高性能竹基纤维复合材料制造技术及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上最大的竹材资源拥有国和生产国,竹产业是我国林业的四大朝阳产业之一,重组竹由竹束或纤维化竹单板为构成单元,按顺纹组坯、经胶合压制而成的板方材,历经了10余年的发展,成为了竹产业的主流产品之一。竹基纤维复合材料作为重组竹的第二代产品,与传统的重组竹相比,具有原料的一次利用率高、生产效率高和产品附加值高等特点,是竹产业研究的热点和前沿技术之一。
     本文以慈竹和毛竹为研究对象,采用竹材青黄差速异步点/线裂微创技术和纤维原位可控分离技术,制备了纤维化竹单板,采用3因素4水平全因子试验,探讨了疏解度、浸胶量和密度等工艺因子对竹基纤维复合材料的耐水性能和力学性能的影响;在此基础上,采用超景深三维显微镜、扫描电子显微镜、CT扫描仪、接触角、万能力学试验机等先进仪器设备,对竹基纤维复合材料耐水性的改善机制和力学性能的增强机理进行了研究,得出如下结论:
     (1)采用竹材青黄差速异步点/线裂微创技术和纤维原位可控分离技术,制备出的纤维化竹单板,与竹束相比,其生产率提高约5倍左右;竹材一次利用率可达到90%以上;纤维束直径减小了约60%;单股最粗的纤维束直径在2mm以下。
     (2)纤维化竹单板的分离机理:竹青和竹黄表面难以胶合的皮层和髓细胞均为短细胞,在竹材青黄差速异步点/线裂微创技术产生的摩擦力和切割力的作用下,这些短细胞发生了脱落和破坏,实现了分离的目的;竹纤维细胞长、实心,抗压强度大;导管和基本组织细胞短、壁薄、腔大,抗压强度小,在纤维原位可控分离技术产生的挤压力和切割力的作用下,实现了纤维、导管和基本组织之间的分离,并最大限度地保留了竹纤维的强度,使其不受损伤。
     (3)竹基纤维复合材料的物理力学性能是可控的,可以根据目标产品对耐水性能和力学性能的需求,通过对疏解度、浸胶量和密度等工艺的调整,生产出满足《重组竹》国家标准(报批稿)要求的各层级的竹基纤维复合材料,采用疏解度为4度,浸胶量为16%,制备的密度为1.30g/cm3的高耐水性竹基纤维复合材料,经过28h(煮-干-煮)循环处理,其吸水厚度膨胀率小于2.08%,吸水宽度膨胀率小于0.78%,吸水率小于2.35%;采用疏解度为3度,浸胶量为10%,制备的密度为1.30g/cm3的高强度性竹基纤维复合材料,其静曲强度达到398MPa,弯曲弹性模量达到32.3GPa。
     (4)建立了竹基纤维复合材料吸水性的数学模型,竹基纤维复合材料自由水与材料的空隙度有关,吸着水与细胞壁表面形成的酚醛树脂胶膜层和羟基的数量有关。
     (5)竹基纤维复合材料耐水性的改善机制包括憎水胶膜层和胶钉的形成两方面:
     (a)憎水胶膜层的形成:酚醛树脂胶黏剂通过疏解形成的裂纹,渗透到竹纤维束的表面,在竹纤维束的表面形成一层连续的酚醛树脂胶膜层;
     (b)胶钉的形成:酚醛树脂胶黏剂通过疏解形成的裂纹,渗透到导管和基本组织等薄壁细胞的细胞腔内,在细胞腔内形成胶钉,将密实的薄壁细胞固定,使之不反弹。
     (6)竹基纤维复合材料力学性能的增强机理包括压缩密实增强和界面增强两方面:
     (a)压缩密实增强:基本组织和导管等薄壁细胞受到压缩密实,致使单位体积内竹纤维百分比增加;竹纤维力学性能远大于基本组织和导管,竹纤维比例的增加提高了竹基纤维复合材料的力学性能;
     (b)界面增强:酚醛树脂胶黏剂在纤维与纤维、纤维与基本组织以及基本组织与基本组织之间形成了胶钉链接,增强了胞间层的界面性能,改善了纤维之间的应力传递,更有效地发挥了纤维承载性能。
China has the most abundant bamboo resources and an excellent utilization of the bambooindustry, which is one of the four highlight forest industries in China. Bamboo scrimber is amainstream product of the bambood industry that was realized after more than ten years ofdevelopment. This material, which is a novel engineered composite made from parallelbamboo bundles, can be used for flooring, furniture, building, and other civil engineeringapplications. Compared with traditional bamboo scrimber, bamboo-based fiber composites(BFC), which are second-generation products from bamboo scrimber, has higher raw materialutilization rate, gretaer productive efficiency, and more added value. As the advanced andfrontier technology, the BFC have been attracted extensive attention in bamboo industry.
     In this paper, oriented bamboo fiber mat (OBFM) was fabricated from Bambusa emeiensisand Phyllostachys pubescens by using differential asynchronization dotted/linear shapedcracking minimally invasive technique as well as situ controllable fiber separation technology.Then, bamboo-based fiber composites (BFC) were fabricated from OBFM and low-molecularweight phenolic formaldehyde resin. The effects of technoglocial factors (e.g. fibrosis degree,resin content, and density) on the water resistance and mechanical properties of BFC wereexplored by performing full factorial experiment (three factors and four levels). In addition,several analytical equipment, including an asultra-depth3D microscopy system (UDM), anelectron scanner microscope (SEM), a micro computed tomography (Micro-CT) scanner, acontact angle measuring device, and a universal mechanical tester, were employed toinvestigate the mechanism of water resistance and the mechanical properties of BFC.Severalconclusions were drawn from these experiments:
     (1) Compared with bamboo bundles, OBFM prepared through the proposed method hadapproximately five times higher productivity and more than90%primary bamboo utilization rate; moreover, its maximum diameter of a single fiber bundle (less than2mm) is only about40%that diameter of bamboo bundles.
     (2) Separation mechanism of OBFM: the cortex and myelocytes on the outer and innerlayers of bamboo are short cells that would be damaged or fallen away by the friction andcutting force of differential asynchronization dotted/linear shaped cracking minimally invasivetechnique and would then be separated from the bamboo. Bamboo fibers are long and solidcells, and they have strong pressure resistance; by contrast, vessels and parenchyma cells areshort and thin cells, and they have big cell room and poor pressure resistance. Such differencesallow the separation of the fiber from the vessels and parenchyma cells through the extrusionand cutting force of situ controllable fiber separation technology while maintaining the highperformance of bamboo fiber.
     (3) The physical and mechanical properties of BFC are controllable. Differentperformance levels of BFC can be fabricated by adjusting fibrosis degree, resin content, anddensity according to meet the requirement of the water resistance and mechanical properties ofnational standard of bamboo scrimber.
     High-water resistance BFC prepared under4degrees of defibering,16%resin content,and1.30g/cm3density yielded less than2.08%thickness swelling, less than0.78%widthswelling, and less than2.35%water absorption in28h circular boiling–drying–boilingtreatment. High-strength BFC prepared under3degrees of defibering,10%resin content and1.30g/cm3density yielded a static bending intensity of398MPa and a modulus of elasticity of32.3GPa in static bending.
     (4) A mathematical model of water absorption of BFC was established. Free water of BFCis correlated with porsity, and the absorbed water of BFC are correlated with the phenolic resinfilm and amount of hydroxy on the cell surface.
     (5) The water resistance improvement mechanism of BFC involves the formation ofhydrophobic film and glue nails:
     (a) Formation of hydrophobic film: phenol resin penetrated into the surface of bamboofiber bundles through cracks caused by defibering during the immersed process, thus formingan excellent three-dimensional network of thin protecting water-resistant film on the surface ofbamboo fiber bundles.
     (b) Formation of glue nails: phenolic resin penetrated into lumens of thin-walled cellssuch as vessels and parenchyma cells through cracks caused by defibering during the immersedprocess, thus forming glue nails in the cell cavity. These glue nails would fix the intensivelydistributed parenchymal cells tightly.
     (6) The reinforcing mechanism of the mechanical properties of BFC includes compactiondense reinforcement and enhancement of intensity of interface:
     (a) Compaction dense reinforcement: compaction of parenchyma cells and vesselsincreases the bamboo fiber ratio. Increasing the volume fraction of fiber leads to enhancedmechanical properties because bamboo fiber has better mechanical properties than parenchymacells and vessels.
     (b) Enhancement of intensity of interface: phenolic resin adhesive forms glue nails thatlink fiber and fiber, fiber and parenchyma cells, as well as parenchyma cells and parenchymacells; such links enhance the interfacial properties of the intercellular layer, improve the stresstransfer among fibers, and develop the load-carrying property of fiber more effectively.
引文
[1]国家林业局.中国林业发展报告[R],2012.
    [2]于文吉.我国重组竹产业发展现状与趋势分析[J].木材工业,2012,26(1):11-14.
    [3]于文吉,余养伦.我国木、竹重组材产业发展的现状与前景[J].木材工业,2013,27(1):5-8.
    [4]余养伦,张亚梅,于文吉.室内地板用竹基纤维复合材料的研制与应用[J].竹子研究汇刊,2013,32(1):21-25.
    [5]余养伦,秦莉,于文吉.室外地板用竹基纤维复合材料制造技术[J].林业科学,2014,50(1):113-120.
    [6]时迪,王逢瑚.重组竹材在现代家具设计中的应用研究[J].包装工程,2013,(8):62-66.
    [7]余养伦,孟凡丹,于文吉.集装箱底板用竹基纤维复合制造技术[J].林业科学,2013,49(3):116-121.
    [8]于文吉,余养伦.结构用竹基复合材料制造关键技术与应用[J].建设科技,2012,(3):55-57.
    [9]祝荣先,于文吉.风力发电机叶片用竹基纤维复合材料力学性能的评价[J].木材工业,2012,26(3):7-10.
    [10]于文吉.我国高性能竹基纤维复合材料的研究进展[J].木材工业,2011,25(1):6-8,29.
    [11]余养伦,于文吉.高性能竹基纤维复合材料制造技术[J].世界竹藤通讯,2013,11(3):6-10.
    [12]益小苏,杜善义,张立同.复合材料手册[M].北京:化学工业出版社,2009.
    [13]鲁博,张林文,曾竟成,等.天然纤维复合材料[M].北京:化学工业出版社,2005.
    [14] Abdul Khalila H.P.S.,Bhata I.U.H., Jawaid M., et al. Bamboo fibre reinforced biocomposites: A review[J]. Materials and Design,2012,42:353–368.
    [15] Liu D G, Song J W, Debbie P,et al. Anderson Bamboo fiber and its reinforced composites: structure andproperties[J]. Cellulose,2012,19:1449-1480.
    [16]冼杏娟,冼定国,叶颖薇.竹纤维增强树脂复合材料及其微观形貌[M].北京:科学出版社,1995.
    [17] Chen X, Guo Q, Mi Y.Bamboo fiber-reinforced polypropylene composites a study of the mechanicalproperties[J] Journal ofApplied Polymer Science.1998,69:1891-1899.
    [18] Deshpande A P, Rao M B, Rao C L.Extraction of bamboo fibers and their use as reinforcement inpolymeric composites[J].Journal ofApplied Polymer Science,2000,26(1):83-92.
    [19] Thwe M M. Liao K. Characterization of bamboo-glass fiber reinforced polymer matrix hybridcomposite[J]. Journal of Materials Science Letters2000,19:1873-1876.
    [18] Thwe M M, Liao K. Effects of environmental aging on mechanical property of bamboo-glass fiberreinforced polymer matrix hybrid composite[J].Composite Part: A,2002,33:43-52.
    [19] Thwe M M, Liao K. Environmental effects on bamboo-g1ass/polypropylene hybridcomposites [J].Journal of Materials Science,2003,38(2):363-376.
    [20] Kazuya Okubo, Toru Fujii, Yuzo Yamamoto.Development of bamboo-based polymer composites andtheir mechanical properties[J].Composites:Part A,2004,35,377-383.
    [21]张庐陵.竹纤维复合材料的组织设计、制备与性能研究[D].南京林业大学,2009,博士论文.
    [22]江泽慧.世界竹藤[M].辽宁:辽宁科学技术出版社,2002.
    [23] Jiang Z H.Bamboo and rattan in the world[M].Beijing: China forestry publishing house,2007.
    [24]张建,汪奎宏,李琴,等.竹木复合利用的发展现状与建议[J].2006,33(5):12-15.
    [25]王俊先.重组竹——新工艺、新产品[J].木材工业,1989,3(4):52-53
    [26]汪孙国,华毓坤.重组竹制造工艺的研究[J].木材工业,1991,5(2):14-18.
    [27]叶良明,姜志宏,叶建华.重组竹板材研究[J].浙江林学院学报,1991,3(2):133-140.
    [28] Nurgroho N,Ando N. Development of structural composite products made from bamboo: Fundamentalproperties of laminated bamboo lumber[J]. J. Wood Sci.,2001,47:237–242.
    [29] Nurgroho N,Ando N. Development of structural composite products made from bamboo: Fundamentalproperties of bamboo zephyr board[J]. J. Wood Sci.,2000,46:68–74.
    [30]祝荣先,周月,任丁华.制造工艺对竹基纤维复合材料性能的影响[J].木材工业,2011,25(3):1-3.
    [31]叶靓观.竹材重组强化成型材的方法[P].ZL99117809.2.
    [32]吕锋滨.压制长条体植物集成材的栏栅[P].Z L200620104768.4
    [33] YuY L, Huang X A, YuW J.High Performance of Bamboo-Based Fiber Composites from Long BambooFiber Bundles and Phenolic Resins[J]. Journal of applied polymer science,2014,131(12):103-105.
    [34]国家林业局知识产权研究中心.木/竹重组材技术专利分析报告[M].北京:中国林业出版社,2014.
    [35]马建峰,陈五一,赵岭,等.基于竹子微观结构的柱状结构仿生设计[J].机械设计,2008,25(12):51-54.
    [36]邵卓平.竹材在压缩大变形下的力学行为Ⅱ.微观变形特征[J].木材工业,2014,18(1):27-29.
    [37]邵卓平.竹材的层间断裂性质[J].林业科学,2008,44(5):122-127.
    [38]关锡鸿,冼定国,叶颖薇.竹材——一种天然的复合材料[J].复合材料学报,1987,4(4):79-83.
    [39]李世红,付绍云,周本濂.竹子——一种天然生物复合材料研究[J].材料研究学报,1994,8(2):188-192.
    [40]李辉芹.仿生纤维增强复合材料[J].产业用纺织品,2004,(8):1-5.
    [41] Jain S, Kumar R, Jindal UC. Mechanical behaviour of bamboo and bamboo composite [J]. J Mater Sci.1992,27(17):4598-604.
    [42]Shigeyasu A, Yoshinobu I, Tamotsu M, Yukito N,et.al. Fiber texture and mechanical graded structure ofbamboo[J]. Compos Part B,1997,28:13-20.
    [43]蒋应梯,许炯.竹纤维素分子聚合度的粘度测定法及其应用[J],林产化工通讯,2005,39(3):24-27.
    [44] He J, Tang Y, Wang S. Differences in morphological characteristics of bamboo fibres and other naturalcellulose fibres: studies on X-ray diffraction, solid state13C-CP/MAS NMR, and second derivativeFTIR Spectroscopy data[J]. Iran Polym J,2007,16:807–818.
    [45]张俐娜.天然高分子科学与材料[M].北京:科学出版社,2007.
    [46]尹增芳,樊汝汉.植物细胞壁的研究进展[J].植物研究,1999,19(4):407-414.
    [47] Shimiaji K, Ioth T. Comprehensive survey of unearthed wooden remains in Japanese island [M]. Tokyo:Nishigahara Press,1988.
    [48] Werdrop A B. Lignification and Xylogenesis[M]. Bamett J R Xylem cell development. Kent: CastleHouse Publications Ltd,1981.
    [49]刘力,俞友明,郭建忠.竹材化学与利用[M],杭州:浙江大学出版社,2006.
    [50]刘波.毛竹发育过程中细胞壁的生物形成[D].中国林业科学研究院,2008,博士论文.
    [51]于芬.竹竿基本组织分化与功能研究[D].南京林业大学,2008,博士论文.
    [52]于文吉.竹材表面性能及力学性能变异规律的研究[D].中国林业科学研究院,2001,博士论文.
    [52]邵卓平,吴贻军,王福利.竹材横向断裂的物理模型与能量吸收机制:基本组织开裂与界面脱粘[J].林业科学,2012,48(7):108-114.
    [53]邵卓平,王福利,吴贻军.竹材横向断裂的物理模型与能量吸收机制:纤维束的断裂与抽拔[J].林业科学,2012,48(8):118-122.
    [54]刘焕荣.竹材的断裂特性及断裂机理研究[D],中国林业科学研究院,2010,博士论文.
    [55]赵仁杰,喻云水.竹材人造板工艺学[M].北京:中国林业出版社,2002.
    [56]张齐生.中国竹材工业化利用.北京:中国林业出版,1995.
    [57]张齐生.改进的竹材胶合板制造工艺方法[P].ZL91108203.4.
    [58]张齐生.改进的竹材胶合板制造工艺方法[P].ZL91108203.4.
    [59]林海,刘红征,徐旭峰.展平的竹板材[P].ZL200780036532.9.
    [60] Lin H, Liu H Z,Xu X F. Flattened bamboo panel[P]. Wo2008/038137A2.
    [61]于文吉,余养伦,苏志英.一种大片竹束帘及其制造方法和所用的设备[P].ZL200910077384.6.
    [62]格雷戈里,约翰逊,李坚华.人造木材产品及其生产方法[P].ZL200810149352.8.
    [63] Wilson,G.A, Mcdaniell S.Y.J. Methods of making manufactured eucalyptus wood products[P].Wo2011/08559A1.
    [64] Yu Y L, Huang X A,Yu W J.A novel process to improve yield and mechanical performance of bamboofiber reinforced composite via mechanical treatments[J].Composites: Part B,2014,56(1)48-53
    [65]程亮,王喜明,余养伦.浸胶工艺对绿竹重组竹材性能的影响.木材工业[J],2009,23(3):16-19.
    [66]孟凡丹,余养伦,祝荣先,等.浸胶量对纤维化竹单板层积材物理力学性能的影响[J].木材工业,2011,25(2):1-4.
    [67] Higuchi T. Chemistry and biochemistry of bamboo[J]. Bamboo J,1987,4:132–145
    [68] Bismarck A, Mishra S, Lampke T. Plant fibers as reinforcement for green composites. Mohanty AK,Misra M, Drzal LT (eds) Natural fibers, biopolymers and biocomposites[M]. CRC Press, USA,2005.
    [69]腰希申.中国竹材结构图谱[M].北京:科学出版社,2002.
    [70]腰希申,梁景森,马乃训,等著.中国主要竹材微观构造[M].北京:科学出版社,2007.
    [71]李坚.木材波谱学[M].北京:科学出版社,2003.
    [72]邵卓平,吴贻军,王福利.竹材横向断裂的物理模型与能量吸收机制:基本组织开裂与界面脱粘[J].林业科学,2012,48(7):108-114.
    [73]邵卓平,王福利,吴贻军.竹材横向断裂的物理模型与能量吸收机制:纤维束的断裂与抽拔[J].林业科学,2012,48(8):118-122.
    [74] Shigeyasu A, Yoshinobu I, Tamotsu M, et.al Fiber texture and mechanical graded structure of bamboo[J]. Compos Part B,1997,28:13-20.
    [75]黄艳辉.毛竹纤维细胞力学性质研究[D].中国林业科学研究院,博士论文,2010.
    [76] YuY L, ZhangY M, Yu W J,et.al.Comparison of the suitability of ci bamboo and moso bamboo formanufacturing bamboo-based fiber composites International Conference on BMCE, IEEE,2012,69-74.
    [77]于文吉,余养伦,周月,等.小径竹重组结构材性能影响因子的研究[J].林产工业,2006,33(6):24-28.
    [78]祝荣先,周月,任丁华,等.制造工艺对竹基纤维竹基纤维复合材料性能的影响[J].木材工业,2011,25(3):1-3.
    [79]张亚慧,孟凡丹,于文吉.疏解次数对竹基纤维复合材料性能的影响[J].木材工业,2011,25(5):1-4.
    [80]齐锦秋,于文吉,谢九龙,等.竹基纤维复合材料纤维化单板的形态研究[J].木材工业,2012,26(2):6-9.
    [81]于雪斐,于文吉.疏解纤维化慈竹单板的性能[J].东北林业大学学报,2013,41(2):74-76.
    [82]孟凡丹.纤维化竹单板重组材的制造技术及性能研究[D].东北林业大学,硕士论文,2011.
    [83]秦莉.热处理对重组竹物理力学性能及耐久性能影响的研究[D],中国林业科学研究院,博士论文,2010.
    [84] Cinquin J. Correlation between wet ageing, humidity absorption and properties on composites oncomposite materials based on different resins faminy. France:1994.
    [85] Kestur G. S., Gregorio G. C. A., Fernando W.. Biodegradable composites based on lignocellulosicfibers-An overview [J]. Progress in Polymer Science,2009,34,(9):982–1021.
    [86] Hodgkinson J. M..Mechanical testing of advanced fibre composites[M].England:Woodhead PublishingLtd.,2000.
    [87]朱一辛,程丽美,关明杰.竹木复合板水平剪切强度的研究[J].西北林学院学报,2006,21(6):180-182.
    [88] Saheb D. N., Jog J. P.. Natural fiber polymer composites: a review[J].Advances in Polymer Technology,1999,18(4):351-363.
    [89]鲁博,张林文,曾竟成.天然纤维复合材料[M].北京:化学工业出版社,2005.
    [90] Mohanty A. K., Misra M., Drzal L. T. Sustainable Bio-Composites from Renewable Resources:Opportunities and Challenges in the Green Materials World. Journal of Polymers and the Environment,2002,10(1-2):19-26.
    [91]李坚.木材科学[M].北京:高等教育出版社,2002.
    [92]徐有明.木材学[M].北京:中国林业出版社,2006.
    [93] Dent R.W. A Multilayer Theory for Gas Sorption Part I: Sorption of a Single Gas [J]. Textile ResearchJournal,1977,40:145-152.
    [94]赵广杰.木材细胞壁中吸着水的介电弛豫.北京:中国林业出版社,2002.
    [95] Leo H.Backland. Method of making insoluble products of phenol and formaldehyde [P]. US942699A.
    [96]黄发荣,万里强.酚醛树脂及其应用[M].北京:化学工业出版社,2011.
    [97] Qing Y, Ronald S., Cai Zhiyong, Wu Y.Q. Resin impregnation of cellulose nanofibril films facilitated bywater swelling[J]. Cellulose,2013,20:303-313.
    [98]王汝敏,郑水蓉,郑亚萍.聚合物基复合材料[M].北京:科学出版社,2010.
    [99] Satyanarayana K G, Sukumaran K, Mukherjee PS,et.al. Natural fibre-polymer composites [J]. CementConcr Compos,1990,12:117-136.
    [100] Iivessalo-Plaffli MS. Fiber atlas: identification of papermaking fibers[M].Berlin:Springer,1995.
    [101] Mwaikambo L Y, Ansell M P.Mechanical properties of alkali treated plant fibres and their potential asreinforcement materials. I. Hemp fibres[J]. J Mater Sci.,2006,41:2483-2496.
    [102] Bledzki A K, Reihmane S, Gassan J. Properties and modification methods for vegetable fibers fornatural fiber composites[J]. J Appl Polym Sci,1996,59:1329-1336.
    [103]黄争鸣.复合材料细观力学引论[M].北京:科学出版社,2004.
    [104]王耀先.复合材料结构设计[M].北京:化学工业出版社,2001.
    [105]余雁,江泽慧,王戈,等.毛竹纤维微纤丝取向的原子力显微镜观察[J].北京林业大学学报,2008,30(1):124-127
    [106]徐明,任海青,郭伟.竹类植物纤维及其细胞超微结构的研究进展[J].经济林研究,2007,25(4):82-89.
    [107] Osorio L, Trujillo E, Van Vuure AW,et.al. Morphological aspects and mechanical properties of singlebamboo fibres and flexural characterization of bamboo/epoxy composites[J]. J Reinf Plast Compos2011,30:396–408.
    [108] Ishii T, Hiroi T. Linkage of phenolic acids to cell wall polysaccharides of bamboo shoot [J]. CarbohydrRes.1990,206:297–310.
    [109] Takagi H,Takura R,Ichihara Y,et al.2003.The mechanical properties of bamboo fibers prepared bysteam-explosion method[J]. J Soc Mater Sci,2003,52(4):353–356.
    [110] Parameswaran N.,Liese W..On the fine structure of bamboo fibres[J].Wood Science and Technology,1976,10:231-26.
    [111] Parameswaran N.,Liese W..On the polylamellate structure of parenchyma wall in Phyllostachysedulis[J].IAWABulletin,1975,4:57-58
    [112] Parameswaran N.,Liese W..Occurrence of warts in bamboo species[J].Wood Science and Technology,1977,11:313-318
    [113] Parameswaran N.,Liese W..Ultrastructural aspects of bamboo cells[J].Cellulose Chemistry andTechnology,1980,14:587-609
    [114] Derjaguin B. V., Landau L. Theory of the stability of strongly charged lyphobic sols of the adhesion ofstrongly charged particles in solutions of electrolytes.Acta Physiochem.1941,14:633-662.
    [115]顾继友.胶接理论与胶接基础.北京:科学出版社.2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700