鳙鱼资源增值化开发技术基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国有着全世界最丰富的淡水鱼资源,淡水鱼类有七百多种,其中主要经济鱼类有四五十种。鳙鱼(Aristichthvs nobilis),又称花鲢、胖头鱼,广泛分布于中国淡水水域,是最常见的重要经济鱼种之一。鳊鱼通常为鲜食,鱼肉和鱼皮皆为食用部位,但鱼骨、鱼鳞等占鱼体50-70%的部分都会作为废弃物被抛弃,造成资源的浪费和环境的污染。随着中国淡水鱼加工产业的不断发展,对这些废弃物的合理开发利用成为其中一个重要的问题。从这些废弃物中提取胶原蛋白和其他有效物质,对解决因鱼下脚料引起的资源浪费和环境问题以及增加鱼产品利用率、提高淡水鱼产业的经济价值都有重大的意义。
     本文分析了鳙鱼鱼鳞的营养成分组成:蛋白质含量为60.19%,灰分含量为25%,水分含量为13.40%。由于灰分中羟基磷灰石的存在不利于胶原蛋白的提取,需要对鱼鳞进行脱钙处理。在对脱钙工艺进行优化后得到最佳工艺为EDTA-2Na浓度0.4mol/l,液料比30:1,时间8h,可脱除占鱼鳞17.56%的钙。
     本文优化了乙酸提取胶原蛋白和胃蛋白酶提取胶原蛋白的提取工艺,在乙酸浓度0.5mol/l、液料比30、提取时间72h的条件下,酸溶性胶原蛋白的提取率为1.31%±0.31%,酶浓度1250U/g、液料比30、提取时间48h的条件下,酶溶性胶原蛋白的提取率为1.79+0.28%。
     对酸溶性胶原蛋白和酶溶性胶原蛋白的一级结构、二级结构进行了分析。氨基酸组成分析表明,胶原蛋白含量最丰富的氨基酸是甘氨酸,达24%,其次是脯氨酸、谷氨酸、丙氨酸,还含有比较丰富的精氨酸。红外光谱扫描发现两种胶原蛋白含有α螺旋结构,其螺旋结构保持完好。两种胶原蛋白的变性温度都为32.5℃,比大多鱼鳞胶原蛋白的变性温度高。
     胶原蛋白变性水解后会形成明胶,明胶的凝胶强度是其重要的质量指标之一,实验采用响应面试验设计对鱼鳞明胶的提取条件进行了优化,其最佳提取工艺为提取温度46.98。C,时间1.27h,pH4.00以及酶浓度547U/g,得到较高凝胶强度的鱼鳞明胶,最大凝胶强度为318+7g(p<0.01),比热水提取明胶的凝胶强度(216+3g,p<0.01)高。
     将鱼鳞明胶和猪皮明胶进行了比较。对氨基酸组成的分析表明,鱼鳞明胶和猪皮明胶在苏氨酸、甲硫氨酸、异亮氨酸、苯丙氨酸和赖氨酸的组成上有极显著的差异,在羟脯氨酸、甘氨酸、丙氨酸的组成上有显著差异。鱼鳞明胶的羟基化程度(32.72±0.15%)低于猪皮明胶的羟基化程度(34.24±0.17%),亚氨基酸含量(20.75±0.82%)也低于猪皮明胶的亚氨基酸含量(24.01±-0.70%)。对鱼鳞明胶的流变性分析发现,鱼鳞明胶有着优于猪皮明胶的成胶能力,但其热稳定性较猪皮明胶差.
     利用木瓜蛋白酶和胃蛋白酶双酶对鱼鳞明胶进行分步水解,水解产物对血管紧张素转化酶(ACE)的半抑制浓度IC5o为864μg/ml。木瓜蛋白酶水解产物和胃蛋白酶水解产物经超滤后,分子量范围<5KD的肽部分的IC50达331μg/ml。进一步葡聚糖凝胶柱分离,得到两个组分,其中Ⅱ组分的IC50达107μg/ml。
     本文还探索了利用美拉德反应改善鱼肉水解液风味的处理技术。获得美拉德反应的最佳条件,葡萄糖添加量3.75%、反应温度120℃、pH9.5、反应时间100min。美拉德反应前后变化较明显的氨基酸主要有:精氨酸(减少74.44%)、赖氨酸(减少65.50%)和酪氨酸(减少42.50%)。美拉德反应产物中含量较丰富的氨基酸有谷氨酸、天门冬氨酸。
China has the richest freshwater fish resources around the world, more than700species, including40-50commercially species. Bighead carp (Aristichthys nobilis), distributed in South and East China, is one of the most commonly commercially produced fresh water fish in China. The fish meat and skin are used for human food, leaving almost50-70%wastes such as bone and scale. With the rapid expansion of the fish food process industry in Southeast China, the wastes disposal poses a big environmental challenge. The extraction of gelatin or other bio-materials from these production wastes might be a promising solution in terms of both reducing environment pollution and increasing the economic efficiency of the industry.
     Nutritional components of bighead carp scale were analyzed with protein60.19%. ash25%, and moisture13.40%. Considering the difficulty to extract the collagen together with the existence of hydroxyapatite in ash. decalcification process was necessary before extraction.17.56%of Calcium was decalcified with the optimal extraction conditions of0.4mol/l EDTA-2Na,30:1ratio of solution to sample and8h.
     Optimal collagen extracting processes using acetic acid and pepsin were also analyzed during the study. The results showed that extraction rate for collagen reached1.31%±0.31%under the condition of acetic acid concentration of1250U/g, liquid to solid ratio of30:1and extraction time of2hours and pepsin concentration of0.5%. liquid to solid ratio of30:1and extraction time of2hours for the optimized conditions for pepsin extraction method with the highest extraction rate of1.79±0.28%.
     Primary and secondary structures of acid-soluble collagen and pepsin-solubilized collagen were analyzed in the study. The amino acid composition analysis showed that the content of Glycine is over24%which is the most abundant component, and poline, glutamic acid, alanine, arginine are of significant proportions. Structure of a helix was determined by using infrared scan. Denatured temperature of protein was32.5℃which was higher than the other kinds of collagen of fish species.
     Gelatin can be gained after hydrolyzing the denatured collagen. The process conditions for gelatin extraction from scale are identified by using Response surface experiments. Under the conditions of extraction temperature of46.98℃,2h, pH4.00and enzyme concentration of547U/g, the maximum gel strength can reach318±7g (p<0.01) comparing to (216±3g, p<0.01) using hot water method.
     The comparison study of gelatin from scale and pigskin indicates high significant composition differences of threonine, isoleucine, methionine and phenylalanine and lysine and significant differences of hydroxyproline, glycine, alanine. Bighead carp scale gelatin showed lower imino acid (Proline and Hydroxyproline) content (20.75±0.82%) than pig skin gelatin (24.01±0.70%). Assessment on dynamic viscoelastic properties indicated that bighead carp scale gelatin had better gelling ability and lower thermo-stability than pig skin gelatin.
     Using papain and pepsin, we got the bighead carp scale gelatin hydrolysate which can inhibite the activity of angiotensin converting enzyme (ACE), with ICsoof864μg/ml. After ultrafiltration, we got the fraction of molecular mass lower than5KD with IC50of331μg/ml. Then the fraction of molecular mass lower than5KD was isolated by Sephadex G25to afford one part with IC50of107μg/ml.
     We studied the technology of improving the flavor of bighead carp hydrolysate by Maillard reaction. The optimal conditions for sensory evaluation are9.5for reaction pH,120℃for reaction temperature,3.75%for the glucose, and100min for the time of reaction. Amino acid analysis shows that the main amino acids changed much during the reaction are:arginine (reduced74.44%), lysine (reduced65.50%), and tyrosine (reduced42.50%), which may be the key amino acids taking part in the maillard reaction.
引文
1. 顾杨娟等,鱼鳞化学成分研究进展.山西农业科学,2011.39(11):1227-1231.
    2. Ikoma, T., et al. Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. Journal of Structural Biology,2003.142(3): 327-333.
    3. 张达江,王亮,1型胶原蛋白的结构、功能及其应用研究的现状与前景.生物技术通讯,2006.17(2):265-269.
    4. 胡帅等,胶原蛋白结构的研究进展.西部皮革,2008.30(8):16-19.
    5. 李国英,周荣清,石碧.各种类型胶原的形态结构特征.中国皮革,2005.34(7):1-3.
    6. 杜春玲,姚菊明,胶原蛋白结构基础上的设计与合成.生物工程学报,2007.23(2):189-194.
    7. 李卫林,赵升云,胶原蛋白水解物在化妆品中的功能特性.氨基酸和生物资源,2008.30(4):10-12.
    8. 万春燕,王英华,邬元娟,胶原蛋白在食品中的应用现状及其发展前景.中国食物与营养,2008.9:24-26.
    9. Wang, Y. and J.M. Regenstein, Effect of EDTA, HC1, and Citric Acid on Ca Salt Removal from Asian Silver Carp Scales Prior to Gelatin Extraction. Journal of Food Science,2009.74(6):C426-C431.
    10. Cho, S.M., Y.S. Gu, and S.B. Kim, Extracting optimization and physical properties of yellowfin tuna (Thunnus albacares) skin gelatin compared to mammalian gelatins. Food Hydrocolloids,2005.19(2):221-229.
    11. Kolodziejska,I., et al., Effect of extracting time and temperature on yield of gelatin from different fish offal. Food Chemistry,2008.107(2):700-706.
    12. Duan, R., et al., Study on the properties of gelatins from skin of carp (Cyprinus carpio) caught in winter and summer season. Food Hydrocolloids, 2011.25(3):368-373.
    13. Liu, H.Y., D. Li, and S.D. Guo, Extraction and properties of gelatin from channel catfish (Ietalurus punetaus) skin. LWT-Food Science and Technology,2008.41(3):414-419.
    14. Benjakul, S., et al., Characteristics of gelatin from the skins of bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus. Food Chemistry, 2009.116(2):445-451.
    15. Limpisophon, K., et al., Characterization of gelatin films prepared from under-utilized blue shark (Prionace glauca) skin. Food Hydrocolloids,2009. 23(7):1993-2000.
    16. Rahman, M.S., GS. Al-Saidi, and N. Guizani, Thermal characterisation of gelatin extracted from yellowfin tuna skin and commercial mammalian gelatin. Food Chemistry,2008.108(2):472-481.
    17. Sai-Ut, S., A. Jongjareonrak, and S. Rawdkuen, Re-extraction, Recovery, and Characteristics of Skin Gelatin from Farmed Giant Catfish. Food and Bioprocess Technology,2010:1-9.
    18. Jamilah, B. and K..G. Harvinder, Properties of gelatins from skins of fish-black tilapia(Oreochromis mossambicus) and red tilapia(Oreochromis nilotica). Food Chemistry 2002.77(1):81-84.
    19. Karim, A.A. and R. Bhat, Fish gelatin:properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids,2009.23(3): 563-576.
    20. Nalinanon, S., et al., Improvement of gelatin extraction from bigeye snapper skin using pepsin-aided process in combination with protease inhibitor. Food Hydrocolloids,2008.22(4):615-622.
    21. Ninan, G., J. Joseph, and Z. Abubacker, Physical, Mechanical, and Barrier Properties of Carp and Mammalian Skin Gelatin Films. Journal of Food Science,2010.75(9):620-626.
    22. Kolodziejska, I., et al., Modification of the properties of gelatin from skins of Baltic cod (Gadus morhua) with transglutaminase. Food Chemistry,2004. 86(2):203-209.
    23. Zhou, P., S.J. Mulvaney, and J.M. Regenstein, Properties of Alaska Pollock Skin Gelatin:A Comparison with Tilapia and Pork Skin Gelatins. Journal of Food Science,2006.71(6):C313-C321.
    24. Gomez-Estaca, J., et al., Physical and chemical properties of tuna-skin and bovine-hide gelatin films with added aqueous oregano and rosemary extracts. Food Hydrocolloids,2009.23(5):1334-1341.
    25. Zeng, S., et al., Original article:Optimisation of extraction conditions and characteristics of skin gelatin from Nile tilapia (Oreochromis niloticus). International Journal of Food Science & Technology,2010.45(9): 1807-1813.
    26. Zhang, F., S. Xu, and Z. Wang, Pre-treatment optimization and properties of gelatin from freshwater fish scales. Food and Bioproducts Processing,2011. 89(3):185-193.
    27. Haug, I.J., K.I. Draget, and O. Smidsr(?)d, Physical and rheological properties of fish gelatin compared to mammalian gelatin. Food Hydrocolloids,2004. 18(2):203-213.
    28. 张丰香,王璋,许时婴,鱼鳞明胶的提胶工艺.食品与发酵工业,2008.34(9):96-100.
    29. G6mez-Guillen, M.C., et al., Structural and physical properties of gelatin extracted from different marine species:a comparative study. Food Hydrocolloids,2002.16(1):25-34.
    30. Jung, W.-K., et al., Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole(Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chemistry,2006.94(1):26-32.
    31. Qian, Z.-J., J.-Y. Je, and S.-K. Kim, Antihypertensive Effect of Angiotensin I Converting Enzyme-Inhibitory Peptide from Hydrolysates of Bigeye Tuna Dark Muscle, Thunnus obesus. Journal of Agricultural and Food Chemistry, 2007.55(21):8398-8403.
    32. Lee, S.-H., Z.-J. Qian, and S.-K. Kim, A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chemistry, 2010.118(1):96-102.
    33. Aleman, A., et al., Contribution of Leu and Hyp residues to antioxidant and ACE-inhibitory activities of peptide sequences isolated from squid gelatin hydrolysate. Food Chemistry,2011.125(2):334-341.
    34. Himaya. S.W.A., et al., An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-1 converting enzyme (ACE) activity and cellular oxidative stress. Food Chemistry,2012.132(4):1872-1882.
    35. Li, Y., et al., Purification of a Novel Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptide with an Antihypertensive Effect from Loach (Misgurnus anguillicaudatus). Journal of Agricultural and Food Chemistry,2012.60(5): 1320-1325.
    36. Sheih, I.C., T.J. Fang, and T.-K. Wu, Isolation and characterisation of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the algae protein waste. Food Chemistry,2009.115(1):279-284.
    37. Lin, L., S. Lv, and B. Li, Angiotensin-I-converting enzyme (ACE)-inhibitory and antihypertensive properties of squid skin gelatin hydrolysates. Food Chemistry,2012,131(1):225-230.
    38. Balti, R., et al., Three novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) using digestive proteases. Food Research International,2010.43(4):1136-1143.
    39. Kong, Q., et al., Optimization of Conditions for Enzymatic Production of ACE Inhibitory Peptides from Collagen. Food and Bioprocess Technology, 2011.4(7):1205-1211.
    40. Miguel, M., et al., ACE-inhibitory and antihypertensive properties of a bovine casein hydrolysate. Food Chemistry,2009.112(1):211-214.
    41. Terashima, M., et al., Novel Angiotensin-Converting Enzyme (ACE) Inhibitory Peptides Derived from Boneless Chicken Leg Meat. Journal of Agricultural and Food Chemistry,2010.58(12):7432-7436.
    42. Eresha Mendis, N.R., and Se-Kwon Kim, Antioxidant Properties of a Radical-Scavenging Peptide Purified from Enzymatically Prepared Fish Skin Gelatin Hydrolysate. J. Agric. Food Chem.,2005.53(3):581-587.
    43. Je, J.-Y., et al., Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry,2007.42(5):840-846.
    44. Jae-Young Je, Z.-J.Q., Sang-Hoon Lee, Hee-Guk Byun, and Se-Kwon Kim. Purification and Antioxidant Properties of Bigeye Tuna (Thunnus obesus) Dark Muscle Peptide on Free Radical-Mediated Oxidative Systems. Journal of Medicinal Food,2008.11(4):629-637.
    45. Ren, J., et al., Optimization of antioxidant peptide production from grass carp sarcoplasmic protein using response surface methodology. LWT-Food Science and Technology,2008.41(9):1624-1632.
    46. 冯红霞,陆兆新,苦味肽的形成及脱苦方法的研究.食品科学,2002.23(5):151-154.
    47. Ney, K., Bitterness of peptides:amino acid composition and chain length. Food taste chemistry,1979:149-173.
    48. J Adler-Nissen, G Poulsen, and P. Andersen, Enzymic hydrolysis of soy protein for nutritional fortification of low pH food. Ann Nutr Aliment,1978. 32:205-216.
    49. van Boekel, M.A.J.S., Formation of flavour compounds in the Maillard reaction. Biotechnology Advances,2006.24(2):230-233.
    50. Martins, S.I.F.S., W.M.F. Jongen, and M.A.J.S. van Boekel, A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science & Technology,2000.11(9-10):364-373.
    51. 冯大炎,周运友,Maillard反应与Strecker降解对食品风味与食品营养的影响.安徽师大学报(自然科学版),1993.16(2):79-84.
    52. Claus. A., R. Carle, and A. Schieber, Acrylamide in cereal products:A review. Journal of Cereal Science,2008.47(2):118-133.
    53. Zhang. Y. and G. Zhang, Occurrence and analytical methods of acrylamide in heat-treated foods:Review and recent developments. Journal of Chromatography A,2005.1075(1-2):1-21.
    54. 张彩菊,张憨,利用美拉德反应制备鱼味香料.无锡轻工大学学报,2004.23(5):11-15.
    55. Lan, X., et al., Temperature effect on the non-volatile compounds of Maillard reaction products derived from xylose-soybean peptide system:Further insights into thermal degradation and cross-linking. Food Chemistry,2010. 120(4):967-972.
    56. Yu, A.-N. and A.-D. Zhang, The effect of pH on the formation of aroma compounds produced by heating a model system containing 1-ascorbic acid with 1-threonine/l-serine. Food Chemistry,2010.119(1):214-219.
    57. Ajandouz, E.H., et al.. Effects of pH on caramelization and Maillard reaction kinetics in fructose-lysine model systems. Journal of Food Science,2001. 66(7):926-931.
    58. Kim, J.S. and Y.S. Lee, Effect of reaction pH on enolization and racemization reactions of glucose and fructose on heating with amino acid enantiomers and formation of melanoidins as result of the Maillard reaction. Food Chemistry. 2008.108(2):582-592.
    59. Ogasawara, M., T. Katsumata, and M. Egi, Taste properties of Maillard-reaction products prepared from 1000 to 5000 Da peptide. Food Chemistry,2006.99(3):600-604;
    60. Tian, H.Y., et al., Preparation of natural isovaleraldehyde by the Maillard reaction. Chinese Chemical Letters,2007.18(9):1049-1052.
    61. Dittrich, R., et al., Maillard Reaction Products Inhibit Oxidation of Human Low-Density Lipoproteins in Vitro. Journal of Agricultural and Food Chemistry,2003.51(13):3900-3904.
    62. Kitts, D.D. and C. Hu, Biological and Chemical Assessment of Antioxidant Activity of Sugar-Lysine Model Maillard Reaction Products. Annals of the New York Academy of Sciences,2005.1043(1):501-512.
    63. Bressa, F., et al., Antioxidant Effect of Maillard Reaction Products: Application to a Butter Cookie of a Competition Kinetics Analysis. Journal of Agricultural and Food Chemistry; 1996.44(3):692-695.
    64. Sun, W., et al., Effect of Maillard reaction products derived from the hydrolysate of mechanically deboned chicken residue on the antioxidant, textural and sensory properties of Cantonese sausages. Meat Science,2010. 86(2):276-282.
    65. Morales, F.J. and S. Jimenez-Perez, Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chemistry,2001.72(1):119-125.
    66. Yilmaz, Y. and R. Toledo, Antioxidant activity of water-soluble Maillard reaction products. Food Chemistry,2005.93(2):273-278.
    67. Lertittikul, W., S. Benjakul, and M. Tanaka, Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein-glucose model system as influenced by pH. Food Chemistry,2007.100(2):669-677.
    68. Billaud, C., C. Maraschin, and J. Nicolas, Inhibition of polyphenoloxidase from apple by Maillard reaction products prepared from glucose or fructose with L-cysteine under various conditions of pH and temperature. LWT-Food Science and Technology,2004.37(1):69-78.
    69. Guan, Y.G., et al., A pulsed electric field procedure for promoting Maillard reaction in an asparagine-glucose model system. International Journal of Food Science and Technology,2010.45(6):1303-1309.
    70. Ogawa, M., et al., Biochemical properties of bone and scale collagens isolated from the subtropical fish black drum (Pogonia cromis) and sheepshead seabream (Archosargus probatocephalus). Food Chemistry,2004. 88(4):495-501.
    71.张颖洁等,EDTA微波快速脱钙法在鱼鳞脱钙中的应用.食品工业,2007.1:42-44.
    72. ISO, ISO Standard method 3496, in Meat and Meat Products, Determination of L(-)-hydroxyproline.1978.
    73. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 Nature,1970.227:680-685.
    74. Liu, H., D. Li, and S. Guo, Studies on collagen from the skin of channel catfish (Ictalurns punctaus). Food Chemistry,2007.101(2):621-625.
    75. Zhang, Y., et al., Isolation and partial characterization of pepsin-soluble collagen from the skin of grass carp (Ctenopharyngodon idella). Food Chemistry,2007.103(3):906-912.
    76. Onozato and H.a.W. N., Studieson fish scale formation and resorption. Cell Tissue Res,1979(201):409-422.
    77. Duan, R., et al., Properties of collagen from skin, scale and bone of carp (Cyprinus carpio). Food Chemistry,2009.112(3):702-706.
    78. Pati, F., B. Adhikari, and S. Dhara, Isolation and characterization of fish scale collagen of higher thermal stability. Bioresource Technology.2010.101(10): 3737-3742.
    79. Zhang, M., W. Liu, and G. Li, Isolation and characterisation of collagens from the skin of largefin longbarbel catfish (Mystus macropterus). Food Chemistry,2009.115(3):826-831.
    80. Fengxiang Zhang, A.W., Zhihua Li, Shengwen He, Lijun Shao, Preparation and Characterisation of Collagen from Freshwater Fish Scales Food and Nutrition Sciences,2011.2:818-823.
    81. Zeng, S.-k., et al., Isolation and characterisation of acid-solubilised collagen from the skin of Nile tilapia(Oreochromis niloticus). Food Chemistry,2009. 116(4):879-883.
    82. Jackson, M., et al., Beware of connective tissue proteins:Assignment and implications of collagen absorptions in infrared spectra of human tissues. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease,1995. 1270(1):1-6.
    83. Li, H., et al., The Interaction between Collagen and an Aluminum Tanning Agent. Macromolecular Bioscience,2003.3(7):344-346.
    84. 曾少葵等,罗非鱼鳞胶原蛋白的提取及其酶解产物的抗氧化性.上海海 洋大学学报,2009.18(5):599-603.
    85. Wang, L., et al., Isolation and characterisation of collagens from the skin, scale and bone of deep-sea redfish (Sebastes mentella). Food Chemistry, 2008.108(2):616-623.
    86. Ikoma, T., et al., Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticas. International Journal of Biological Macromolecules,2003.32(3-5):199-204.
    87. Takeshi Nagai, M.I., Masahide Ishii, Fish scale collagen. Preparation and partial characterization. International Journal of Food Science and Technology,2004.39(3):239-244.
    88. 张俊杰,段蕊,陈璐,鲤鱼鳞酸溶性胶原蛋白提取的研究.水产科学,2006.25(12):640-643.
    89. Muyonga, J.H., C.G.B. Cole, and K.G. Duodu, Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus). Food Chemistry,2004.85(1):81-89.
    90. Zhang, J., et al., Characterisation of acid-soluble collagen from skin of silver carp (Hypophthalmichthys molitrix). Food Chemistry,2009.116(1):318-322.
    91. Singh, P., et al., Isolation and characterisation of collagen extracted from the skin of striped catfish (Pangasianodon hypophthalmus). Food Chemistry, 2011.124(1):97-105.
    92. Choi, S.S. and J.M. Regenstein, Physicochemical and Sensory Characteristics of Fish Gelatin. Journal of Food Science,2000.65(2):194-199.
    93. Avena-bustillos, R.J., et al., Water Vapor Permeability of Mammalian and Fish Gelatin Films. Journal of Food Science,2006.71(4):202-207.
    94. Kasankala, L.M., et al., Optimization of gelatine extraction from grass carp (Catenopharyngodon idella) fish skin by response surface methodology. Bioresource Technology,2007.98(17):3338-3343.
    95. Yang, H., et al.,2-Step Optimization of the Extraction and Subsequent Physical Properties of Channel Catfish(Ictalurus punctatus) Skin Gelatin. Journal of Food Science,2007.72(4):C188-C195.
    96. Bae, I., et al., Biochemical properties of acid-soluble collagens extracted from the skins of underutilised fishes. Food Chemistry,2008.108(1):49-54.
    97. Ngo, D.-H., et al., In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems. Journal of Functional Foods,2010.2(2):107-117.
    98. Chen, S., et al., Microstructures and rheological properties of tilapia fish-scale collagen hydrogels with aligned fibrils fabricated under magnetic fields. Acta Biomaterialia,2011.7(2):644-652.
    99. Bradbury, E. and C. Martin, The Effect of the Temperature of Preparation on the Mechanical Properties and Structure of Gelatin Films. Proceedings of the Royal Society,1952.214(4):183-192.
    100. G6mez-Estaca, J., et al., Physico-chemical and film-forming properties of bovine-hide and tuna-skin gelatin:A comparative study. Journal of Food Engineering,2009.90(4):480-486.
    101. Muyonga, J.H., C.G.B. Cole, and K.G. Duodu, Extraction and physico-chemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. Food Hydrocolloids,2004.18(4):581-592.
    102. Fernandez, M.D., P. Montero, and M.C. Gomez-Guillen, Effect of freezing fish skins on molecular and rheological properties of extracted gelatin. Food Hydrocolloids,2003.17(3):281-286.
    103. Wangtueai, S. and A. Noomhorm, Processing optimization and characterization of gelatin from lizardfish (Saurida spp.) scales. LWT-Food Science and Technology,2009.42(4):825-834.
    104. Gilsenan, P.M. and S.B. Ross-Murphy, Rheological characterisation of gelatins from mammalian and marine sources. Food Hydrocolloids,2000. 14(3):191-195.
    105. 韩飞,于婷婷,周孟良,酶法生产大豆蛋白ACE抑制肽的研究.食品科学,2008.29(11):369-374.
    106. Kim, S.-K., et al., Angiotensin I Converting Enzyme Inhibitory Peptides Purified from Bovine Skin Gelatin Hydrolysate. Journal of Agricultural and Food Chemistry,2001.49(6):2992-2997.
    107. 刘淑集等,血管紧张素转换酶(ACE) 的提取与活性验证.福建水产,2009.6(2):1-5.
    108. Cushman, D. and H. Cheung, Spectrophotometric assay and properties of the angiotensin I-converting enzyme of rabbit lung Biochem. Pharmacol, 1971.20:1637-1648.
    109. Megias, C., et al.. Purification of an ACE Inhibitory Peptide after Hydrolysis of Sunflower (Helianthus annuus L.) Protein Isolates. Journal of Agricultural and Food Chemistry,2004.52(7):1928-1932.
    110. Zhao, Y., et al., Antihypertensive effect and purification of an ACE inhibitory peptide from sea cucumber gelatin hydrolysate. Process Biochemistry,2007. 42(12):1586-1591.
    111. 陈山,杨晓泉,郭祀远,大豆肽超滤分离纯化过程的研究.食品与发酵工业,2003.29(1):49-52.
    112. 林伟峰,龙晓丽,赵谋明,超滤法分离纯化沙丁鱼肽.食品与发酵工业,2004.30(3):109-112.
    113. 张佳程,王海燕,褚庆环,发酵乳中ACE抑制剂的超滤分离.中国乳品工业,2004.32(1):32-44.
    114. 李东平等,酶解水牛乳蛋白制备ACE抑制肽的工艺优化.中国乳品工业2012.40(10):18-32.
    115. 任增超等,超滤对罗非鱼下脚料蛋白酶解物功能特性的影响.现代食品科技2012.28(9):1133-1152.
    116. 冯大炎,周运友,Maillard反应与Strecker降解对食品风味与食品营养的影响.安徽师大学报(自然科学版),1993.16(2):79-84.
    117. 张彩菊,张憨,利用美拉德反应制备鱼味香料.无锡轻工大学学报,2004.23(5):11-15.
    118. 王惠英等L-赖氨酸与D-核糖的模式美拉德反应及其产物抗氧化性能研究.食品科学,2008.29(5):112-115.
    119. 项惠丹,许时婴,王璋,蛋白质与还原糖美拉德反应产物的抗氧化活性. 食品科学,2008.29(7):52-57.
    120. Li, Y., et al., Functional properties of the Maillard reaction products of rice protein with sugar. Food Chemistry,2009.117(1):69-74.
    121. 张凌燕,李倩,尹姿,3种氨基酸和葡萄糖美拉德产物的物理化学特性及抗氧化活性的研究.中国食品学报,2008.8(3):12-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700