边坡框架锚杆锚固系统力学行为及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
历次地震震害调查表明,边坡框架锚杆支护技术具有良好的抗震性能,然而,目前边坡框架锚杆锚固系统力学行为及特性研究,尤其是其动力领域极不成熟,严重滞后于工程应用,开展此项研究,对边坡锚固工程科学设计与安全评价均具有重要理论和工程实践意义。
     鉴于此,本文采用理论分析、数值模拟与工程资料对比验证等技术手段,在弄清边坡锚固系统锚杆静载拉拔受力机制的基础上,着重研究边坡锚固系统锚杆自由振动、锚杆共振效应、锚杆受迫振动、锚杆动力固坡效应以及坡面框架格梁受迫振动特性等。通过系统分析,得到以下几点认识:
     根据界面二阶段黏滑本构模型假定,推导了锚杆拉拔临界松动荷载理论公式、锚杆拉拔荷载与松动长度内在关系表达式;依据界面抗剪强度与残余强度之间大小关系,将锚杆拉拔松动破坏类型划分为渐进式和突发式两种类型,并给出了破坏类型定量判别标准及其所对应的锚杆拉拔极限荷载理论解;同时,以此为基础,给出了层状地层锚杆、缺陷锚杆锚固迭代计算方法与求解步骤,并开展此两种复杂情形下锚杆拉拔力学行为及特性分析。
     基于一定假定,建立了边坡锚固系统锚杆自由振动力学模型,给出了锚固系统自由振动控制方程及其边界条件;分别推导了无阻尼和有阻尼情形下有关系统固有频率或特征参数、振型理论计算公式;结合锚固工程抗震设防要求,给出了确定场地锚固工程危险区域与共振锚杆设计图谱的计算方法;同时,通过参数灵敏度分析,进一步揭示了影响锚固系统无阻尼固有频率和有阻尼特征参数的主要因素及其内在规律。
     基于锚杆微段动力受力分析,给出了锚固系统锚杆受迫振动动力平衡方程;分别推导了无阻尼和有阻尼情形锚杆简谐受迫振动力学响应理论解,同时还建立了锚杆受迫振动响应具体的有限差分格式,并结合MATLAB编程技术使其程序化,通过算例,相互验证方法的可行性与正确性,并指出了各方法的优劣及锚固系统锚杆受迫振动力学响应分析计算方法的选取原则;通过算例分析,揭示了在水平地震荷载作用下锚杆动力响应规律。
     通过FLAC数值模拟,在重新审视地震边坡岩土体变形破坏机制的基础上,通过不同工况下地震边坡位移场、应力场及典型单元应力状态的对比分析,进行了地震边坡加锚效应分析;同时,通过锚杆动力固坡效应参数影响分析,提出了一些指导边坡锚固工程抗震设计的参考建议。
     基于一定假定,建立了坡面框架格梁支护结构动力力学模型,推导了框架竖梁受迫振动动力平衡控制方程;获得了锚固系统无阻尼和有阻尼情形竖梁简谐受迫振动动力力学响应理论解析解;同时,根据有限差分原理,建立了框架竖梁受迫振动响应具体的有限差分格式及其计算流程,并采用MATLAB编程技术使其程序化;通过算例相互验证方法的可行性与正确性,并指出了各方法的计算特点;通过算例分析,揭示了在水平地震荷载作用下竖梁动力响应规律。
All previous earthquake disasters have demonstrated that slope supporting techniques which using anchor has good seismic performance. However, the mechanical behaviors and characteristics to anchorage system of slope supporting structure has not been understood well so far, among them the research of dynamic properties is especially immature and strongly hinders the engineering application. Therefore the research to these fields is of great theoretical and engineering practical significant to the seismic design and safety evaluation of slope supporting structures.
     In this paper, the techniques such as theoretical analysis, numerical simulation and verification of engineering data etc. have been used. The pull-out mechanism of anchor under static loading is fundamentally investigated; the free vibration, resonance effect, forced vibration and dynamic response of anchor are also researched; and the forced vibration effect of slope frame structure is studied as well. Through systematically analyses, it is found that:
     According to the assumption of viscous-slip model, the equation which used to calculate the critical loading of pull-out can be derived, the relation between critical loading and loose length can be obtained as well. The failure type of pull-out can be divided as gradual change or mutation in terms of the ratio between shear strength and residual strength at interface. The qualitative discrimination standard of different failure modes and corresponding solution to ultimate loading are given. Based on this, the iterative calculation method and its calculating process to the defective anchors and the anchors in strata ground are given, and the mechanical behaviors and characteristics of these two kinds of anchors which under complicated conditions are analyzed as well.
     Based on certain assumptions, the mechanical model of free vibration of anchorage system is established, the governing equations and boundary conditions are given, and the equations which used to calculate natural frequency and vibration mode of anchorage system are hence derived with damping effect neglected or considered. Take the precaution requirement of seismic design into consideration, the calculating methods of hazardous areas and resonance map can be given. What is more, through the sensitive analyses of parameters, the inherent law and main factors which influence the natural frequency of anchorage system with damping effect neglected or considered can be revealed.
     Based on the dynamic response analyses of the micro-segment of anchor, the equilibrium equation of the anchor under forced vibration can be obtained, the theoretical solution to the anchor in harmonic forced vibration can be got with damping neglected or considered respectively. What is more, the mechanical response of anchor under forced vibration can be expressed as differential format, and hence can be programmed by MATLAB Language. Through a numerical case study, the validity of different methods can be revealed. Specifically, the advantage and disadvantage of different methods can be clearly shown, as a result will give some guidance on how to choose calculating method in the mechanical response analyses. By the case study, the dynamic response law of anchor under horizontal seismic loading can also be demonstrated.
     Through the numerical simulation of FLAC, in a view of re-examining the dynamic failure mechanism of rock-soil mass, the displacement, stress and stress state of typical points have been comparatively analyzed for different engineering cases. The effect of anchorage support to slope under earthquake is analyzed as well. What is more, the role of each parameter plays is investigated, and the result can be referred to seismic design of slope anchorage system.
     Based on certain assumptions, the dynamic response model of slope supporting structure is established, the governing equations to the forced vibration is derived. The theoretical solutions to the dynamic response of vertical beam under harmonic forced vibration can be achieved with damping neglected or considered. Meanwhile, according to differential method principle, the differential format and calculating process of the dynamic response analyses under forced vibration are established and programmed by using MATLAB Language. The validity and characteristics of each method can be verified or shown by case study; the dynamic response law of vertical beam under horizontal seismic loading can be demonstrated as well.
引文
[1]张咸恭,王思敬,张悼元.中国工程地质学[M].北京:科学出版社,2000.
    [2]李秀珍,孔纪名,邓红艳,等.“5.12”汶川地震滑坡特征及失稳破坏模式分析[J].四川大学学报(工程科学版),2009,41(3):72-77.
    [3]林成功.台湾921集集大地震滑坡动力分析研究[D].重庆:重庆大学,2003.
    [4]殷跃平.汶川八级地震地质灾害研究[J].工程地质学报,2008,16(4):433-444.
    [5]殷跃平,等.汶川地震地质与滑坡灾害概论[M].北京:地质出版社,2009.
    [6]吴树仁,王涛,石玲,等,2008汶川大地震极端滑坡事件初步研究[J].工程地质学报,2010,18(2):145-159.
    [7]黄润秋,李为乐.“5.12"汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报,2008,27(12):2585-2592.
    [8]黄润秋,等.汶川地震地质灾害研究[M].北京:科学出版社,2009.
    [9]许强,李为乐.汶川地震诱发大型滑坡分布规律研究[J].工程地质学报,2010,18(6):818-826.
    [10]许强,裴向军,黄润秋,等.汶川地震大型滑坡研究[M].北京:科学出版社,2009.
    [11]程良奎,范景伦,韩军,等.岩土锚固[M].北京:中国建筑工业出版社,2003.
    [12]谢和平,邓建辉,台佳佳,等.汶川大地震灾害与灾区重建的岩土工程问题[J].岩石力学及工程学报,2008,27(9):1781-1791.
    [13]吉随旺,唐永建,胡德贵,等.四川省汶川地震灾区干线公路典型震害特征分析[J].岩石力学及工程学报,2009,28(6):1250-1260.
    [14]周德培,张建经,汤涌.汶川地震中道路边坡工程震害分析[J].岩石力学及工程学报,2010,29(3):565-576.
    [15]L Lutz, P Gergeley. Mechanics of band and slip of deformed bars in concrete[J]. Journal of American Concrete Institute,1967,64(11):711-721.
    [16]NW Hansor. Influence of surface roughness of prestressing strand on band perfortnance[J]. Journal of Prestressed Concrete Institute,1969,14(1):32-45.
    [17]Goto Yukimasa. Cracks formed in concrete around deformed tension bars[J]. Journal of American Concrete Institute,1971,68(4):244-251.
    [18]SHE Phillips. Factors affecting the design of anchorages in rock[R]. London: Cementation Research Ltd,1970.
    [19]S Yazicit, P K Kaiser. Bond strength of grouted cable bolts[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 1992,29(3):279-292.
    [20]PK Kaiser, S Yazici, J Nose. Effect of stress change on the bond and strength of fully grouted cables[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1992,29(3):293-306.
    [21]C Li, B Stillborg. Analytical models for rock bolts[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(8):1013-1029.
    [22]Yue Cai, Tetsuro Esaki, Yujing Jiang. A rock bolt and rock mass interaction model[J]. International Journal of Rock Mechanics and Mining Sciences,2004, 41(7):1055-1067.
    [23]Yue Cai, Tetsuro Esaki, Yujing Jiang. An analytical model to predict axial load in grouted rock bolt for soft rock tunnelling[J]. Tunnelling and Underground Space Technology,2004,19(6):607-618.
    [24]Debasis Deb, Kamal C. Das. Modelling of fully grouted rock bolt based on enriched finite element method[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(2):283-293.
    [25]Laura Blanco Martin, Michel Tijani, Faouzi Hadj-Hassen. A new analytical solution to the mechanical behaviour of fully grouted rockbolts subjected to pullout tests[J]. Construction and Building Materials,2011,25(2):749-755.
    [26]Li Bin, Qi Taiyue, Zhengzheng Wang, et al. Back analysis of grouted rock bolt pullout strength parameters from field tests[J]. Tunnelling and Underground Space Technology,2012,28:345-349.
    [27]Chen Cao, Jan Nemcik, Naj Aziz, et al. Analytical study of steel bolt profile and its influence on bolt load transfer[J]. International Journal of Rock Mechanics and Mining Sciences,2013,60:188-195.
    [28]尤春安.全长粘结式锚杆的受力分析[J].岩石力学与工程学报,2000,19(3): 339-341.
    [29]杨松林,荣冠,朱焕春.混凝土中锚杆荷载传递机理的理论分析和现场实验[J].岩土力学,2001,22(1):72-74.
    [30]蒋忠信.拉力型锚索锚固段剪应力分布的高斯曲线模式[J].岩土工程学报.200 1,23(6):696-699.
    [31]张季如,唐保付.锚杆荷载传递机理分析的双曲函数模型[J].岩土工程学报,2002,24(2):188-192.
    [32]李铀,白世伟,方昭茹,等.预应力锚索锚固体破坏与锚固力传递模式研究[J].岩石力学与工程学报,2003,24(5):655-690.
    [33]肖世国,周德培.非全长粘结型锚索锚固长度的一种确定方法[J].岩石力学与工程学报,2004,23(9):1530-1534.
    [34]何思明,王成华,乔建平.预应力锚索群锚效应研究:理论与建模[J].中国科学E辑:技术科学,2003,3(增刊):101-109.
    [35]何思明.预应力锚索的非线性分析[J].岩石力学与工程学报,2004,23(9):1535-1541.
    [36]何思明.基于损伤理论的预应力锚索荷载-变形特性分析[J].岩石力学与工程学报,2004,23(5):786-792.
    [37]何思明,王成华.预应力锚索破坏特性及极限抗拔力研究[J].岩石力学与工程学报,2004,23(17):2966-2971.
    [38]Xiao Shu-jun, Chen Chang-fu. Mechanical mechanism analysis of tension type anchor based on shear displacement method[J]. Journal of Central South University of Technology,2008,15(1):106-111.
    [39]何思明,李新坡.预应力锚杆作用机制研究[J].岩石力学与工程学报,2006,25(9):1876-1880.
    [40]何思明,田金昌,周建庭.胶结式预应力锚索锚固段荷载传递特性研究[J].岩石力学与工程学报,2006,25(1):117-121.
    [41]陈国周,贾金青.锚杆与土体界面渐进破坏的解析解[J].岩土力学,2007,28(suppl.):321-332.
    [42]Zhi-min Wu, Shu-tong Yang, Xiao-zhi Hu, et al. Analytical method for pullout of anchor from anchor-morta-concrete anchorage system due to shear failure of morta[J]. Journal of Engineering Mechanics,2007,133(12):1352-1369.
    [43]Yang ST, Wu ZM, Hu XZ, et al. Theoretical analysis on pullout of anchor from anchor-mortar-concrete anchorage system[J]. Engineering Fracture Mechanics, 2008,75(5):961-985.
    [44]Zhi-min Wu, Shu-tong Yang, Jian-jun Zheng, et al. Analytical solution for the pull-out response of FRP rods embedded in steel tubers filled with cement grout[J]. Material and Structures,2010,43(5):597-609.
    [45]许锡宾,刘涛,褚广辉.基于荷载传递法的锚杆锚固段荷载变形分析[J].重庆交通大学学报(自然科学版),2010,29(2):216-220.
    [46]F.F.Ren, Z.J. Yang, J.F. Chen, et al. An analytical analysis of the full-range behaviour of grouted rockbolts based on a tri-linear bond-slip model[J]. Construction and Building Materials,2010,24(3):361-370.
    [47]ZHAO Yi-ming, YANG Mi-jia. Pull-out behavior of an imperfectly bonded anchor system[J]. International Journal of Rock Mechanics & Mining Sciences, 2011,48(3):469-475.
    [48]邓宗伟,冷伍明,邹金锋,等.预应力锚索荷载传递与锚固效应计算[J].中南大学学报(自然科学版),2011,42(2):501-507.
    [49]郭锐剑,谌文武,段建,等.考虑界面软化特性的土层锚杆拉拔受力分析[J].中南大学学报(自然科学版),2012,43(10):4003-4009.
    [50]刘建庄,张农,韩昌良.弹性拉拔中锚杆轴力和剪力分布力学计算[J].中国矿业大学学报,2012,41(3):344-348.
    [51]易长平,卢文波.爆破振动对砂浆锚杆的影响研究[J].岩土力学,2006,27(8):1312-1316.
    [52]Ana Ivanovic, Richard D. Neilson, Albert A. Rodger. Influence of prestress on the dynamic response of ground anchorages[J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(3):237-249.
    [53]Andrew Starkey, Ana Ivanovic, Albert A. Rodger, et al. Condition Monitoring of Ground Anchorages by Dynamic Impulses:GRANIT System[J]. Meccanica, 2003,38(2):265-282.
    [54]Ana Ivanovic, Andrew Starkey, Richard D. Neilson, et al. The influence of load on the frequency response of rock bolt anchorage[J]. Advances in Engineering Software,2003,34(11):697-705.
    [55]Ana Ivanovic, Richard D. Neilson. Influence of geometry and material properties on the axial vibration of a rock bolt[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(6):941-951.
    [56]张永兴,陈建功.锚杆-围岩结构系统低应变动力响应理论与应用研究[J].岩石力学与工程学报,2007,26(9):1758-1766.
    [57]董建华,朱彦鹏.土钉土体系统动力模型的建立及地震响应分析[J].力学学报,2009,41(2):236-242.
    [58]朱彦鹏,董建华.土钉支护边坡动力模型的建立及地震响应分析[J].岩土力学,2010,31(4):1013-1022.
    [59]董建华,朱彦鹏.土钉边坡支护结构动力计算方法研究[J].振动与冲击,2011,30(2):217-221.
    [60]董建华,朱彦鹏,马巍,等.框架预应力锚杆边坡支护结构抗震简化设计方法[J].中国公路学报,2012,25(5):38-46.
    [61]Dong Jian-hua, Zhu Yan-peng, Zhou Yong, et al. Dynamic calculation model and seismic response for frame suppoting structure with prestressed anchors[J]. Science China Technological Sciences,2010,53(7):1957-1966.
    [62]Mcvay M., Cook R.A., Krishnamurthy K. Pullout simulation of postinstalled chemically bonded anchors[J]. Journal of Structural Engineering,1996,122(9): 1016-1024.
    [63]Li Y, Eligehausen R, Ozbolt J, et al. Numerical analysis of quadruple fastenings with bonded anchors[J]. ACI Structural Journal,2002,99(2):149-156.
    [64]Delhomme F, Debicki G. Numerical modeling of anchor bolts under pullout and relaxation tests [J]. Construction and Building Materials,2010,24(7): 1232-1238.
    [65]王连捷,王薇,董诚.岩土锚固工程中锚固体应力分布的有限元分析[J].中国地质灾害与防治学报,1998,9(增刊):100-104.
    [66]夏宁,任青文,李宗利.砂浆锚杆锚固段锈蚀胀裂过程的数值模拟及分析[J].岩石力学与工程学报,2006,25(7):1481-1485.
    [67]战玉宝,毕宣可,尤春安.预应力锚索锚固段应力分布影响因素分析[J].土木工程学报,2007,40(6):49-53.
    [68]张思峰,周健,李艳梅.砂固结预应力锚杆锚固性能的颗粒流数值分析[J].岩石力学与工程学报,2007,26(supp.1):2921-2926.
    [69]江文武,徐国元,马长年.FLAC-3D的锚杆拉拔数值模拟试验[J].哈尔滨工业大学学报,2009,41(10):129-133.
    [70]庞有师,刘汉龙,陈育民.可回收式锚杆拉拔试验的数值模拟与影响因素分析[J].解放军理工大学学报(自然科学版),2009,10(2):170-174.
    [71]任非凡,徐超,谌文武.多界面复合锚杆荷载传递机制的数值模拟[J].同济大学学报(自然科学版),2011,39(12):1753-1759.
    [72]薛亚东,张世平,康天合.回采巷道锚杆动载响应的数值分析[J].岩石力学与工程学报,2003,22(11):1903-1906.
    [73]高峰,石玉成,韦凯,等.锚杆加固对石窟地震反应的影响[J].世界地震工程,2006,22(2):84-88.
    [74]C.S Zhang, D.H Zou, V. Madenge. Numerical simulation of wave propagation in grouted rock bolts and the effects of mesh density and wave frequency[J]. International Journal of Rock Mechanics & Mining Sciences,2006,43(4): 634-639.
    [75]董建华,朱彦鹏.地震作用下土钉支护边坡动力分析[J].重庆建筑大学学报,2008,30(6):90-95.
    [76]董建华,朱彦鹏.地震作用下土钉支护高速公路边坡动力参数分析[J].西安建筑科技大学学报(自然科学版),2007,39(5):661-666.
    [77]汪鹏程,朱大勇,许强.强震作用下加固边坡的动力响应及不同加固方式的比较研究[J].合肥工业大学学报(自然科学版),2009,32(10):1501-1504.
    [78]王建,姚令侃,蒋良潍.边坡岩石块体动力响应及锚固抗震效应研究[J].公路交通科技,2010,27(3):6-11.
    [79]叶海林,郑颖人,黄润秋,等.锚杆支护岩质边坡地震动力响应分析[J].后勤工程学院学报,2010,26(4):1-7.
    [80]叶海林,黄润秋,郑颖人,等.岩质边坡锚杆支护参数地震敏感性分析[J].岩土工程学报,2010,32(9):1374-1379.
    [81]彭宁波,言志信,刘子振,等.地震作用下锚固边坡稳定性数值分析[J].工 程地质学报,2012,20(1):44-50.
    [82]朱宏伟,项琴.锚杆支护边坡动力响应规律及锚固参数影响[J].公路交通科技,2011,28(7):30-34.
    [83]朱宏伟,姚令侃,项琴.锚固长度对加锚边坡地震动力特性的影响[J].水文地质工程地质,2012,39(3):54-59.
    [84]I W Farmer. Stress distribution along a resin grouted rock anchor[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1975,12(11):347-351.
    [85]S.B. Ukhov, A.M. Kornilov, P.B. Kotov. Evauation of the load-carrying capacity of anchors in rock[J]. Power Technology and Engineering,1975,9(3):226-234.
    [86]A J Hyett, W F Bawden, R D Reichert, The effect of rock mass confinement on the bond strength of fully grouted cable bolts [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1992,29(5): 503-524.
    [87]Benmokrane B, Chennouf A, Mitri H S. Laboratory evaluation of cement-based grouts and grouted rock anchors[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,32(7):633-642.
    [88]Branhim Benmokrane, Mohamed Chekired, Haixue Xu. Monitoring behavior of grouted anchors using vibrating-wire gauges[J]. Journal of Geotechnical Engineering,1995,121(6):466-475.
    [89]Brahim Benmokrane, Haixue Xu, Eric Bellavance. Bond strength of cement grouted glass fibre reinforced plastic (GFRP) anchor bolts [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996,33(5):455-465.
    [90]Branhim Benmokrane, Burong Zhang, Adil Chennouf. Tensive properties and pullout behaviour of AFRP and CFRP rods for grouted anchor applications [J]. Construction and Building Materials,2000,14(3):157-170.
    [91]Burong zhang, Branhim Benmokrane, Adil Chennouf. Prediction of tensile capacity of bonded anchorages for FRP tendons[J]. Journal of Composites for Construction,2000,4(2):39-47.
    [92]Burong zhang, Branhim Benmokrane, Usama A.A. Ebead. Design and evaluation of fiber-reinforced polymer bond-type anchorages and ground anchors [J]. International Journal of Geomechanics,2006,6(3):166-175.
    [93]Togay Ozbakkalogu, Murat Saatcioglu. Tensile behaviour of FRP anchors in concrete[J]. Journal of Composites for Construction,2009,13(2):82-92.
    [94]Hong-Hu Zhu, Jian-Hua Yin, Albert T. Yeung, et al. Field pullout testing and performance evaluation of GFRP soil nails[J]. Journal of Geotechincal and Geoenvironmental Engineering,2011,137(7):633-642.
    [95]张发明,陈祖煜,刘宁.岩体与锚固体间粘结强度的确定[J].岩土力学,2001,22(4):470-473.
    [96]朱焕春,吴海滨,赵海斌.反复张拉荷载作用下锚杆工作机理试验研究[J].岩土工程学报,1999,21(6):662-665.
    [97]朱焕春,荣冠,肖明,等.张拉荷载下全长粘结锚杆工作机理试验研究[J].岩石力学与工程学报,2002,21(3):379-384.
    [98]荣冠,朱焕春,周创兵.螺纹钢与圆钢锚杆工作机理对比试验研究[J].岩石力学与工程学报,2004,23(3):469-475.
    [99]韩军,陈强,刘元坤,等.锚杆灌浆体与岩(土)体间的粘结强度[J].岩石力学与工程学报,2005,24(19):3482-3486.
    [100]夏宁,任青文,曹茂森.锈蚀锚杆与砂浆黏结机理试验研究[J].岩土工程学报,2007,29(8):1240-1243.
    [101]饶枭宇,李剑,杨静.锚固注浆体性能试验研究[J].重庆交通大学学报(自然科学版),2009,28(3):497-530.
    [102]郝建斌,门玉明,汪班桥.地面荷载下土层锚杆工作性能试验研究[J].岩土工程学报,2009,31(2):247-249.
    [103]张平,吴德伦.动荷载下边坡滑动的试验研究[J].重庆建筑大学学报,1997,19(2):80-86.
    [104]Tinawi R, Leger P, Leclerc M, et al. Seismic safety of gravity dams:from shake table experiments to numerical analyses[J]. Journal of Structural Engineering, 2000,126(4):518-529.
    [105]门玉明,彭建兵,李寻昌,等.层状结构岩质边坡动力稳定性试验研究[J].世界地震工程,2004,20(4):131-136.
    [106]王勇智,戚炜,门玉明,等.大柳树坝址岩体松动机制物理模拟研究[J].西 安科技大学学报,2004,24(3):305-308.
    [107]郝建斌,门玉明,彭建兵,等.层状岩体边坡动力稳定性模型试验研究[J].公路交通科技,2005,22(6):72-75.
    [108]刘小生,王钟宁,汪小刚,等.面板坝大型振动台模型试验与动力分析[M].北京:中国水利水电出版社,2005.
    [109]Lin M L, Wang K L. Seismic slope behavior in a large-scale shaking table model test[J]. Engineering Geology,2006,86(2-3):118-133.
    [110]徐光兴,姚令侃,高召宁,等.边坡动力特性与动力响应的大型振动台模型试验研究[J].岩石力学与工程学报,2008,27(3):624-632.
    [111]许强,陈建君,冯文凯.斜坡地震响应的物理模拟试验研究[J].四川大学学报(工学版),2009,41(3):266-272.
    [112]许强,刘汉香,邹威,等.斜坡加速度动力响应特性的大型振动台试验研究[J].岩石力学与工程学报,2010,29(12):2420-2428.
    [113]陈新民,沈建,魏平,等.下蜀土边坡地震稳定性的大型振动台试验研究[J].防灾减灾工程学报,2010,30(6):584-587.
    [114]董金玉,杨国香,伍法权,等.地震作用下顺层岩质边坡动力响应和破坏模式大型振动台试验研究[J].岩土力学,2011,32(10):2977-2982.
    [115]叶海林,郑颖人,杜修力,等.边坡动力破坏特征的振动台模型试验与数值分析[J].土木工程学报,2012,45(9):128-135.
    [116]杨国香,伍法权,董金玉,等.地震作用下岩质边坡动力响应特性及变形破坏机制研究[J].岩石力学与工程学报,2012,31(4):696-702.
    [117]Hong Yung-shan, Chen Rong-her, Wu Cho-sen, et al. Shaking table tests and stability analysis of steep nailed slopes[J]. Canadian Geotechnical Journal,2005, 42(5):1264-1279.
    [118]张明聚,吕琦,李立云,等.土钉支护边坡动力性能参数分析[J].岩土工程学报,2010,32(11):1758-1763.
    [119]张明聚,吕琦,王诚浩,等.土钉支护结构体系动力性能的振动台试验研究[J].北京工业大学学报,2011,37(6):822-828.
    [120]叶海林,郑颖人,陆新,等.边坡锚杆地震动特性的振动台试验研究[J].土 木工程学报,2011,44(增):152-157.
    [121]叶海林,郑颖人,李安洪,等.地震作用下边坡预应力锚索振动台试验研究[J].岩石力学与工程学报,2012,31(增1):2847-2854.
    [122]蒋良潍,姚令侃,胡志旭,等.地震扰动下边坡的浅表动力效应与锚固控制机理试验研究[J].四川大学学报(工程科学版),2010,42(5):164-174.
    [123]徐光兴.地震作用下边坡工程动力响应与永久位移分析[D].成都:西南交通大学,2010.
    [124]文畅平,杨果林.格构式框架护坡地震动位移模式的振动台试验研究[J].岩石力学与工程学报,2011,30(10):2076-2083.
    [125]杨果林,文畅平.格构锚固边坡地震响应的振动台试验研究[J].中南大学学报(自然科学版),2012,43(4):1482-1493.
    [126]王丽萍,张嘎,张建民,等.土钉加固黏性土坡动力离心模型试验研究[J].岩石力学与工程学报,2009,28(6):1226-1230.
    [127]Lysmer J, Richart F E. Dynamic response of footing to vertical loading[J]. Journal of the Soil Mechanics and Foundation Division,1966,92(1):65-91.
    [128]Milos Novak, M. ASCE, Fakhry Aboul-Ella, et al. Dynamic soil reactions for plain strain case[J]. Journal of the Engineering Mechanics Division,1978, 104(4):953-959.
    [129]王宏志,陈云敏,陈仁朋.多层土中桩的振动半解析解[J].振动工程学报,2000,13(4):660-665.
    [130]王腾,王奎华,谢康和.成层土中桩的纵向振动理论研究及应用[J].土木工程学报,2002,35(1):83-87.
    [131]刘东甲.纵向振动桩侧壁切应力频率域解及其应用[J].岩土工程学报,2001,23(5):544-546.
    [132]倪振华.振动力学[M].西安:西安交通大学出版社,1990.
    [133]李围.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2007.
    [134]尚晓江,邱峰,赵海峰.ANSYS结构有限元高级分析方法与范例应用[M].北京:中国水利水电出版社,2008.
    [135]中华人民共和国国家标准编写组.GB 50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [136]胡聿贤.地震工程学[M].北京:地震出版社,2006.
    [137]陈国兴.岩土地震工程学[M].北京:科学出版社,2007.
    [138]何蕴龙,陆述远.岩石边坡地震作用近似计算方法[J].岩土工程学报,1998,20(2):66-68.
    [139]范留明,黄润秋,林峰.基于射线理论的边坡地震反应分析[J].成都理工学院学报,2000,27(1):69-72.
    [140]祁生文.单面边坡的两种动力反应形式及其临界高度[J].地球物理学报,2006,49(2):518-523.
    [141]祁生文,伍法权,严福章,等.岩质边坡动力反应分析[M].北京:科学出版社,2007.
    [142]石崇,周家文,任强,等.单面边坡高程放大效应的射线理论解[J].河海大学学报(自然科学版),2008,36(2):238-241.
    [143]刘波,韩彦辉.FLAC原理实例与应用指南[M].北京:人民交通出版社,2005.
    [144]Itasca Consulting Group Inc. FLAC-2D(Version 6.0) users manual[R]. USA: Itasca Consulting Group Inc.,2008.
    [145]陈育民,徐鼎平FLAC/FLAC-3D基础与工程实例[M].北京:中国水利水电出版社,2009.
    [146]徐芝纶.弹性力学[M].北京:高等教育出版社,2006.
    [147]张志涌.精通MATLAB R2011a[M]北京:北京航空航天大学出版社,2011.
    [148]李德芳,张友良,陈从新.边坡加固中预应力锚索地梁内力计算[J].岩土力学,2000,21(2):170-172.
    [149]宋从军,周德培,肖世国.预应力锚索地梁的内力计算[J].西南交通大学学报,2001,36(5):486-490.
    [150]杨明,胡厚田,卢才金,等.路堑土质边坡加固中预应力锚索框架的内力计算[J].岩石力学与工程学报,2002,21(9):1383-1386.
    [151]肖世国,周德培.岩石高边坡预应力锚索地梁的一种内力计算方法[J].岩石力学与工程学报,2003,22(2):250-253.
    [152]朱晗迓,汪会帮,尚岳全.边坡锚固中锚墩框架梁受力体系分析[J].中国公 路学报,2004,17(1):16-19.
    [153]宋从军,周德培.预应力锚索框架型地梁的内力计算[J].公路,2004,7:76-80.
    [154]殷跃平.滑坡钢筋砼格构防治“倒梁法”内力计算研究[J].水文地质工程地质,2005,32(6):52-56.
    [155]许英姿,璩继立,葛修润,等.格构锚固结构与地基相互作用分析[J].上海交通大学学报,2005,39(5):742-745.
    [156]田亚护,刘建坤,张玉芳.预应力锚索框架内力计算的有限差分法[J].北京交通大学学报,2007,31(4):22-25.
    [157]陈群,彭钦帮,李建刚.框格梁锚杆边坡防护计算方法的探讨[J].道路工程,2009,12(11):72-74.
    [158]祝启坤,覃雯,盛建豪.非预应力格构锚固机制与优化设计研究[J].岩土力学,2010,31(7):2173-2178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700