大豆油基聚氨酯的改性及其纳米复合材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境保护和石油资源枯竭两大难题越来越被重视,研究以可再生资源为原料制备环境友好的聚合物越来越成为关注的焦点。本文采用具有生物可降解和生物相容性的大豆油基多元醇作为聚氨酯(PU)的软段,并在PU基体中引入了丙烯酸酯、羟基官能化的碳纳米管(CNT)以及表面改性的凹凸棒土(ATT),制备了聚氨酯丙烯酸酯、PU/CNT和PU/ATT纳米复合材料,研究了结构与性能的关系,对拓展PU应用领域有重要的理论和实用意义。另外,本文还尝试使用辐射接枝法来对氧化石墨和石墨烯有机化改性,以提高其在聚合物中的分散性。
     1.采用甲醇、乙二醇和1,2-丙二醇为开环试剂,环氧大豆油开环得到三种多元醇,先和异佛尔酮二异氰酸酯(IPDI)预聚得到PU预聚体,再和丙烯酸羟乙酯(HEA)经过热聚合制备聚氨酯丙烯酸酯(PUA)树脂。引入丙烯酸酯后,可以显著提高聚氨酯的交联密度、玻璃化转变温度、阻尼性能、热稳定性和拉伸强度,且随着多元醇的羟基值的增大而增大。值得注意的是样品PUA248的拉伸强度高达40MPa以及杨氏模量为724MPa,可以作为硬塑料使用。该大豆油基聚氨酯丙烯酸酯树脂可以作为绿色、价廉以及可生物降解材料用于绝缘材料领域。
     2.采用三种不同直径的羟基官能化CNT增强大豆油基PU,目的在于研究其结构与PU性能的关系。结果表明,直径较大的CNT相比直径较小的CNT而言,分散性要好一些,直径较小的CNT容易形成不可逆的团聚。对于制备优异性能的CNT基纳米复合材料,共价官能化处理是一种最为有效的方法,用来提高负载转移效率,然而我们的实验结果表明, CNT的分散性是更为重要的影响因素。PU/CNT纳米复合材料的拉伸强度和杨氏模量随着CNT直径的增大不断提高。相比纯PU而言,随着CNT的直径不断增大,热电导率分别提高了77%、63%和80%。PU/CNT纳米复合材料的玻璃化转变温度同样也随着CNT的直径增大而增大,另外,加入少量的CNT(1wt%)到PU基体中,可以明显地提高其热稳定性。
     3.通过酸活化或硅烷偶联剂(KH560和KH570)的表面改性得到了三种改性凹凸棒土,表面处理不影响ATT的晶体结构,经过硅烷偶联剂改性后,硅烷偶联剂包裹在ATT表面。采用不同的凹凸棒土(ATT、acid-ATT、KH560-ATT和KH570-ATT)增强大豆油基PU。结果表明,PU纳米复合材料的储存模量、玻璃化转变温度、拉伸强度和杨氏模量随着ATT的含量增加而不断提高。其中acid-ATT具有最好的增强效应,当填充12wt%的acid-ATT时,PU纳米复合材料的Tg提高了16.8℃,拉伸强度提高了443%,杨氏模量提高了8倍。另外,KH560-ATT和KH570-ATT的加入可以显著提高PU的热稳定性,PU纳米复合材料的热稳定性随着KH560-ATT或KH57O-ATT含量增加而不断提高。
     4.通过γ-射线辐照聚合法,聚丙烯酸、聚丙烯酰胺和聚苯乙烯成功接枝到氧化石墨(GO)表面,得到复合物GO-g-PAA、GO-g-PAM和GO-g-PS。复合物GO-g-PAA和GO-g-PAM,热电导率分别为0.44和0.75W/m·K。另外,通过溶剂热法还原GO-g-PS得到聚苯乙烯/石墨烯复合物(G-g-PS),复合物中聚苯乙烯的接枝量高达81.3%,复合物具有优异的热稳定性,起始降解温度可以达到381.5℃。该复合物可以作为纳米填料,制备高性能聚合物纳米复合材料。
With the problem of environmental protection and petroleum-based resources exhaustion have been paid increasing attention, the study on preparation environment friendly polymer derived from renewable resources has become the focus of attention. In the present paper, biodegradable and biocompatible soy-based polyol was used as soft segment of polyurethane (PU). Polyurethane acrylates were prepared by acrylation of polyurethane. Hydroxyl-fuctionalized carbon nanotubes (CNT) and surface modified attapulgite (ATT) were used as fillers to prepared PU/CNT and PU/ATT nanocomposites. The structure-property relationships were studied. It has very important theoretical and practical significance to broaden the apply field of polyurethane materials. Moreover, graphite oxide (GO) and graphene were organic modified via radiation-induced graft polymerization to improve the dispersion in polymer matrix.
     1. Three polyols based on ESO were prepared by oxirane ring opening with methanol, glycol, and1,2-propanediol. Polyurethane acrylates (PUAs) were prepared by the reaction of these polyols with isophorone diisocyanate (IPDI) and hydroxyethylacrylate (HEA) by a thermal polymerization process. The acrylated reaction between PU and HEA could significantly increase the crosslinking density, glass transition temperature, damping properties, thermal stability and mechanical properties of PUs. Furthermore, those properties of PUs and PUAs increased with the increasing of OH number. It should be noted that the PUA248appeared as a rigid plastic with the tensile strength higher than40MPa and the Young's modulus of724MPa. The soy-based PUAs could be employed for green, inexpensive, biodegradable materials in insulating material field.
     2. Three different diameters of hydroxyl-functionalized CNTs were used to reinforce the soy-based PU matrix. The aim was to find structure-property relationships within neat PU and PU/CNT nanocomposites. The results revealed that the larger diameter CNTs more easily dispersed in the PU matrix than the smaller diameter ones, which easily formed irreversible agglomerates. Covalent functionalizing of CNTs is the most effective method to improve load transfer efficiency. However, our experiment demonstrated that CNT dispersion in the polymer matrix was a more important factor in the production of superior CNT-based nanocomposites. The tensile strength and Young's modulus of PU nanocomposites enhanced with the increase of CNT diameter. As compared with neat PU, with the increase of CNT diameter, the thermal conductivity of PU nanocomposites was improved by77,63and80%, respectively. The glass transition temperature of PU nanocomposites also increased with the increase of CNT diameters. Furthermore, adding small amounts (1wt%) of CNTs to the PU matrix significantly improved its thermal stability.
     3. The different ATTs were obtained by acid-activated or silane coupling agents (KH560and KH570) modification. Surface treatment of ATTs did not change its crystal structure. The ATT fibers were coated with silane coupling agents after surface modification. Four types of ATT (neat ATT, acid-ATT, KH560-ATT and KH570-ATT) were used to reinforce the soy-based PU matrix. The storage moduli, glass transition temperature, tensile strength and Young's modulus of PUs significantly increased with the increase of ATT contents. The acid-ATT has the best reinforce effect with12wt% acid-ATT loading,16.8℃improvement in glass transition temperature,443%increment in tensile strength,8-fold increase in Young's modulus of PU nanocomposites were obtained. Furthermore, with the incorporation of KH560and KH570modified ATT, the thermal stability of PU nanocomposites was significantly improved with the increase of ATT content.
     4. Poly(acrylic acid)(PAA), poly(acrylamide)(PAM) and polystyrene (PS) successfully grafted GO via y-ray radiation-induced graft polymerization. The result hybrids were named as GO-g-PAA, GO-g-PAM and GO-g-PS, respectively. The thermal conductivities of GO-g-PAA and GO-g-PAM were0.44and0.75W/m-K, respectively. Moreover, GO-g-PS was reduced by solvothermal method to prepare PS/graphene hybrid. The hybrid has higher than81.3%grafted PS and excellent thermal stability with initial decomposition temperature of381.5℃. It could be used as nanofiller to prepare superior polymer nanocomposites.
引文
[1]Lligadas G, Ronda JC, Galia M, Cadiz V. Plant oils as platform chemicals for polyurethane synthesis:Current state-of-the-art. Biomacromolecules.2010;11:2825-35.
    [2]Guner FS, Yagci Y, Erciyes AT. Polymers from triglyceride oils. Progress in Polymer Science.2006;31:633-70.
    [3]Williams CK, Hillmyer MA. Polymers from renewable resources:A perspective for a special issue of polymer reviews. Polymer Reviews.2008;48:1-10.
    [4]Petrovic ZS. Polyurethanes from vegetable oils. Polymer Reviews.2008;48:109-55.
    [5]Chuayjuljit S, Maungchareon A, Saravari O. Preparation and properties of palm oil-based rigid polyurethane nanocomposite foams. Journal of Reinforced Plastics and Composites.2010;29:218-25.
    [6]Gryglewicz S, Piechocki W, Gryglewicz G. Preparation of polyol esters based on vegetable and animal fats. Bioresource Technology.2003;87:35-9.
    [7]Campanella A, Bonnaillie LM, Wool RP. Polyurethane foams from soyoil-based polyols. Journal of Applied Polymer Science.2009;112:2567-78.
    [8]Athawale V, Kolekar S. Interpenetrating polymer networks based on polyol modified castor oil polyurethane and polymethyl methacrylate. European Polymer Journal.1998;34:1447-51.
    [9]Yunus R, Fakhru'1-Razi A, Ooi TL, Biak DRA, Iyuke SE. Kinetics of transesterification of palm-based methyl esters with trimethylolpropane. Journal of the American Oil Chemists Society.2004;81:497-503.
    [10]Kurth TM. Cellular plastic material. US Patent 6180686.2001.
    [11]Kurth TM. Plastic material. US Patent 6465569.2002.
    [12]Keles E, Hazer B. Synthesis of segmented polyurethane based on polymeric soybean oil polyol and poly (ethylene glycol). Journal of Polymers and the Environment.2009; 17:153-8.
    [13]Findley TW, Swern D, Scanlan JT. Epoxidation of unsaturated fatty materials with peracetic acid in glacial acetic acid solution. Journal of the American Chemical Society.1945;67:412-4.
    [14]Klaas MRG, Warwel S. Lipase-catalyzed preparation of peroxy acids and their use for epoxidation. Journal of Molecular Catalysis A:Chemical.1997; 117:311-9.
    [15]Uyama H, Kuwabara M, Tsujimoto T, Kobayashi S. Enzymatic synthesis and curing of biodegradable epoxide-containing polyesters from renewable resources. Biomacromolecules.2003;4:211-5.
    [16]Guo Y, Hardesty JH, Mannari VM, Massingill JL, Jr. Hydrolysis of epoxidized soybean oil in the presence of phosphoric acid. Journal of the American Oil Chemists Society.2007;84:929-35.
    [17]Guo A, Cho YJ, Petrovic ZS. Structure and properties of halogenated and nonhalogenated soy-based polyols. Journal of Polymer Science, Part A:Polymer Chemistry.2000;38:3900-10.
    [18]Zhao H-P, Zhang J-F, Sun XS, Hua DH. Syntheses and properties of cross-linked polymers from functionalized triglycerides. Journal of Applied Polymer Science.2008; 110:647-56.
    [19]Petrovic ZS, Javni I, Jing X, Hong DP, Guo A. Effect of hyperbranched vegetable oil polyols on properties of flexible polyurethane foams. In:Uskokovic dpmskrdi, editor. Research Trends in Contemporary Materials Science.2007. p.459-65.
    [20]Kluth H, Meffert A. Polyurethane prepolymers based on oleochemical polyols. US Patent 4508853.1985.
    [21]Zlatanic A, Lava C, Zhang W, Petrovic ZS. Effect of structure on properties of polyols and polyurethanes based on different vegetable oils. Journal of Polymer Science, Part B:Polymer Physics.2004;42:809-19.
    [22]Zlatanic A, Petrovic ZS, Dusek K. Structure and properties of triolein-based polyurethane networks. Biomacromolecules.2002;3:1048-56.
    [23]Javni I, Petrovic ZS, Guo A, Fuller R. Thermal stability of polyurethanes based on vegetable oils. Journal of Applied Polymer Science.2000;77:1723-34.
    [24]Guo A, Javni I, Petrovic Z. Rigid polyurethane foams based on soybean oil. Journal of Applied Polymer Science.2000;77:467-73.
    [25]Petrovic ZS, Zhang W, Zlatanic A, Lava CC, Ilavsky M. Effect of OH/NCO molar ratio on properties of soy-based polyurethane networks. Journal of Polymers and the Environment.2002; 10:5-12.
    [26]Pechar TW, Sohn S, Wilkes GL, Ghosh S, Frazier CE, Fornof A, et al. Characterization and comparison of polyurethane networks prepared using soybean-based polyols with varying hydroxyl content and their blends with petroleum-based polyols. Journal of Applied Polymer Science.2006; 101:1432-43.
    [27]Shogren RL, Petrovic Z, Liu ZS, Erhan SZ. Biodegradation behavior of some vegetable oil-based polymers. Journal of Polymers and the Environment.2004; 12: 173-8.
    [28]Petrovic ZS, Cevallos MJ, Javni I, Schaefer DW, Justice R. Soy-oil-based segmented polyurethanes. Journal of Polymer Science, Part B:Polymer Physics. 2005; 43:3178-90.
    [29]Lu Y, Larock RC. Soybean oil-based, aqueous cationic polyurethane dispersions: Synthesis and properties. Progress in Organic Coatings.2010;69:31-7.
    [30]Lu Y, Larock RC. Soybean-oil-based waterborne polyurethane dispersions: Effects of polyol functionality and hard segment content on properties. Biomacromolecules.2008;9:3332-40.
    [31]Ni B, Yang L, Wang C, Wang L, Finlow DE. Synthesis and thermal properties of soybean oil-based waterborne polyurethane coatings. Journal of Thermal Analysis and Calorimetry.2010;100:239-46.
    [32]Lu Y, Larock RC. New hybrid latexes from a soybean oil-based waterborne polyurethane and acrylics via emulsion polymerization. Biomacromolecules.2007;8: 3108-14.
    [33]Miao S, Zhang S, Su Z, Wang P. A novel vegetable oil-lactate hybrid monomer for synthesis of high-Tg polyurethanes. Journal of Polymer Science, Part A:Polymer Chemistry.2010;48:243-50.
    [34]Ionescu M, Petrovic ZS, Wan X. Ethoxylated soybean polyols for polyurethanes. Journal of Polymers and the Environment.2007; 15:237-43.
    [35]Pryde EH, Cowan JC, Frankel EN. Reactions of carbon-monoxide with unsaturated fatty-acids and derivatives-Review. Journal of the American Oil Chemists Society.1972;49:451-6.
    [36]Khoe TH, Otey FH, Frankel EN. Rigid urerthane foams from hydroxymethylated linseed oil and polyol esters. Journal of the American Oil Chemists Society.1972;49:615-8.
    [37]Guo A, Demydov D, Zhang W, Petrovic ZS. Polyols and polyurethanes from hydroformylation of soybean oil. Journal of Polymers and the Environment. 2002; 10:49-52.
    [38]Petrovic ZS, Guo A, Javni I, Cvetkovic I, Hong DP. Polyurethane networks from polyols obtained by hydroformylation of soybean oil. Polymer International. 2008;57:275-81.
    [39]Throckmo.Pe, Pryde EH. Reductive ozonolysis of soybean oil-laboratory optimization of process variables. Journal of the American Oil Chemists Society. 1972;49:641-2.
    [40]Petrovic ZS, Zhang W, Javni I. Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis. Biomacromolecules.2005;6:713-9.
    [41]Kong X, Narine SS. Physical properties of polyurethane plastic sheets produced from polyols from canola oil. Biomacromolecules.2007;8:2203-9.
    [42]Kong X, Narine SS. Physical properties of sequential interpenetrating polymer networks produced from canola oil-based polyurethane and poly(methyl methacrylate). Biomacromolecules.2008;9:1424-33.
    [43]Benecke HP, Vijayendran BR, Garbark DB, Mitchell KP. Low cost and highly reactive biobased polyols:A co-product of the emerging biorefinery economy. Clean-Soil Air Water.2008;36:694-9.
    [44]Petrovic ZS, Cvetkovic I, Hong D, Wan X, Zhang W, Abraham T, et al. Polyester polyols and polyurethanes from ricinoleic acid. Journal of Applied Polymer Science.2008;108:1184-90.
    [45]Petrovic ZS, Cvetkovic I, Hong D, Wan X, Zhang W, Abraham TW, et al. Vegetable oil-based triols from hydroformylated fatty acids and polyurethane elastomers. European Journal of Lipid Science and Technology.2010;112:97-102.
    [46]Miao S, Zhang S, Su Z, Wang P. Chemoenzymatic synthesis of oleic acid-based polyesters for use as highly stable biomaterials. Journal of Polymer Science, Part A: Polymer Chemistry.2008;46:4243-8.
    [47]Cayli G, Kuesefoglu S. Biobased polyisocyanates from plant oil triglycerides: Synthesis, polymerization, and characterization. Journal of Applied Polymer Science. 2008;109:2948-55.
    [48]Cayli G, Kusefoglu S. A simple one-step synthesis and polymerization of plant oil triglyceride iodo isocyanates. Journal of Applied Polymer Science.2010; 116: 2433-40.
    [49]Hojabri L, Kong X, Narine SS. Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil:Synthesis, polymerization, and characterization. Biomacromolecules.2009; 10:884-91.
    [50]Tamami B, Sohn S, Wilkes GL. Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks. Journal of Applied Polymer Science.2004;92:883-91.
    [51]Javni I, Hong DP, Petrovic ZS. Soy-based polyurethanes by nonisocyanate route. Journal of Applied Polymer Science.2008; 108:3867-75.
    [52]Palaskar DV, Boyer A, Cloutet E, Alfos C, Cramail H. Synthesis of biobased polyurethane from oleic and ricinoleic acids as the renewable resources via the AB-type self-condensation approach. Biomacromolecules.2010; 11:1202-11.
    [53]Calvert P. Materials science-Rough guide to the nanoworld. Nature.1996;383: 300-1.
    [54]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社;2001.
    [55]胡源,宋磊.阻燃聚合物纳米复合材料.北京:化学工业出版社;2008.
    [56]徐国财,张立德.纳米复合材料.北京:化学工业出版社;2002.
    [57]Birringer R, Gleiter H, Klein HP, Marquardt P. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder. Physics Letters A.1984; 102:365-9.
    [58]Iijima S. Helical microtubules of graphitic carbon. Nature.1991;354:56-8.
    [59]Baughman RH, Cui CX, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, et al. Carbon nanotube actuators. Science.1999;284:1340-4.
    [60]Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science.1999;286: 1127-9.
    [61]Shim M, Javey A, Kam NWS, Dai HJ. Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. Journal of the American Chemical Society.2001;123:11512-3.
    [62]Fan SS, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai HJ. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science.1999;283:512-4.
    [63]Kim P, Lieber CM. Nanotube nanotweezers. Science.1999;286:2148-50.
    [64]Pan ZW, Dai ZR, Wang ZL. Nanobelts of semiconducting oxides. Science.2001; 291:1947-9.
    [65]Roy R. Ceramics by the solution-sol-gel route. Science.1987; 238:1664-9.
    [66]Cho JW, Sul KI. Characterization and properties of hybrid composites prepared from poly(vinylidene fluoride-tetrafluoroethylene) and SiO2. Polymer.2001;42:727-36.
    [67]Lascelles SF, McCarthy GP, Butterworth MD, Armes SP. Effect of synthesis parameters on the particle size, composition and colloid stability of polypyrrole-silica nanocomposite particles. Colloid and Polymer Science.1998;276:893-902.
    [68]Goller MI, Barthet C, McCarthy GP, Corradi R, Newby BP, Wilson SA, et al. Synthesis and characterization of surface-aminated polypyrrole-silica nano-composites. Colloid and Polymer Science.1998;276:1010-8.
    [69]Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O. Synthesis of nylon-6-clay hybrid by montmorillonite intercalated with epsilon-caprolactam. Journal of Polymer Science, Part A:Polymer Chemistry.1993;31:983-6.
    [70]Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, et al. Synthesis of nylon 6-clay hybrid. Journal of Materials Research.1993;8:1179-84.
    [71]Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, et al. Mechanical-properties of nylon 6-clay hybrid. Journal of Materials Research.1993;8: 1185-9.
    [72]Okamoto M, Morita S, Taguchi H, Kim YH, Kotaka T, Tateyama H. Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay/polystyrene nano-composites via in situ intercalative polymerization. Polymer.2000;41:3887-90.
    [73]Ou YC, Yang F, Yu ZZ. New conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization. Journal of Polymer Science, Part B:Polymer Physics.1998;36:789-95.
    [74]Akelah A, Moet A. Polymer-clay nanocomposites:Free-radical grafting of polystyrene on to organophilic montmorillonite interlayers. Journal of Materials Science.1996;31:3589-96.
    [75]O'Leary S, O'Hare D, Seeley G. Delamination of layered double hydroxides in polar monomers:new LDH-acrylate nanocomposites. Chemical Communications. 2002:1506-7.
    [76]Yang L, Hu Y, Lu HD, Song L. Morphology, thermal, and mechanical properties of flame-retardant silicone rubber/montmorillonite nanocomposites. Journal of Applied Polymer Science.2006;99:3275-80.
    [77]Vaia RA, Giannelis EP. Polymer melt intercalation in organically-modified layered silicates:Model predictions and experiment. Macromolecules.1997;30: 8000-9.
    [78]Vaia RA, Jandt KD, Kramer EJ, Giannelis EP. Kinetics of polymer melt intercalation. Macromolecules.1995;28:8080-5.
    [79]Liu LM, Qi ZN, Zhu XG. Studies on nylon 6 clay nanocomposites by melt-intercalation process. Journal of Applied Polymer Science.1999;71:1133-8.
    [80]Uhl FM, Yao Q, Nakajima H, Manias E, Wilkie CA. Expandable graphite/ polyamide-6 nanocomposites. Polymer Degradation and Stability.2005;89:70-84.
    [81]Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O. Synthesis and properties of polyimide clay hybrid. Journal of Polymer Science, Part A:Polymer Chemistry. 1993;31:2493-8.
    [82]Ray SS, Okamoto M. Polymer/layered silicate nanocomposites:a review from preparation to processing. Progress in Polymer Science.2003;28:1539-641.
    [83]Imai Y, Inukai Y, Tateyama H. Properties of poly(ethylene terephthalate)/layered silicate nanocomposites prepared by two-step polymerization procedure. Polymer Journal.2003;35:230-5.
    [84]Yoshida M, Lal M, Kumar ND, Prasad PN. TiO2 nano-particle-dispersed polyimide composite optical waveguide materials through reverse micelles. Journal of Materials Science.1997;32:4047-51.
    [85]Dufresne A, Cavaille JY, Helbert W. New nanocomposite materials:Micro-crystalline starch reinforced thermoplastic. Macromolecules.1996;29:7624-6.
    [86]Liu L, Tian M, Zhang W, Zhang L, Mark JE. Crystallization and morphology study of polyhedral oligomeric silsesquioxane (POSS)/polysiloxane elastomer composites prepared by melt blending. Polymer.2007;48:3201-12.
    [87]Carrado KA, Xu LQ. In situ synthesis of polymer-clay nanocomposites from silicate gels. Chemistry of Materials.1998; 10:1440-5.
    [88]Lee J, Kim J, Lee Y, Yoon S, Oh SM, Hyeon T. Simple synthesis of uniform mesoporous carbons with diverse structures from mesostructured polymer/silica nanocomposites. Chemistry of Materials.2004; 16:3323-30.
    [89]Wu DZ, Ge XW, Zhang ZC, Wang MZ, Zhang SL. Novel one-step route for synthesizing CdS/polystyrene nanocomposite hollow spheres. Langmuir.2004;20: 5192-5.
    [90]Yang DS, Jung DJ, Choi SH. One-step functionalization of multi-walled carbon nanotubes by radiation-induced graft polymerization and their application as enzyme-free biosensors. Radiation Physics and Chemistry.2010;79:434-40.
    [91]Xu HX, Wang XB, Zhang YF, Liu SY. Single-step in situ preparation of polymer-grafted multi-walled carbon nanotube composites under Co60 γ-ray irradiation. Chemistry of Materials.2006; 18:2929-34.
    [92]Chen SM, Wu GZ, Liu YD, Long DW. Preparation of poly(acrylic acid) grafted multiwalled carbon nanotubes by a two-step irradiation technique. Macromolecules. 2006;39:330-4.
    [93]Qin LC, Zhao XL, Hirahara K, Miyamoto Y, Ando Y, Iijima S. Materials science-The smallest carbon nanotube. Nature.2000;408:50.
    [94]Wang N, Tang ZK, Li GD, Chen JS. Materials science-Single-walled 4 angstrom carbon nanotube arrays. Nature.2000;408:50-1.
    [95]Li F, Cheng HM, Bai S, Su G, Dresselhaus MS. Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Applied Physics Letters.2000;77:3161-3.
    [96]Yu MF, Files BS, Arepalli S, Ruoff RS. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical Review Letters.2000;84: 5552-5.
    [97]Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature.1996;381:678-80.
    [98]Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics:Elasticity, strength, and toughness of nanorods and nanotubes. Science.1997;277:1971-5.
    [99]Lee RS, Kim HJ, Fischer JE, Thess A, Smalley RE. Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature.1997;388: 255-7.
    [100]Zahab A, Spina L, Poncharal P, Marliere C. Water-vapor effect on the electrical conductivity of a single-walled carbon nanotube mat. Physical Review B.2000;62: 10000-3.
    [101]Day TM, Wilson NR, Macpherson JV. Electrochemical and conductivity measurements of single-wall carbon nanotube network electrodes. Journal of the American Chemical Society.2004;126:16724-5.
    [102]Dai HJ, Hafner JH, Rinzler AG, Colbert DT, Smalley RE. Nanotubes as nanoprobes in scanning probe microscopy. Nature.1996;384:147-50.
    [103]Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature.1998;394:52-5.
    [104]Wong SS, Harper JD, Lansbury PT, Lieber CM. Carbon nanotube tips:High-resolution probes for imaging biological systems. Journal of the American Chemical Society.1998; 120:603-4.
    [105]Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature.1998;393:49-52.
    [106]Martel R, Schmidt T, Shea HR, Hertel T, Avouris P. Single-and multi-wall carbon nanotube field-effect transistors. Applied Physics Letters.1998;73:2447-9.
    [107]Soh HT, Quate CF, Morpurgo AF, Marcus CM, Kong J, Dai HJ. Integrated nanotube circuits:Controlled growth and ohmic contacting of single-walled carbon nanotubes. Applied Physics Letters.1999;75:627-9.
    [108]Rinzler AG, Hafner JH, Nikolaev P, Lou L, Kim SG, Tomanek D, et al. Unraveling nanotubes-field-emission from an atomic wire. Science.1995;269:1550-3.
    [109]Deheer WA, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source. Science.1995;270:1179-80.
    [110]Bonard JM, Salvetat JP, Stockli T, de Heer WA, Forro L, Chatelain A. Field emission from single-wall carbon nanotube films. Applied Physics Letters.1998;73: 918-20.
    [111]Noya EG, Srivastava D, Chernozatonskii LA, Menon M. Thermal conductivity of carbon nanotube peapods. Physical Review B.2004;70.
    [112]Fujii M, Zhang X, Xie HQ, Ago H, Takahashi K, Ikuta T, et al. Measuring the thermal conductivity of a single carbon nanotube. Physical Review Letters.2005;95.
    [113]Foygel M, Morris RD, Anez D, French S, Sobolev VL. Theoretical and computational studies of carbon nanotube composites and suspensions:Electrical and thermal conductivity. Physical Review B.2005;71.
    [114]Berber S, Kwon YK, Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters.2000;84:4613-6.
    [115]Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ. Storage of hydrogen in single-walled carbon nanotubes. Nature.1997;386:377-9.
    [116]Tang JM, Jensen K, Waje M, Li W, Larsen P, Pauley K, et al. High performance hydrogen fuel cells with ultralow Pt loading carbon nanotube thin film catalysts. Journal of Physical Chemistry C.2007; 111:17901-4.
    [117]Hsieh C-T, Chu Y-W, Lin J-Y. Fabrication and electrochemical activity of Ni-attached carbon nanotube electrodes for hydrogen storage in alkali electrolyte. International Journal of Hydrogen Energy.2007;32:3457-64.
    [118]Cao D, Wang W. Storage of hydrogen in single-walled carbon nanotube bundles with optimized parameters:Effect of external surfaces. International Journal of Hydrogen Energy.2007;32:1939-42.
    [119]Sahoo NG, Rana S, Cho JW, Li L, Chan SH. Polymer nanocomposites based on functionalized carbon nanotubes. Progress in Polymer Science.2010;35:837-67.
    [120]Ajayan PM, Stephan O, Colliex C, Trauth D. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science.1994;265:1212-4.
    [121]Moniruzzaman M, Winey KI. Polymer nanocomposites containing carbon nanotubes. Macromolecules.2006;39:5194-205.
    [122]Aalaie J, Rahmatpour A, Maghami S. Preparation and characterization of linear low density polyethylene/carbon nanotube nanocomposites. Journal of Macromolecular Science, Part B:Physics.2007;46:877-89.
    [123]Li L, Li CY, Ni C, Rong L, Hsiao B. Structure and crystallization behavior of Nylon 66/multi-walled carbon nanotube nanocomposites at low carbon nanotube contents. Polymer.2007;48:3452-60.
    [124]Gryshchuk O, Karger-Kocsis J, Thomann R, Konya Z, Kiricsi I. Multiwall carbon nanotube modified vinylester and vinylester-based hybrid resins. Composites Part A:Applied Science and Manufacturing.2006;37:1252-9.
    [125]Ghose S, Watson KA, Delozier DM, Working DC, Siochi EJ, Connell JW. Incorporation of multi-walled carbon nanotubes into high temperature resin using dry mixing techniques. Composites Part A:Applied Science and Manufacturing. 2006;37:465-75.
    [126]Mrozek RA, Kim BS, Holmberg VC, Taton TA. Homogeneous, coaxial liquid crystal domain growth from carbon nanotube seeds. Nano Letters.2003;3:1665-9.
    [127]Bliznyuk VN, Singamaneni S, Sanford RL, Chiappetta D, Crooker B, Shibaev PV. Matrix mediated alignment of single wall carbon nanotubes in polymer composite films. Polymer.2006;47:3915-21.
    [128]Zhao B, Hu H, Haddon RC. Synthesis and properties of a water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) graft copolymer. Advanced Functional Materials.2004;14:71-6.
    [129]Ago H, Petritsch K, Shaffer MSP, Windle AH, Friend RH. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Advanced Materials.1999; 11:1281-5.
    [130]Kanagaraj S, Varanda FR, Zhil'tsova TV, Oliveira MSA, Simoes JAO. Mechanical properties of high density polyethylene/carbon nanotube composites. Composites Science and Technology.2007;67:3071-7.
    [131]Wang Z, Ciselli P, Peijs T. The extraordinary reinforcing efficiency of single-walled carbon nanotubes in oriented poly(vinyl alcohol) tapes. Nanotechnology.2007; 18.
    [132]Yang B-X, Shi J-H, Pramoda KP, Goh SH. Enhancement of stiffness, strength, ductility and toughness of poly(ethylene oxide) using phenoxy-grafted multiwalled carbon nanotubes. Nanotechnology.2007; 18.
    [133]Gong XY, Liu J, Baskaran S, Voise RD, Young JS. Surfactant-assisted processing of carbon nanotube/polymer composites. Chemistry of Materials.2000; 12:1049-52.
    [134]Shenogin S, Xue LP, Ozisik R, Keblinski P, Cahill DG. Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. Journal of Applied Physics.2004;95:8136-44.
    [135]Grossiord N, Miltner HE, Loos J, Meuldijk J, Van Mele B, Koning CE. On the crucial role of wetting in the preparation of conductive polystyrene-carbon nanotube composites. Chemistry of Materials.2007;19:3787-92.
    [136]Ichida M, Mizuno S, Kataura H, Achiba Y, Nakamura A. Anisotropic optical properties of mechanically aligned single-walled carbon nanotubes in polymer. Applied Physics A:Materials Science & Processing.2004;78:1117-20.
    [137]Sahoo NG, Jung YC, Yoo HJ, Cho JW. Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites. Macromolecular Chemistry and Physics.2006;207:1773-80.
    [138]Kuan HC, Ma CCM, Chang WP, Yuen SM, Wu HH, Lee TM. Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/ waterborne polyurethane nanocomposite. Composites Science and Technology.2005; 65:1703-10.
    [139]McClory C, McNally T, Brennan GP, Erskine J. Thermosetting polyurethane multiwalled carbon nanotube composites. Journal of Applied Polymer Science.2007; 105:1003-11.
    [140]Xia H, Song M, Jin J, Chen L. Poly(propylene glycol)-grafted multi-walled carbon nanotube polyurethane. Macromolecular Chemistry and Physics.2006;207: 1945-52.
    [141]Wang T-L, Tseng C-G. Polymeric carbon nanocomposites from multiwalled carbon nanotubes functionalized with segmented polyurethane. Journal of Applied Polymer Science.2007; 105:1642-50.
    [142]Xia HS, Song M. Preparation and characterization of polyurethane-carbon nanotube composites. Soft Matter.2005;1:386-94.
    [143]US geological survey open-file report 01-041:http://pubs.usgs.gov/of/of 01-041/htmldocs/clays/seppaly.htm.
    [144]Bradley WF. The structural scheme of attapulgite. American Mineralogist. 1940;25:405-10.
    [145]周杰,刘宁,李云,马毅杰.凹凸棒石粘土的显微结构特征.硅酸盐通报.1999:18:50-6.
    [146]Murray HH. Traditional and new applications for kaolin, smectite, and palygorskite:a general overview. Applied Clay Science.2000; 17:207-21.
    [147]Zhao D, Zhou J, Liu N. Characterization of the structure and catalytic activity of copper modified palygorskite/TiO2 (Cu2+-PG/Ti02) catalysts. Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing. 2006;431:256-62.
    [148]Miao S, Liu Z, Zhang Z, Han B, Miao Z, Ding K, et al. Ionic liquid-assisted immobilization of Rh on attapulgite and its application in cyclohexene hydrogenation. Journal of Physical Chemistry C.2007; 111:2185-90.
    [149]Sinegani AAS, Emtiazi G, Shariatmadari H. Sorption and immobilization of cellulase on silicate clay minerals. Journal of Colloid and Interface Science.2005; 290:39-44.
    [150]Boki K, Mori H, Kawasaki N. Bleaching rapeseed and soybean oils with synthetic adsorbents and attapulgites. Journal of the American Oil Chemists Society. 1994;71:595-601.
    [151]Huang J, Liu Y, Liu Y, Wang X. Effect of attapulgite pore size distribution on soybean oil bleaching. Journal of the American Oil Chemists Society.2007;84:687-92.
    [152]Li A, Zhang J, Wang A. Preparation and slow-release property of a poly(acrylic acid)/attapulgite/sodium humate superabsorbent composite. Journal of Applied Polymer Science.2007;103:37-45.
    [153]Alvarez-Ayuso E, Gardia-Sanchez A. Removal of cadmium from aqueous solutions by palygorskite. Journal of Hazardous Materials.2007;147:594-600.
    [154]吴国华,丁文江,罗吉荣.凹凸棒粘土对消失模涂料触变性的影响.上海交通大学学报.2001;35:447-50.
    [155]Zou H, Wu S, Shen J. Polymer/silica nanocomposites:Preparation, characterization, properties, and applications. Chemical Reviews.2008;108:3893-957.
    [156]Chen B, Evans JRG, Greenwell HC, Boulet P, Coveney PV, Bowden AA, et al. A critical appraisal of polymer-clay nanocomposites. Chemical Society Reviews. 2008;37:568-94.
    [157]Alexandre M, Dubois P. Polymer-layered silicate nanocomposites:preparation, properties and uses of a new class of materials. Materials Science & Engineering R-Reports.2000;28:1-63.
    [158]Shen L, Lin Y, Du Q, Zhong W. Studies on structure-property relationship of polyamide-6/attapulgite nanocomposites. Composites Science and Technology.2006; 66:2242-8.
    [159]Shen L, Lin YJ, Du QG, Zhong W, Yang YL. Preparation and rheology of polyamide-6/attapulgite nanocomposites and studies on their percolated structure. Polymer.2005;46:5758-66.
    [160]Liu Y, Liu P, Su Z. Morphological analysis of bead-string shaped and core-shell attapulgite@polystyrene (ATP@PS) particles via emulsion polymerization. Polymers for Advanced Technologies.2007; 18:433-8.
    [161]Liu Y, Liu P, Su Z. Attapulgite@polymer particles with double-layer polymer shell via soapless seeded emulsion polymerization. Journal of Applied Polymer Science.2008;107:2082-8.
    [162]康文韬,武龙,沈宁祥.环氧树脂/凹凸棒土复合材料的分散和力学性能研究.中国塑料.2002;16:29-32.
    [163]龚光泽,王晶,陈桥,吴一弦,田明,徐日炜等.聚苯并噁嗪/凹凸棒土复合材料的制备与性能.化工新型材料.2010;38:64-6.
    [164]Wang LH, Sheng J. Preparation and properties of polypropylene/ org-attapulgite nanocomposites. Polymer.2005;46:6243-9.
    [165]Wang LH, Sheng J. Nonisothermal crystallization kinetics of polypropylene/ attapulgite nanocomposites. Journal of Macromolecular Science, Part B:Physics. 2005;B44:31-42.
    [166]Wang LH, Sheng J. A kinetic study on the thermal degradation of polypropylene/attapulgite nanocomposites. Journal of Macromolecular Science, Part B:Physics.2006;B45:1-11.
    [167]Wang LH, Sheng J, Wu SZ. Isothermal crystallization kinetics of polypropylene/attapulgite nanocomposites. Journal of Macromolecular Science, Part B:Physics.2004;B43:935-46.
    [168]Tian M, Lu Y, Liang W, Cheng L, Zhang L. Structure and properties of novel fibril silicate/rubber nanocomposites. Polymer Journal.2006;38:1105-13.
    [169]Tian M, Liang WL, Rao GY, Zhang LQ, Guo CX. Surface modification of fibrillar silicate and its reinforcing mechanism on FS/rubber composites. Composites Science and Technology.2005;65:1129-38.
    [170]Tian M, Qu CD, Feng YX, Zhang LQ. Structure and properties of fibrillar silicate/SBR composites by direct blend process. Journal of Materials Science.2003; 38:4917-24.
    [171]Ni P, Li J, Suo JS, Li SB. Study on mechanical properties of polyurethane-attapulgite nanocomposites. Journal of Materials Science.2004;39: 4671-3.
    [172]丁永红,许晓锋,刘晶如,俞强,姚超.PET/纳米凹凸棒土复合材料的流变性能.中国塑料.2011:25:43-6.
    [173]许晓锋,丁永红,姚超.PET/凹凸棒土复合材料的结晶行为研究.塑料.2009:38:77-80.
    [174]曹青华,孙洪秀,纪清林,张洪文,庄韦.邻甲酚醛环氧/改性凹凸棒土复合材料的制备.热固性树脂.2011:26:38-41.
    [175]Rong JF, Li HQ, Jing ZH, Hong XY, Sheng M. Novel organic/inorganic nanocomposite of polyethylene. I. Preparation via in situ polymerization approach. Journal of Applied Polymer Science.2001;82:1829-37.
    [176]章越,徐军,郭宝华.聚乳酸/凹凸棒土纳米复合材料的结构与性能.高分子学报.2012:83-8.
    [177]Peng L, Zhou L, Li Y, Pan F, Zhang S. Synthesis and properties of waterborne polyurethane/attapulgite nanocomposites. Composites Science and Technology.2011; 71:1280-5.
    [178]Pan H, Chen D. Preparation and characterization of waterborne polyurethane/ attapulgite nanocomposites. European Polymer Journal.2007;43:3766-72.
    [179]Wang C-H, Shieh Y-T, Guo G, Nutt S. Effects of Organophilic-modified attapulgite nanorods on thermal and mechanical behavior of segmented polyurethane elastomers. Polymer Composites.2010;31:1890-8.
    [180]Wang C-H, Auad ML, Marcovich NE, Nutt S. Synthesis and characterization of organically modified attapulgite/polyurethane nanocomposites. Journal of Applied Polymer Science.2008; 109:2562-70.
    [181]Wang Z, Zhou Y, Sun Y. Helical polyurethane-imide@attapulgite composite: Preparation, characterization and infrared emissivity study. Materials Letters.2010; 64:908-11.
    [182]Wang Z, Zhou Y, Sun Y, Fan K, Guo X, Jiang X. Helical polyurethane(?) attapulgite nanocomposite:Preparation, characterization and study of optical activity. Journal of Solid State Chemistry.2009; 182:2130-4.
    [183]Wang Z, Zhou Y, Sun Y, Mei Z, Miao Y. Optically active helical polyurethane@attapulgite composites:Effect of optical purity of S-1,1'-binaphthyl-2,2'-diol on infrared emissivity. Applied Surface Science.2009; 255:7090-4.
    [184]Torro-Palau A, Fernandez-Garcia JC, Orgiles-Barcelo A, Perez-Lozano VM, Martin-Martinez JM. Attapulgite as a filler for solvent-based polyurethane adhesives.
    Journal of Adhesion Science and Technology.1998;12:479-95.
    [185]杜郢,高山,姚超,顿全秀,周春丽.凹土改性水性聚氨酯黏合剂的制备及表征.精细石油化工.2010:27:35-8.
    [186]Pan GH, Huang WM, Ng ZC, Liu N, Phee SJ. The glass transition temperature of polyurethane shape memory polymer reinforced with treated/non-treated attapulgite (playgorskite) clay in dry and wet conditions. Smart Materials and Structures.2008; 17.
    [187]Ma X-J, Liu L-H, Zhu K. Preparation and properties of modified attapulgite/polyurethane bioactive macromolecular carrier. Research on Chemical Intermediates.2012;38:223-32.
    [188]Yang F, Nelson GL. Combination effect of nanoparticles with flame retardants on the flammability of nanocomposites. Polymer Degradation and Stability.2011;96: 270-6.
    [1]Petrovic ZS. Polyurethanes from vegetable oils. Polymer Reviews.2008;48:109-55.
    [2]Guner FS, Yagci Y, Erciyes AT. Polymers from triglyceride oils. Progress in Polymer Science.2006;31:633-70.
    [3]Javni I, Petrovic ZS, Guo A, Fuller R. Thermal stability of polyurethanes based on vegetable oils. Journal of Applied Polymer Science.2000;77:1723-34.
    [4]Guo A, Javni I, Petrovic Z. Rigid polyurethane foams based on soybean oil. Journal of Applied Polymer Science.2000;77:467-73.
    [5]Petrovic ZS, Zhang W, Zlatanic A, Lava CC, Ilavsky M. Effect of OH/NCO molar ratio on properties of soy-based polyurethane networks. Journal of Polymers and the Environment.2002; 10:5-12.
    [6]Pechar TW, Sohn S, Wilkes GL, Ghosh S, Frazier CE, Fornof A, et al. Characterization and comparison of polyurethane networks prepared using soybean-based polyols with varying hydroxyl content and their blends with petroleum-based polyols. Journal of Applied Polymer Science.2006;101:1432-43.
    [7]Oprea S. Synthesis and characterization of polyurethane urea acrylates:Effects of the hard segments structure. Journal of Applied Polymer Science.2007;105:2509-15.
    [8]Hu T, Chen S, Tian Y, Pojman JA, Chen L. Frontal free-radical copolymerization of urethane-acrylates. Journal of Polymer Science, Part A:Polymer Chemistry.2006; 44:3018-24.
    [9]Quan YW, Dong WZ, Fang JL, Chen QM. Ultraviolet curing of liquid polysulfide thiourethane acrylate. Journal of Applied Polymer Science.2004;91: 2358-63.
    [10]Oprea S, Vlad S, Stanciu A. Poly(urethane-methacrylate)s:Synthesis and characterization. Polymer.2001;42:7257-66.
    [11]Burel F, Lecamp L, Youssef B, Bunel C, Saiter JM. Synthesis and photoinitiated polymerization of a new urethane acrylate monomer:Influence of polymerization temperature. Thermochimica Acta.1999;326:133-41.
    [12]Shogren RL, Petrovic Z, Liu ZS, Erhan SZ. Biodegradation behavior of some vegetable oil-based polymers. Journal of Polymers and the Environment.2004; 12: 173-8.
    [13]Oprea S. Properties of polymer networks prepared by blending polyester urethane acrylate with acrylated epoxidized soybean oil. Journal of Materials Science.2010;45:1315-20.
    [14]Wang CS, Chen XY, Chen JQ, Liu CG, Xie HF, Cheng RS. Synthesis and characterization of novel polyurethane acrylates based on soy polyols. Journal of Applied Polymer Science.2011;122:2449-55.
    [15]Dai HH, Yang LT, Lin B, Wang CS, Shi G. Synthesis and characterization of the different soy-based polyols by ring opening of epoxidized soybean oil with methanol, 1,2-ethanediol and 1,2-propanediol. Journal of the American Oil Chemists Society. 2009;86:261-7.
    [16]Wang CS, Yang LT, Ni BL, Shi G. Polyurethane networks from different soy-based polyols by the ring opening of epoxidized soybean oil with methanol, glycol, and 1,2-propanediol. Journal of Applied Polymer Science.2009; 114:125-31.
    [17]Wang CS, Yang LT, Ni BL, Wang LY. Thermal and mechanical properties of cast polyurethane resin based on soybean oil. Journal of Applied Polymer Science. 2009;112:1122-7.
    [18]Xie HF, Liu CG, Yuan ZR, Yang H, Wang ZL, Cheng RS. Thermoanalytical studies of high performance epoxy/carbon nanotube composites. Acta Polymerica Sinica.2008:332-6.
    [19]Xie HF, Liu BH, Yang H, Wang ZL, Shen JY, Cheng RS. Thermal characterization of carbon-nanofiber-reinforced tetraglycidyl-4,4'-diaminodiphenyl-methane/4,4'-diaminodiphenylsulfone epoxy composites. Journal of Applied Polymer Science.2006; 100:295-8.
    [20]Andjelkovic DD, Lu YS, Kessler MR, Larock RC. Novel rubbers from the cationic copolymerization of soybean oils and dicyclopentadiene,2-mechanical and damping properties. Macromolecular Materials and Engineering.2009;294:472-83.
    [1]Ajayan PM, Stephan O, Colliex C, Trauth D. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science. 1994;265:1212- 4.
    [2]Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science. 2010;35:357-401.
    [3]Sahoo NG, Rana S, Cho JW, Li L, Chan SH. Polymer nanocomposites based on functionalized carbon nanotubes. Progress in Polymer Science. 2010;35:837-67.
    [4]Xia HS, Song M. Preparation and characterisation of polyurethane grafted single-walled carbon nanotubes and derived polyurethane nanocomposites. Journal of Materials Chemistry. 2006; 16:1843-51.
    [5]Xiong JW, Zheng Z, Qin XM, Li M, Li HQ, Wang XL. The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon. 2006;44:2701-7.
    [6]Koerner H, Price G, Pearce NA, Alexander M, Vaia RA. Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-fil led thermoplastic elastomers. Nature Materials. 2004;3:115-20.
    [7]Liu TX, Guo SZ. Polymer nanotube nanocomposites: Synthesis, properties, and applications. In: Vikas M, editor. Properties of polyurethane/carbon nanotube nano-composites. New Jersey: Wiley; 2010. p. 141-76.
    [8]Morcom M, Atkinson K, Simon GP. The effect of carbon nanotube properties on the degree of dispersion and reinforcement of high density polyethylene. Polymer. 2010:51:3540-50.
    [9]Liu L, Gu A, Fang Z, Tong L, Xu Z. The effects of the variations of carbon nanotubes on the micro-tribological behavior of carbon nanotubes/bismaleimide nanocomposite. Composites Part A:Applied Science and Manufacturing.2007;38: 1957-64.
    [10]Bai JB, Allaoui A. Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nano-composites-experimental investigation. Composites Part A:Applied Science and Manufacturing.2003;34:689-94.
    [11]Grossiord N, Loos J, van Laake L, Maugey M, Zakri C, Koning CE, et al. High-conductivity polymer nanocomposites obtained by tailoring the characteristics of carbon nanotube fillers. Advanced Functional Materials.2008; 18:3226-34.
    [12]Dai HH, Yang LT, Lin B, Wang CS, Shi G. Synthesis and characterization of the different soy-based polyols by ring opening of epoxidized soybean oil with methanol, 1,2-ethanediol and 1,2-propanediol. Journal of the American Oil Chemists Society. 2009;86:261-7.
    [13]Wang CS, Yang LT, Ni BL, Shi G. Polyurethane networks from different soy-based polyols by the ring opening of epoxidized soybean oil with methanol, glycol, and 1,2-propanediol. Journal of Applied Polymer Science.2009;114:125-31.
    [14]Wang CS, Yang LT, Ni BL, Wang LY. Thermal and mechanical properties of cast polyurethane resin based on soybean oil. Journal of Applied Polymer Science. 2009;112:1122-7.
    [15]Barick AK, Tripathy DK. Effect of nanofiber on material properties of vapor-grown carbon nanofiber reinforced thermoplastic polyurethane (TPU/CNF) nanocomposites prepared by melt compounding. Composites Part A:Applied Science and Manufacturing.2010;41:1471-82.
    [16]Xia HS, Song M. Preparation and characterization of polyurethane-carbon nanotube composites. Soft Matter.2005; 1:386-94.
    [17]Xie HF, Liu BH, Yang H, Wang ZL, Shen JY, Cheng RS. Thermal characterization of carbon-nanofiber-reinforced tetraglycidyl-4,4'-diaminodiphenyl- methane/4,4'-diaminodiphenylsulfone epoxy composites. Journal of Applied Polymer Science.2006; 100:295-8.
    [18]Javni I, Petrovic ZS, Guo A, Fuller R. Thermal stability of polyurethanes based on vegetable oils. Journal of Applied Polymer Science.2000;77:1723-34.
    [19]Kwon JY, Kim HD. Preparation and properties of acid-treated multiwalled carbon nanotube/waterborne polyurethane nanocomposites. Journal of Applied Polymer Science.2005;96:595-604.
    [20]Kwon JY, Kim HD. Comparison of the properties of waterborne polyurethane/ multiwalled carbon nanotube and acid-treated multiwalled carbon nanotube composites prepared by in situ polymerization. Journal of Polymer Science, Part A: Polymer Chemistry.2005;43:3973-85.
    [21]Wang TL, Tseng CG. Polymeric carbon nanocomposites from multiwalled carbon nanotubes functionalized with segmented polyurethane. Journal of Applied Polymer Science.2007; 105:1642-50.
    [22]Wang CS, Chen XY, Xie HF, Cheng RS. Effects of carbon nanotube diameter and functionality on the properties of soy polyol-based polyurethane. Composites Part A:Applied Science and Manufacturing.2011;42:1620-6.
    [23]Cai DY, Song M. Latex technology as a simple route to improve the thermal conductivity of a carbon nanotube/polymer composite. Carbon.2008;46:2107-12.
    [24]Kashiwagi T, Grulke E, Hilding J, Groth K, Harris R, Butler K, et al. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer.2004;45:4227-39.
    [25]Yang K, Gu MY. Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine-functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide. Composites Part A: Applied Science and Manufacturing.2010;41:215-21.
    [26]Yang SY, Ma CCM, Teng CC, Huang YW, Liao SH, Huang YL, et al. Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon.2010;48:592-603.
    [27]Hu YZ, Shen JF, Li N, Ma HW, Shi M, Yan B, et al. Comparison of the thermal properties between composites reinforced by raw and amino-functionalized carbon materials. Composites Science and Technology.2010;70:2176-82.
    [28]Sahoo NG, Jung YC, Yoo HJ, Cho JW. Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites. Macromolecular Chemistry and Physics.2006;207:1773-80.
    [1]Bradley WF. The structural scheme of attapulgite. American Mineralogist.1940; 25:405-10.
    [2]Liu P. Polymer modified clay minerals:A review. Applied Clay Science.2007;38: 64-76.
    [3]Wang C-H, Auad ML, Marcovich NE, Nutt S. Synthesis and characterization of organically modified attapulgite/polyurethane nanocomposites. Journal of Applied Polymer Science.2008; 109:2562-70.
    [4]Shi J, Yang X, Han Q, Wang X, Lu L. Synthesis and characterization of polyurethane-coated palygorskite. Applied Clay Science.2009;46:333-5.
    [5]Peng L, Zhou L, Li Y, Pan F, Zhang S. Synthesis and properties of waterborne polyurethane/attapulgite nanocomposites. Composites Science and Technology.2011; 71:1280-5.
    [6]Lu HB, Nutt S. Restricted relaxation in polymer nanocomposites near the glass transition. Macromolecules.2003;36:4010-6.
    [7]Lu HB, Shen HB, Song ZL, Shing KS, Tao W, Nutt S. Rod-like silicate-epoxy nanocomposites. Macromolecular Rapid Communications.2005;26:1445-50.
    [8]An L, Pan Y, Shen X, Lu H, Yang Y. Rod-like attapulgite/polyimide nano-composites with simultaneously improved strength, toughness, thermal stability and related mechanisms. Journal of Materials Chemistry.2008;18:4928-41.
    [9]Shen L, Lin Y, Du Q, Zhong W. Studies on structure-property relationship of polyamide-6/attapulgite nanocomposites. Composites Science and Technology.2006; 66:2242-8.
    [10]Shen L, Lin YJ, Du QG, Zhong W, Yang YL. Preparation and rheology of polyamide-6/attapulgite nanocomposites and studies on their percolated structure. Polymer.2005;46:5758-66.
    [11]Liu Y, Liu P, Su Z. Morphological analysis of bead-string shaped and core-shell attapulgite@polystyrene (ATP@PS) particles via emulsion polymerization. Polymers for Advanced Technologies.2007;18:433-8.
    [12]Liu Y, Liu P, Su Z. Attapulgite@polymer particles with double-layer polymer shell via soapless seeded emulsion polymerization. Journal of Applied Polymer Science.2008;107:2082-8.
    [13]Wang LH, Sheng J. A kinetic study on the thermal degradation of polypropylene /attapulgite nanocomposites. Journal of Macromolecular Science, Part B:Physics. 2006;B45:1-11.
    [14]Wang LH, Sheng J. Nonisothermal crystallization kinetics of polypropylene/ attapulgite nanocomposites. Journal of Macromolecular Science, Part B:Physics. 2005;B44:31-42.
    [15]Wang LH, Sheng J, Wu SZ. Isothermal crystallization kinetics of polypropylene /attapulgite nanocomposites. Journal of Macromolecular Science, Part B:Physics. 2004;B43:935-46.
    [16]Wang LH, Sheng J. Preparation and properties of polypropylene/org-attapulgite nanocomposites. Polymer.2005;46:6243-9.
    [17]Tian M, Liang WL, Rao GY, Zhang LQ, Guo CX. Surface modification of fibrillar silicate and its reinforcing mechanism on FS/rubber composites. Composites Science and Technology.2005;65:1129-38.
    [18]Tian M, Lu Y, Liang W, Cheng L, Zhang L. Structure and properties of novel fibril silicate/rubber nanocomposites. Polymer Journal.2006;38:1105-13.
    [19]Tian M, Qu CD, Feng YX, Zhang LQ. Structure and properties of fibrillar silicate/SBR composites by direct blend process. Journal of Materials Science.2003; 38:4917-24.
    [20]Ni P, Li J, Suo JS, Li SB. Study on mechanical properties of polyurethane-attapulgite nanocomposites. Journal of Materials Science.2004;39:4671-3.
    [21]王丽华.聚丙烯/凹凸棒土纳米复合材料的制备、表征及性能研究:天津大学博士学位论文,2003.
    [22]Wang CS, Wang YT, Liu WJ, Yin HY, Yuan ZR, Wang QJ, et al. Natural fibrous nanoclay reinforced soy polyol-based polyurethane. Materials Letters.2012;78:85-7.
    [23]Cheng H, Yang J, Frost RL, Wu Z. Infrared transmission and emission spectroscopic study of selected Chinese palygorskites. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.2011;83:518-24.
    [24]史建设.凹凸棒石表面改性及其在尼龙6中的应用:南京理工大学博士学位论文,2010.
    [25]Xu B, Huang WM, Pei YT, Chen ZG, Kraft A, Reuben R, et al. Mechanical properties of attapulgite clay reinforced polyurethane shape-memory nano-composites. European Polymer Journal.2009;45:1904-11.
    [1]Liu P. Polymer modified clay minerals:A review. Applied Clay Science.2007;38: 64-76.
    [2]Murray HH. Traditional and new applications for kaolin, smectite, and palygorskite:A general overview. Applied Clay Science.2000; 17:207-21.
    [3]Zhao D, Zhou J, Liu N. Characterization of the structure and catalytic activity of copper modified palygorskite/TiO2 (Cu2+-PG/TiO2) catalysts. Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing.2006; 431:256-62.
    [4]Miao S, Liu Z, Zhang Z, Han B, Miao Z, Ding K, et al. Ionic liquid-assisted immobilization of Rh on attapulgite and its application in cyclohexene hydrogenation. Journal of Physical Chemistry C.2007;111:2185-90.
    [5]Sinegani AAS, Emtiazi G, Shariatmadari H. Sorption and immobilization of cellulase on silicate clay minerals. Journal of Colloid and Interface Science.2005; 290:39-44.
    [6]Huang J, Liu Y, Liu Y, Wang X. Effect of attapulgite pore size distribution on soybean oil bleaching. Journal of the American Oil Chemists Society.2007;84:687-92.
    [7]Li A, Zhang J, Wang A. Preparation and slow-release property of a poly(acrylic acid)/attapulgite/sodium humate superabsorbent composite. Journal of Applied Polymer Science.2007;103:37-45.
    [8]Alvarez-Ayuso E, Gardia-Sanchez A. Removal of cadmium from aqueous solutions by palygorskite. Journal of Hazardous Materials.2007;147:594-600.
    [9]Peng L, Zhou L, Li Y, Pan F, Zhang S. Synthesis and properties of waterborne polyurethane/attapulgite nanocomposites. Composites Science and Technology.2011; 71:1280-5.
    [10]Pan H, Chen D. Preparation and characterization of waterborne polyurethane/ attapulgite nanocomposites. European Polymer Journal.2007;43:3766-72.
    [11]Wang C-H, Auad ML, Marcovich NE, Nutt S. Synthesis and characterization of organically modified attapulgite/polyurethane nanocomposites. Journal of Applied Polymer Science.2008; 109:2562-70.
    [12]Wang C-H, Shieh Y-T, Guo G, Nutt S. Effects of organophilic-modified attapulgite nanorods on thermal and mechanical behavior of segmented polyurethane elastomers. Polymer Composites.2010;31:1890-8.
    [13]Wang CS, Wang YT, Liu WJ, Yin HY, Yuan ZR, Wang QJ, et al. Natural fibrous nanoclay reinforced soy polyol-based polyurethane. Materials Letters.2012;78:85-7.
    [14]Dai HH, Yang LT, Lin B, Wang CS, Shi G. Synthesis and characterization of the different soy-based polyols by ring opening of epoxidized soybean oil with methanol, 1,2-ethanediol and 1,2-propanediol. Journal of the American Oil Chemists Society. 2009;86:261-7.
    [15]Wang CS, Yang LT, Ni BL, Wang LY. Thermal and mechanical properties of cast polyurethane resin based on soybean oil. Journal of Applied Polymer Science. 2009;112:1122-7.
    [16]Wang CS, Yang LT, Ni BL, Shi G. Polyurethane networks from different soy-based polyols by the ring opening of epoxidized soybean oil with methanol, glycol, and 1,2-propanediol. Journal of Applied Polymer Science.2009; 114:125-31.
    [17]Wang LH, Sheng J. Preparation and properties of polypropylene/org-attapulgite nanocomposites. Polymer.2005;46:6243-9.
    [18]Lu HB, Nutt S. Restricted relaxation in polymer nanocomposites near the glass transition. Macromolecules.2003;36:4010-6.
    [19]Maji PK, Guchhait PK, Bhowmick AK. Effect of the microstructure of a hyperbranched polymer and nanoclay loading on the morphology and properties of novel polyurethane nanocomposites. ACS Applied Materials and Interfaces.2009; 1: 289-300.
    [20]Lu HB, Shen HB, Song ZL, Shing KS, Tao W, Nutt S. Rod-like silicate-epoxy nanocomposites. Macromolecular Rapid Communications.2005;26:1445-50.
    [21]Xie HF, Liu BH, Yang H, Wang ZL, Shen JY, Cheng RS. Thermal characterization of carbon-nanofiber-reinforced tetraglycidyl-4,4'-diaminodiphenyl-methane/4,4'-diaminodiphenylsulfone epoxy composites. Journal of Applied Polymer Science.2006; 100:295-8.
    [22]Wang CS, Chen XY, Xie HF, Cheng RS. Effects of carbon nanotube diameter and functionality on the properties of soy polyol-based polyurethane. Composites Part A:Applied Science and Manufacturing.2011;42:1620-6.
    [23]Ajayan PM, Schadler LS, Giannaris C, Rubio A. Single-walled carbon nanotube-polymer composites:Strength and weakness. Advanced Materials.2000; 12:750-3.
    [24]Javni I, Petrovic ZS, Guo A, Fuller R. Thermal stability of polyurethanes based on vegetable oils. Journal of Applied Polymer Science.2000;77:1723-34.
    [1]Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials.1999;11:771-8.
    [2]Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chemical Society Reviews.2010;39:228-40.
    [3]Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromolecules.2010;43:6515-30.
    [4]Cai DY, Song M. Recent advance in functionalized graphene/polymer nano-composites. Journal of Materials Chemistry.2010;20:7906-15.
    [5]Pang H, Chen T, Zhang GM, Zeng BQ, Li ZM. An electrically conducting polymer/graphene composite with a very low percolation threshold. Materials Letters.2010;64:2226-9.
    [6]Qiu SL, Wang CS, Wang YT, Liu CG, Chen XY, Xie HF, et al. Effects of graphene oxides on the cure behaviors of a tetrafunctional epoxy resin. Express Polymer Letters.2011;5:809-18.
    [7]Shen JF, Hu YZ, Li C, Qin C, Shi M, Ye MX. Layer-by-layer self-assembly of graphene nanoplatelets. Langmuir.2009;25:6122-8.
    [8]Xu JY, Hu YA, Song L, Wang QG, Fan WC. Structure of poly(acrylic acid)- intercalated graphite oxide. Carbon.2002;40:2964-5.
    [9]Chen SM, Wu GZ, Liu YD, Long DW. Preparation of poly(acrylic acid) grafted multiwalled carbon nanotubes by a two-step irradiation technique. Macromolecules. 2006;39:330-4.
    [10]Jung CH, Kim DK, Choi JH. Surface modification of multi-walled carbon nanotubes by radiation-induced graft polymerization. Current Applied Physics.2009; 9:S85-S7.
    [11]Zhang B, Zhang Y, Peng C, Yu M, Li L, Deng B, et al. Preparation of polymer decorated graphene oxide by γ-ray induced graft polymerization. Nanoscale.2012;4: 1742-8.
    [12]Wang CS, Jin QC, Wang YT, Yin HY, Xie HF, Cheng RS. A green route to prepare graphite oxide-poly(acrylic acid) and-poly(acrylamide) hybrids under y-ray irradiation. Materials Letters.2012;68:280-2.
    [13]Hummers WS, Offeman RE. Preparation of graphitic oxide. Journal of the American Chemical Society.1958;80:1339.
    [14]Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon.2007;45:1558-65.
    [15]Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z, et al. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Advanced Materials.2010;22:103-6.
    [16]Ju HM, Huh SH, Choi SH, Lee HL. Structures of thermally and chemically reduced graphene. Materials Letters.2010;64:357-60.
    [17]Titelman GI, Gelman V, Bron S, Khalfin RL, Cohen Y, Bianco-Peled H. Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide. Carbon.2005;43:641-9.
    [18]Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry.2006;16:155-8.
    [19]Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD. Graphene oxide dispersions in organic solvents. Langmuir.2008;24:10560-4.
    [20]Uhl FM, Yao Q, Nakajima H, Manias E, Wilkie CA. Expandable graphite/ polyamide-6 nanocomposites. Polymer Degradation and Stability.2005;89:70-84.
    [21]Schwamb T, Burg BR, Schirmer NC, Poulikakos D. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures. Nanotechnology.2009;20.
    [22]Yu W, Xie H, Wang X, Wang X. Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Physics Letters A.2011;375:1323-8.
    [23]Nika DL, Pokatilov EP, Askerov AS, Balandin AA. Phonon thermal conduction in graphene:Role of Umklapp and edge roughness scattering. Physical Review B. 2009;79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700