剩余污泥制备吸附材料处理重金属废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化进程的加快,污水排放总量逐年提高,随之而来产生大量的剩余污泥,其安全处理和处置成为亟待解决的重要问题。近年来,学者研究发现剩余污泥通过添加化学物质在一定条件下可以转化为吸附材料,这使得剩余污泥变废为宝,为污泥的去向开辟了新的途径。与此同时,重金属废水是当前水污染的突出问题,控制重金属废水排放成为当前研究重点。相比传统的重金属废水处理方法,利用廉价吸附材料处理重金属受到研究者亲睐,成为当前研究的主题。
     本文以城市污水处理厂的剩余污泥为原料,通过添加活化剂和表面活性剂改性后,利用化学活化法制备得到吸附材料。实验研究了活化温度、活化时间、活化剂浓度、固液比、浸泡时间和活化前污泥粒径等制备条件的影响;利用表面活性剂对吸附材料进行改性,研究表面活性剂添加种类、用量及配比,改性后对活化条件的影响;结合形貌分析、比表面积、氮气吸附等温线及谱图分析等,对吸附材料进行性能评价,对制备过程和机理进行初步探讨。此外,制备完的吸附材料,对铬、镍单纯溶液和二者混合溶液进行分析,研究吸附材料在不同用量、pH、吸附时间、振荡频率、静置时间、吸附温度等条件对重金属去除率的影响。通过实验,得出如下结论:
     添加氯化锌活化剂,以碘值、亚甲基蓝和铬去除率表征吸附性能,确定吸附材料的最佳制备条件:活化温度为550℃,活化时间0.5h,活化剂浓度3mol/L,固液比1:2,浸泡时间1h,活化前污泥粒径100目。改性材料为十二烷基硫酸钠和聚丙烯酰胺,复配比为1:1,二者质量均为0.01g。制备的吸附材料,其铬吸附值为5.80mg/g,亚甲基蓝吸附值114.64mg/g,碘值503.20mg/g。从形貌分析、比表面积、氮气吸附等温线及谱图分析等微观方面对污泥制备的吸附材料性能进行表征,得出改性后的吸附材料性能比改性前的吸附材料和商用活性炭都高,这与实验结论相一致。
     利用污泥制备的吸附材料,经改性前后对铬、镍及二者的混合溶液的重金属去除率在用量、pH、吸附时间、振荡频率、静置时间、吸附温度等吸附条件进行分析,结果表明常温下的单独溶液中,铬与镍溶液适合的pH范围不同;对于混合溶液而言,吸附材料用量增加的同时,去除率也有所升高,其他影响条件变动不大,这说明混合溶液的存在能够促进重金属离子的去除。通过对铬、镍离子的吸附热力学和动力学研究,得出铬离子吸附过程符合Freundlich热力吸附模型,镍离子吸附过程符合Langmuir热力吸附模型,且二者均符合二级动力吸附模型。
With the accelerated process of urbanization, the total wastewater increase year after year, the following excessive sludge’s treatment and disposal problems urgently need to be solved. These years, the researchers find that the excess sludge can be transformed into adsorption material by adding chemical substances under certain conditions, so that, this method makes the remaining sludge turning waste into treasure, and has opened a new way to the whereabouts of the sludge. Meanwhile, heavy metal waste water which is the current outstanding problem in the field of water pollution, becomes the focus of research in the controlling field. Compared to traditional heavy metal waste water treatment method, using low-cost adsorption material in the field of treatment of heavy metal becomes the subject of current research focus.
     The adsorption material chemical activation making is this topic research focus which uses municipal sewage treatment plant sludge as raw material, by adding activator and surfactant modification. In the experiment, the effects of preparation conditions are studied on activation temperature, activation time, activator concentration, solid-liquid ratio, soaking time and activated sludge particle size before modification; By using surfactant modification to the adsorption material, researching on the surfactant types, dosage, ratio and the influence to the activated conditions after modification; combined with morphology, specific surface area, nitrogen adsorption isotherms and the spectrum analysis, performance evaluation on the adsorption material, discussion on the preparation process and the mechanism. In addition, the prepared adsorption material analyses on the Cr(VI), Ni(II) simple solution and mixed solution, by researching on the removal of heavy metals impact through different adsorption material dosage, pH of solution, adsorption hour, oscillation frequency, holding time, adsorption temperature, etc. The conclusions are as following through the experiment:
     Adding ZnCl2 as the activator, studies the best preparation conditions by iodine, methylene blue and Cr(VI) removal ratio: the activation temperature is 550℃, the activation time is 0.5 hour, the concentration of activator is 3 mol/L, the ratio between solid and liquid is 1:2, the hour to immerse sludge is 1 hour, and the sludge particle before activation is 100 mesh. The modification materials are SDS and PAM, the complex ratio of 1:1, both qualities of 0.01g. Through the prepared adsorption material, adsorption performance contains 5.80mg/g of Cr(VI), 114.64mg/g of MB adsorption, 503.20mg/g iodine. From the research on the morphology, specific surface area, nitrogen adsorption isotherms and the spectrum of the micro level, character adsorption material properties, obtained the adsorption material property after modification higher than the adsorption material before modification and commercial activated carbon which is consistent with the experimental results.
     The removal ratio of heavy metal in Cr(VI), Ni(VI) solution and mixed solution is researched by the sludge-making adsorption material before or after modification on the adsorption conditions of dosage, pH of solution, adsorption hour, oscillation frequency, frequency, holding time, adsorption temperature, etc. The results show that Cr(VI) and Ni (VI) solution have different pH range in the simple solution and in the room temperature; for the mixed solution, the removal ratio has also increased with the increasing of adsorption material dosage except other influent conditions, so that, it shows that the heavy metal removal ratio can be propelled by the other heavy metal solution’s existence.
     Through the studying of adsorption thermodynamics and kinetics to Cr6+ and Ni2+, the Cr6+ adsorption model is consistent with Freundlich adsorption, while the Ni2+ adsorption model is consistent with Langmuir adsorption, meanwhile the both heavy metals’thermal models fit Lagergren second dynamic adsorption model.
引文
[1]赵庆祥.污泥资源化技术.北京:化学工业出版社,2002.
    [2]杨朝晖,杨霞.污水处理厂的污泥处置[J].环境科学与技术,1995,18(4):40-42.
    [3]昝元峰,王树众等.污泥处理技术的新进展[J].中国给水排水,2004,20(6):25-28.
    [4]李健,石凤林.离子交换法治理重金属电镀废水及发展动态[J].电镀与精饰,2003,25(6) :28-31.
    [5]高廷耀,顾国维主编.水污染控制工程下册(第二版).北京:高等教育出版社,2004,2:275-319.
    [6]中华人民共和国环境保护部.中国环境状况公报,2008:18.
    [7]金儒霖,刘永岭.污泥处理.北京:中国建筑出版社,1982.
    [8]杨健,郝一舒等.城市污水厂污泥处理方案的生命周期分析.污染防治技术,1999.
    [9]芈振明,高忠爱,祁梦兰等.固态废物的处理与处置[M].北京:高等教育出版社,1993.
    [10]周少奇编著.城市污泥处理处置与资源化[M].广州:华南理工大学出版社,2002.
    [11]何品晶,顾国维,李笃中.城市污泥处理与利用.北京:科学出版社,2003.
    [12]谷晋川,蒋文举等主编.城市污水厂污泥处理与资源化.北京:化学工业出版社,2008,9.
    [13]乔显亮,骆永明,吴胜春.污泥的土地利用及其环境影响[J].土壤,2000,(2):79-85.
    [14]张光明,张信芳,张盼月.城市污泥资源化技术进展[M].北京:化学工业出版社,2005.
    [15]姚刚.德国的污泥利用和处置(II)(续)[J].城市环境与城市生态,2000,13(2):24-26.
    [16]王诗元,崔玉波,王翠兰等.污泥处理技术展望[J].吉林建筑工程学院学报,2000,14(1):25-28.
    [17]赵丽君,张大群,陈宝柱.污泥处理与处置技术进展[J].中国给水排水,2001,17(6):23-25.
    [18]王敦球,谢庆林,李金城.城市污水污泥农用资源化研究[J].重庆环境科学,1999,21(6):50-52.
    [19]胡光埙,洪云希.城市污泥合成燃料的应用研究[J].中国给水排水,1996,12(2):13-15.
    [20]田宁宁,王凯军,杨丽萍等.污水厂污泥处置及利用途径研究.环境保护,2000,11(2):18-20.
    [21]何品晶,顾国维,邵立明.污水污泥低温热解处理技术研究.中国环境科学,1996,16(4):254-257.
    [22]杨琦,刘广立,钱易.污泥处理的处置技术新进展.上海环境科学,1999,18(3):133-134.
    [23] Okuno. N., Tkahaashi. S. Full scale application of manufacturing bricks from sewage sludge. Water Science & Technology, 1997,36(11):243-250.
    [24]魏源送,王敏健,王菊思.堆肥技术及进展.环境科学进展,1999,7(3):11-23.
    [25] TENCG H, TIEN S, HSL LY. Preparation of activated carbon from bituminous coal with phosphoric acid activation[J]. Carbon, 1998, 36(9):1387.
    [26]张引枝,樊彦贞.添加剂种类对活性炭纤维中孔结构的影响[J].炭素技术,1997,4-11.
    [27] H Teng,S. Tien,L. Y. Hsu. Preparation of activated carbon form bituminous coal with Phosphoric acid activation. Carbon,1998,36(9):1387.
    [28]杜亚平.高硫延迟焦水蒸汽活化法制取活性炭的研究[D] .上海:华东理工大学,2001.
    [29] JEYASEELAN S, LU G Q. Development of absorbent/catalyst from municipal wastewater sludge [J]. Water SciTech, 1996,34(3-4):499-505.
    [30] CHIANG P C, YOU J H. Use of sewage sludge for manufacturing adsorbents[J]. Can J Chen Eng, 1987, 65(6):922-927.
    [31] JEYASEELAN S, LU G Q. Development of adsorbent/catalyst from municipal wastewater sludge[J]. Water SciTech, 1996,34(3-4):499-505.
    [32] A BU-KADDOURAL Z. Effect of high temperature melting on the porosity and microstructure of sludge from domestic sewage sludge[J]. Water Science and Technology, 2000,141(8):99-105.
    [33]余兰兰,钟秦.污水厂污泥制备活性炭吸附剂及其应用[J].水处理技术,2006,5(32):61-64.
    [34]吴键,乔华.利用污水污泥制取活性炭的试验研究.给水与废水处理国际会议论文集,1994:7-12.
    [35]马志毅,侯红娟等.污水厂污泥作吸附剂的试验研究,中国给水排水,1997,13(4):10-13.
    [36]任爱玲,王启山,郭斌.污泥活性炭的制备、结构表征及吸附特性[J].哈尔滨工业大学学报,2007,6(39):993-996.
    [37]杨丽君,蒋文举.微波法污水厂污泥制备活性炭的研究.环境污染治理技术与设备,2006,7(11):92-94.
    [38]赵志清,汪辉等.以不同污泥为原料制备活性炭及其对Cr(VI)的吸附.安全与环境工程,2008,2(15):61-63.
    [39]夏畅斌,刘春华等.污泥制备活性炭对Pb(Ⅱ)、Ni(Ⅱ)的吸附和回收利用.材料保护,2006,12,39(12):58-60.
    [40]范晓丹,张襄楷等.污泥活性炭的制备及其脱色性能.化工进展,2007,26(12):1804-1807.
    [41] J. H. Tay, X. G. Chen,S. Jeyaseelan, et a1. Optimising the preparation of activated carbon from digested sewage sludge and coconut hust.Chemosphere, 2001,44(1):45-51.
    [42] M. J. Martin, E. Serra, A. Ros, M. D. Balaguer. Carbonaceous adsorbents from sewage sludge and their application in a combined activated sludge-powdered activated carbon treatment[J]. Carbon, 2004, 42:1383-1388.
    [43] S. rio, C. faur-brasquet, L. lecoq, P.lecloire. Production and characterization of adsorbent materials from an industrial waste[J].Adsorption, 2005, 11:793-798.
    [44]朱平平,王戈明.煅烧高岭土表面改性及其在EPDM中的应用.非金属矿,2010,33(1):36-38.
    [45]符若文等.负载金属基活性炭纤维对一氧化氮和一氧化碳的吸附及催化性能研究.新型炭材料,2000,15(3):1-6.
    [46]余兰兰.污泥吸附剂的制备及应用研究[D].南京理工大学,2006.
    [47] J. H. Tay, X. G. Chen, S. Jeyaseelan, et a1. A comparative study of anaerobically digested and undigested sewage sludges in preparation of activated carbons[J]. Chemosphere, 2001, 44:53-57.
    [48]潘慧,何广平,吴宏海.表面活性剂在膨润土改性中的应用和发展前景.日用化学工业,2007,37(4):246-250.
    [49]罗成玉.膨润土的改性及其对废水中重金属离子的吸附研究[D].安徽:安徽农业大学资源与环境学院,2006.
    [50]焚方,过孝民等.中国有色金属工业废水污染特征分析[J].有色金属,2003,55(3):134-139.
    [51]赵美萍,邵敏.环境化学.北京:北京大学出版社,2005,9.
    [52]汪怀仁.论工业废水中几种重金属的危害与治理[J].许昌师专学报,1994,13(3):25-29.
    [53]孟祥和,胡国飞.重金属废水处理.化学工业出版社,2000:5-25.
    [54]鲁栋梁,夏璐.重金属废水处理方法与进展.化工技术与开发,2008,37(12):32-36.
    [55]李江,甄宝勤.吸附法处理重金属废水的研究进展[J].应用化工,2005,34(10):591-594.
    [56] Chaudhari S, Tare V. Analysis and Evaluation of Heavy Metal Uptake and Release by Inso-luble Starch Xanthate in Aqueous Environment[J]. Wat. Sci. Tech,1996,34(10):161-168.
    [57]吴开芬,李书申.聚醚砜超滤膜的研究[J].环境化学,1993,12(6):449-455.
    [58]刘剑彤,削邦定.曝气混一体法去除碱性废水中砷的研究[J].中国环境科学,1997,17(2):148-187.
    [59]陈红,叶兆杰等.不同状态MnO2对废水中As3+的吸附性能研究[J].中国环境科学,1998,18(2):126-130.
    [60]马前,张小龙.国内外重金属废水处理新技术的研究进展[J].环境工程学报,2007,7(1):10-14.
    [61]张世润.活性炭水处理的应用实践.活性炭,1988,66(3):38.
    [62]黄国林,梁平等.活性炭吸附处理含铬电镀废水的研究.林产化工通讯,1999,33(5):14-17.
    [63]邵涛,姜春梅膨润土对不同价态铬的吸附研究.环境科学研究.1999,12(6):47-49.
    [64]周勤俭,李先柏等.大洋多金属结核吸附重金属离子研究[J].湿法冶金,1999,69(1):51-55.
    [65]赵芝清,徐天有等.污泥活性炭吸附含Cr(VI)废水的试验研究.2009,40(1):77-79.
    [66]柯玉娟,陈泉源等.污泥活性炭的制备及其对溶液中Cr6+的吸附.化工环保.2009,29(1):75-79.
    [67] Kermit Wilson, HongYang, Chung W. Seo et al. Seleet metal adsorption by activated carbon made from Peanut shells [J]. Bioresource Technology, 2006, 97(18):2266-2270.
    [68] Gulnaziya Issabayeva, Mohamed Kheireddine Aroua*, Nik Meriam Nik Sulaiman. Removal of lead from aqueous solutions on palm shell activated carbon[J]. Bioresource Technology 97(2006) 2350-2355.
    [69] M. Madhava Rao, A.Ramesh, G. Purna, K. Seshaiah. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls[J]. Journal of Hazardous Materials B 129(2006) 123-129.
    [70]金儒霖,刘永龄编著.污泥处置.北京:中国建筑工业出版社,1982:136-152.
    [71]吴芳,罗爱平等.含重金属水处理污泥的固化和浸出毒性研究.环境污染治理技术与设备,2003,12(4):40-43.
    [72]孙颖,陈玲,赵建夫等.测定城市生活污泥中重金属的酸消解方法研究.环境污染与防治,2004,3(26):170-173.
    [73]魏复盛主编.水和废水监测分析方法.北京:中国环境科学出版社,2002:460,529.
    [74]国家环保总局.水和废水分析检测方法(第四版).北京:中国环境出版社,2002.
    [75]张利波,彭金辉等.磷酸活化烟草杆制备中孔活性炭的研究[J].化学工业与工程技术,2006,27(2):1-5.
    [76]近藤精一,石川达雄等编著.吸附科学[M].北京:化学工业出版社,2006,53-71.
    [77]江丽,姬丽娟.污泥衍生活性炭的制备影响因素研究进展[J].化学工程与装备,2009,3:116-118.
    [78]袁凤英,秦清风.表面活性剂改性沸石及其处理废水研究.太原科技大学学报,2005,26(2):157-160.
    [79]张振,曾光明等.利用低浓度表面活性剂胶团强化超滤过滤含锌废水.水处理技术,2007,32(3):25-29.
    [80]赵美萍,邵敏.环境化学.北京:北京大学出版社,2005,9.
    [81]严继民,张启元,高敬宗.吸附与凝聚—固体的表面与孔(第二版).北京:科学出版社,1986:115.
    [82]高尚愚,左宋林,周建斌等.几种活性炭的常规性质及孔隙性质的研究.林产化学与工业,1999,19(3):7-22.
    [83]吴娟.城市污水处理厂污泥制备活性炭的研究[D].山东:山东大学环境工程学院,2006.
    [84]陈春云,庄源益等.染料在干污泥上的吸附平衡和动力学.安全与环境学报.2003,6(3):46-50.
    [85]蓝淑澄.活性炭水处理技术.北京:中国环境科学出版社,1992.
    [86] M.Otero,F.Rozada,L.F.Calvo,et al. Kinetic and equilibrium modeling of the methylene blue removal from solution by adsorbent materials produced from sewage sludges. Biochemical Engineering Journal, 2003, 15 (1):59-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700