidi,Th.B.Kermanidis,Sp.G.Pantelakis.An analytical model for the predication of distortions caused by the laser forming process[J].Journal of Materials Processing Technology,2000,104:94-102.
    [37]An.K.Kyrsanidi,Th.B.Kermanidis,Sp.G.Pantelakis.Numerical and experimental investigation of the laser forming process[J].Journal of Materials Processing Technology,1999,87:281-290.
    [38]王秀凤.板料激光弯曲的实验研究[J].锻压机械,1999,34(3):8-10.
    [39]季忠,王忠雷,焦学健,贾玉玺.板料激光弯曲成形工艺参数优化设计[J].锻压技术,2002,9(6):38-41.
    [40]季忠,刘韧,王忠雷.基于遗传算法的板料激光弯曲成形工艺优化设计[J].锻压装备与制造技术,2003,(5):79-82.
    [41]王扬,谭建国,杨立军.板材激光加热弯曲成型实验研究[J].光电子·激光,2003,4(4):415-418.
    [42]金晓男.板料激光弯曲成形过程有限元模拟及试验研究[M].哈尔滨工业大学硕士学位论文,哈尔滨工业大学,2003:21-78.
    [43]管延锦,赵国群,孙胜,张建华.扫描次数对板料激光弯曲成形影响的有限元仿真研究[J].航空制造技术,2004,12(1):55-57.
    [44]杨晶,刘顺洪.板料激光弯曲成形的温度场三维数值研究[J].激光技术,2003,6(3):97-100.
    [45]吕波.金属板材激光弯曲成形的数值模拟及实验研究[M].大连理工大学硕士学位论文,2004:10-78.
    [46]卢毅申,周锦进,王续跃.水—磁约束等离子弧切割方法研究[J].大连理工大学学报,1995,35(6):839-843.
    [47]徐文骥,蒋希时,周锦进等.工程陶瓷等离子切割基础研究[J].制造技术与机床,2002,9(1):7-9.
    [48]Male A T,Pan C X,Chen Y W,Li P J,Zhang Y M.Processing effects in plasma forming of sheet metal[J].Annals of the CIRP,2000,49(1):213-216.
    [49]Male A T,Li P J,Chert Y W,Zhang Y M.Flexible forming of sheet metal using plasma arc[J].Materials Processing Technology,2001,115(1):61-64.
    [50]Male A T,Chen Y W,Pan C X,Zhang Y M.Rapid prototyping of sheet metal components by plasma-jet forming[J].Materials Processing Technology,2003,135(2-3):340-346.
    [51]潘春旭,Zhang Y M,Male A T.等离子电弧薄板柔性成形技术及工艺特性[J].中国机械工程,2003,14(1):75-78.
    [52]徐文骥,曲洪伟,方建成等.金属板件等离子体弧柔性成形热过程计算与分析[J].中国机械工程,2004,15(6):543-546.
    [53]徐文骥,王涛,方建成等.金属板件等离子体弧柔性成形技术基础研究[J].大连理工大学学报,2004,44(6):810-814.
    [54]Xu Wenji,Wang Tao,Fang Jiancheng,Basic research on flexible forming of sheet metal using plasma arc[J],.Journal of dalian university of technology,2004,44(6):810-814.
    [55]Xu Wenji,Wang Tao,Fang Jiancheng,An experimental study on flexible forming of sheet metal using plasm,a arc[J].China Mechanical Engineering,2004,15(23):2146-2149.
    [56]Xu Wenji,Qu Hongwei,Fang Jiancheng,A Numerical Simulation for Temperature Field on Flexible Forming of Sheet Metal Using Plasma Arc[J].China Mechanical Engineering,2004,15(6):543-546(in Chin.
    [57]W.J.Xu,J.C.Fang,X.Y.Wang,T.Wang,F.Liu and Z.Y.Zaho.A numerical simulation of temperature field in plasma-arc forming of sheet metal,Journal of Materials Processing Technology,2005,(164):1644-1649.
    [58]徐文骥,王涛,曲洪伟,朱兆民.金属板件等离子体弧柔性成形技术基础研究[J].大连理工大学学报,2002,6:513-517.
    [59]王涛.等离子体弧弯曲成形技术的基础研究[M].大连:大连理工大学硕士学位论文,2003:10-97.
    [60]曲洪伟.等离子体弧三维柔性成形技术基础研究[M].大连:大连理工大学硕士学位论文,2004:10-87.
    [61]刘非.等离子体弧板材柔性成形技术的参数控制[M].大连:大连理工大学硕士学位论文,2005.3.
    [62]王中营.等离子体弧柔性成形过程数值模拟和试验研究[M].郑州:河南工业大学硕士学位论文,2006:5-85.
    [63]蒋春辉.基于有限元仿真的金属薄板等离子体弧三维柔性成形的研究[M].郑州:河南工业大学硕士学位论文,2007:5-87.
    [64]雷玉成,郑惠锦.工艺参数对焊接等离子弧的影响[J].焊接学报,2001,22(6):73-76.
    [65]董红刚,高洪明,吴林.固定电弧等离子弧焊接热传导的数值计算[J].焊接学报,2002,23(4):24-26.
    [66]沈勇,刘黎明,张兆栋.镁合金中厚板变极性等离子弧焊工艺[J].焊接学报,2005,26(6):1-4.
    [67]Irving B.High-Tolerance Plasma Arc Cutting Corves out Some Niches in Industry[J].Welding Jounal,1992,71(10):33-37.
    [68]徐文骥,蒋希时,周锦进等.工程陶瓷等离子切割基础研究[J].制造技术与机床,2002,13(1):7-9.
    [69]雷玉成,郊惠锦.工艺参数对焊接等离子弧的影响[J].焊接学报,2001,22(6):73-76.
    [70]董红刚,高洪明,吴林.固定电弧等离子弧焊接热传导的数值计算[J].焊接学报,2002,23(4):24-26.
    [71]沈勇,刘黎明,张兆栋.镁合金中厚板变极性等离子弧焊工艺[J].焊接学报,2005,26(6):1-4.
    [72]王惜宝.铁基B_4C等离子弧堆焊层及其纤维增韧的研究[M].天津:天津大学博士论文,1996:58-73.
    [73]董丽虹,徐滨士,朱胜等.等离子弧堆焊镍基复合粉末涂层材料[J].焊接学报,2005,26(1):37-40.
    [74]刘政军,季杰,董晓强等.超硬质相在高温磨损中的行为及抗磨性[J].焊接学报,1999,20(2):120-124.
    [75]斯松华,何宜柱.等离子堆焊合金层组织及腐蚀磨损性能[J].焊接学报,2002,23(2):40-42.
    [76]胡志高,王文明,赵辉等.等离子体熔炼含氮合金钢研究[J].北京科技大学学报,1996,18(2):183-187.
    [77]潘学民,边秀房,赵程.等离子重熔的对Al-16Si合金中Si相细化作用[J].金属学报,2000,36(7):689-692.
    [78]Nakashio N.Meting Behavior of Low-Level Radioactive Miscellaneous Solid Waste and Characteristics of Solidified Producte[M].Ibaraki-ken:Naka-gun,JAERI-Research,2001:49-85.
    [79]Moore A I W.Plasma-Assisted Machining Cuts tough Materials Faster[J].Canadian machinery and Metal-working,1997,23(10):60-63.
    [80]Stauffer R N.Breakthrough in Hot Machining[J].Mannuf.Eng,1979,25(4):60-61.
    [81]赵文珍,陈尚仁.等离子加热切削ZGMn13切削力的实验研究[J].沈阳机电学院学报,1985,12(4):25-27.
    [82]Usmani S,Sampath S.Erosion studies on duplex and graded ceramic overlay contings[J].JOM,1996,48(11):51-54.
    [83]Eroglu S,Baykara T.Synthesis of functionally gradient NiCrAl/MgO ZrO_2 coating by plasma spray technique[M].13th International Plansee Seminar'93,Rertte,Tird,Austria,1993:363-372.
    [84]Fincke J R,Williamson R L,Chang C H.Plasma Spraying of Functionally Graded Materials:Measured and Simulated Results[M].Proceedings of the International Thermal Spray Conference,QUE,ASM Thermal Spray Society,2000:141-148.
    [85]徐文骥,卢毅申,方建成等.水熔性原模等离子熔射成形法制造零件[M].第八届全国电加工学术年会论文集,大连:大连理工大学出版社,1997:449-451.
    [86]方建成,徐文骥,金洙吉等.等离子熔射成形件的激光熔凝[J].激光杂志,1998,19(2):39-41.
    [87]徐文骥.等离子熔射成形法制造零件技术的基础研究[M].大连:大连理工大学博士论文,2002:48-69.
    [88]Fang J C,Xu W J,Zhao Z Yet al.FGM Mould with Fine Veins Rapidly Manufactured by Plasma Spraying[J].Key Engineering Materials,2005,291-292:609-614.
    [89]Zhao Z Y,Wang L,Fang J C et al.Near Net Forming of Metal-Ceramic Parts by Plasma Spraying[J].Key Engineering Materials,2005,280-283:1815-1818.
    [90]Zhao Z Y,Fang J C,Li H Y.Plasma spray forming of FGM mould[J].Transactions of Nonferrous Metal Society of China,2005,15(2):427-431.
    [91]Fang J C,Xu W J,Zhao Z Y.Plasma-Particle Interaction in Spray Forming[J].Materials Science Forum,2004,471-472:448-452.
    [92]Fang J C,Xu W J,Zhao Z Yet al.Influence of In-flight Particle Characteristics on the Forming Quality[J].Materials Science Forum,2004:2823-2826.
    [93]Fang J C,Xu W J,Wang H Set al.In-flight Behavior of Ceramic Particle in Plasma Spray Forming[J].Key Engineering Materials,2004,280-283:1807-1810.
    [94]王勖成,邵敏编著.有限单元法基本原理和数值方法[m].第二版.北京:清华大学出版社,1996:22-231.
    [95]龚曙光.ANSYS基础应用及范例解析[M].北京:机械工业出版社,2003:46-167.
    [96]唐兴伦,范群波.ANSYS工程应用教程[M].北京:中国铁道出版社,2003:35-176.
    [97]机械工程材料性能数据手册[M].北京:机械工业出版社,1995:28-356.
    [98]董大栓,柳存根,谭家华.水火弯板计算中高斯分布热源模型各参数的实验确定[J].上海交通大学学报,2001,35(10):1459-1463.
    [99]过增元,赵文华著.电弧和热等离子体[M].北京:科学技术出版社,1986:37-135.
    [100]张文绒.焊接传热学[M].北京:机械工业出版社.1987:134-136.
    [101]孔祥谦.有限单元法在传热学中的应用[M].第三版.北京:科学出版社,1998:67-152.
    [102]辛启斌编.材料成形计算机模拟[M].北京:冶金工业出版社,2005:25-86.
    [103]任怀亮.金相实验技术[M].北京:冶金工业出版社,1986:47-79.
    [104]白志华.变相不锈钢焊接与热模拟试验后显微结构变化研究(硕士学位论文)[M].广州:中山大学,2002:15-67.
    [105]于永泅,齐民.机械工程材料第五版[M].大连:大连理工大学出版社,2003:56-66.
    [106]胡守仁.神经网络应用技术[M].长沙:国防科技大学出版社,1993:3-10.
    [107]朱福喜,汤怡群,傅建明.人工智能原理[M].武昌:武汉大学出版社,2002:232-244.
    [108]徐秉净.神经网络理论与应用[M].广州:华南理工大学出版社.1994:56-86.
    [109]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术出版社,2000:78-123.
    [110]史玉峰,孙保琪.时间序列分析及其在变形数据分析中的应用[J].金属矿山,2004,3(8):13-15.
    [111]李玲,施勇.一种新的时间序列综合分析法和应用[J].水科学进展,2000,(12):451-456.
    [112]潭冠军.GM(1,1)模型的背景值构造方法和应用[J].系统工程理论与实践,2000,(4):99-103.
    [113]杨叔子,无雅.时间序列分析的工程应用[M].武昌:华中理工大学出版社,1994:57-134.
    [114]杨位钦,顾岚.时间序列分析与动态数据建模[M].北京:北京工业学院出版社,1986:50-110.
    [115]陈永奇.变形观测数据处理[M].北京:测绘出版社,1988:46-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700