一种多尺度协同仿真方法及其在SOFC-MGT混合发电系统中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代先进能源利用系统涉及机电、动力、化工、生物、环保、计算机、自动控制等众多研究领域,复杂性、非线性和时空多尺度是其固有特性。多尺度现象是复杂性科学的核心,对于复杂系统如化工、能源、经济、生态、天体、地貌等系统中出现的多尺度问题,由于没有统一的哈密顿量,所以不能像平衡系统那样进行统计和重整化,这也是目前多尺度科学的最大困难所在。描述这种客观的复杂性和多样性,传统的连续介质模型和单一尺度的建模与仿真已显示出了较大的不足。本文结合多尺度科学和热力系统动态学的研究方法,提出了一种多尺度协同仿真方法,并进行了应用研究,主要研究内容及结论如下:①提出了一种多尺度建模方法,这是本文第一个创新点。
     基于复杂系统的组合建模法、“描述型”的多尺度模拟方法,和研究能源利用系统多尺度问题的界面耦合法的基本思想,给出了多尺度建模的主要步骤,对多尺度模型进行了分类,分析了各尺度下建模方法的选择,概括了多尺度建模顺序的几种方式,构建了各尺度模型之间信息交换和尺度模型之间耦合的方式。
     多尺度方法在能源领域的研究与应用还处于起步阶段,本文提出的多尺度建模方法抓住系统多尺度特性进行分析,使建模过程既满足认识系统内部非线性、多尺度等复杂内在本质特性的需要,也能使多尺度模拟的计算量在可控制的范围内,从而使传统模拟方法的深度和广度得到了延伸。
     ②建立了一种基于TCP/IP网络的协同仿真框架,这是本文第二个创新点。基于点对点式结构的协同仿真模式和时间同步机制,结合现有的Windows的Socket通讯机制、进程线程机制和TCP/IP通讯协议,提出了多个尺度模型之间进行数据交换的一种基于网络的协同仿真框架。该框架将多个尺度模型两两组合为一系列数据交换对,采用重构和压缩算子实现各尺度模型间信息的转换,并采用保守或乐观时间同步协议实现多尺度模拟的同步和并行仿真,实现了模型的可重用性和计算并行性,从而更深入地揭示系统的多尺度本质特征。用一个具有典型Stiff特性的一维Brusselator模型的串行仿真和并行协同仿真的比较分析,验证了该方法的可行性与有效性。
     ③建立了管式SOFC的宏观CFD和介观LBM两个尺度的模型,进行多尺度协同仿真。
     建立了管式SOFC宏观尺度的基于质量、动量、组分和能量守恒以及电化学反应动力学方程模型,并进行离散化求解;针对管式SOFC电极/电解质界面建立了介观尺度的基于电化学扩散反应的LBM模型;应用上述协同仿真框架完成了两个尺度模型的耦合、数据交换及并行协同仿真;首次采用多尺度观点对燃料电池进行仿真研究,揭示了电池内部更真实的物理化学特性。
     ④对美国Capstone公司的微型燃气轮机进行了试验研究,揭示了其主要性能,为SOFC-MGT系统的建模提供了依据。
     ⑤首次以多尺度的观点对固体氧化物燃料电池/微型燃气轮机(SOFC-MGT)混合发电系统进行了多尺度协同仿真研究,这是本文第三个创新点。
     分析SOFC-MGT系统的结构和主要控制机制,将其划分为系统尺度的过程模型、SOFC宏观尺度的CFD模型和SOFC介观尺度的电化学扩散反应模型三个层次;分别采用过程模型的模块化建模、CFD模型的流场模拟和电化学扩散反应的LBM(Lattice Boltzmann Method)模拟,以从中间开始的建模顺序完成了SOFC-MGT系统的嵌入式多尺度模型的建立;利用压缩和重构算子完成不同尺度下参数之间的耦合,通过基于TCP/IP的网络协同仿真框架交换耦合参数,集成各个尺度模型完成了SOFC-MGT系统的多尺度协同仿真,保守时间同步协议保证了数据交换的正确性,并进行了仿真实验。
     多尺度协同仿真方法在SOFC-MGT系统中的成功应用,初步验证了多尺度协同仿真相对于传统单一尺度仿真的优势,主要表现在:1)抓住了复杂系统的多尺度本质特性进行分析,将系统划分为不同尺度下的子系统,分析其相应的控制机制,加入尺度间的相互作用,能够更深入地揭示复杂系统的内在机理;2)弥补单一尺度仿真时所作简化和假设带来的误差,能够获得系统更真实、准确的结果;3)可以同时得到相同条件下多个尺度模型的计算结果,从多个层次出发,更系统、更深入地分析对象的性能与特性,有利于揭示对象的本质特性。
Complexity, nonlinearity and temporal-spatial multi-scale characteristics are inherent mechanisms for modern advanced energy systems which involve mechanics and electrics, power, chemistry, biology, environmental control, computer, automatic control and many other research areas. Multi-scale phenomena are the core of science of complexity. Because there is no uniform Hamiltonian, the statistic and renormalization of the complex systems can not be achieved like the balance systems, such as chemical systems, energy systems, economic systems, ecosystems, astronomic systems, and geomorphic systems. It is also the largest difficulty of multi-scale science for now. The traditional continuum model and single-scale simulation reveal a huge limitations in describing the complexity and diversity. A multi-scale and collaborative simulation method and its application have been developed based on the ways of multi-scale science and thermo-dynamic system dynamics. The main research contents and conclusions of this paper are as follows:
     ①Presenting a multi-scale modeling method for energy utilizing system The primary steps of multi-scale modeling have been proposed, the types of multi-scale model have been categorized, the modeling modes of scales have been chosen, the modes of multi-scale modeling order have been summed, and the patterns of information exchange among scale models and coupling scale models have been built, based on the combination modeling means of complex system, the descriptive modeling way of multi-scale simulation, and the coupling interface method to research the multi-scale problems of energy systems.
     The research and application of multi-scale method in energy field are still in its infancy. The methodology presented in this paper aims at the analysis of the system multi-scale characteristics, makes the modeling process meet the needs for recognizing complex and essential characteristics inside the system, such as nonlinear and multi-scale identities, makes the computation of multi-scale simulation among the controllable range, and extends the range of conventional simulation methods.
     ②Building a framework of collaborative simulation based on TCP/IP Based on the point to point collaborative simulation and the time synchronization mechanism, combining the existing Socket communication mechanism, Windows course mechanism and TCP/IP communication protocol, a collaborative simulation framework for exchanging data among scale models has been presented. Each two scale models have been assembled a series of pairs to exchange data, and the conversions of information among all scale models have been achieved by reconstruction operator and compression operator, and the conservative or optimistic time synchronization protocol have been used to ensure the synchronization and parallel simulation of multi-scale model. With these steps, the reusability of established models and the parallel computation have been realized, and the multi-scale characteristics of system have been deeply revealed.
     The feasibility and validity of this way have been proved by the comparative analysis between serial and parallel collaborative solution of 1D Brusselator model having the typical Stiff characteristic.
     ③Performing the multi-scale collaborative simulation of tubular SOFC concerning the macroscopic CDF model and mesoscopic LBM model
     Based on the conservation of mass, momentum, species and energy, and the equations of electrochemistry dynamics, the macroscopic model of tubular SOFC has been built, discretized and solved. The mesoscopic LBM model aiming at the electrochemistry diffusion reaction of the electrode/electrolyte interface in tubular SOFC has been established. The coupling, data exchange and parallel computation of two models have been achieved by the collaborative simulation framework presented in this paper. The first simulation of fuel cell from a multi-scale point of view has been fulfilled, and the results have revealed the more realistic physical and chemical characteristics inside cells.
     ④The experimental studies on Capstone micro gas turbine
     ⑤The comprehensive simulation of solid oxide fuel cell/micro gas turbine (SOFC-MGT) hybrid generating system from a multi-scale point of view Based on the analysis of SOFC-MGT system configuration and dominate control mechanism, the SOFC-MGT system has been divided into three levels, namely, the process analysis at system scale, the flow field analysis of SOFC at macroscopic scale, and the electrochemistry diffusion reaction analysis of SOFC at mesoscopic scale. All of these have been completed using the modular modeling of process model, the flow field simulation of CFD model, and the LBM simulation of electrochemistry diffusion reaction respectively. The embedded multi-scale model of SOFC-MGT system has been built by using the mode of middle-out. With coupling the parameters of different scale models by the compression and reconstruction operators, and exchanging the coupling variable using the collaborative simulation framework based on TCP/IP, the multi-scale and collaborative simulation of SOFC-MGT system has been performed by integrating all of three scale models. The correctness of exchanged data has been ensured by the conservation time synchronization protocol, and the simulation experimentation on the system response to the step disturbance of fuel import quantity has been accomplished.
     The successful application of multi-scale collaborative simulation methodology in SOFC-MGT system has been preliminarily verified and shows that the multi-scale collaborative simulation has many advantages over the traditional single-scale simulation: 1) With analyzing the multi-scale characteristics of complex system, the system is divided into many subsystems in different scales. With the analyses of corresponding control mechanisms in all scales, the interaction among scales has been added into the models, and the outcomes have deeply revealed the inherent mechanisms of complex systems. 2) The errors from the simplification and hypothesis of single-scale simulation have been compensated by the multi-scale and collaborative modeling, and the more reality and accurate results can been acquired. 3) The multi-scale collaborative simulation can simultaneously obtain more comprehensive results from different scale models.
引文
[1]刘兴堂,刘力,宋坤,王超.对复杂系统建模与仿真的几点重要思考[J].系统仿真学报,2007, 19(13):3073-3075.
    [2]柴立和.多尺度科学的研究进展[J].化学进展,2005,17(2):186-191.
    [3] Li Jinghai, Zhang Jiayuan, Ge Wei, et al. Multi-scale methodology for complex systems [J]. Chemical Engineering Science, 2004, 59(8-9): 1687-1700.
    [4]陈景.原子态与金属态贵金属化学稳定性的差异[J].中国有色金属学报,2001,11(2):288-293.
    [5]王崇愚.多尺度模型及相关分析方法[J].复杂系统与复杂性科学,2004,1(1):9-19.
    [6]吴承康,徐建中,金红光.能源科学发展战略研究[J].世界科技研究与发展,2000,22(4):1-6.
    [7]李静海,葛蔚.过程工业中的多尺度效应及离散化单元模拟[J].化工进展,1999(5):11-13.
    [8]钱学森,于景元,戴汝为.一个科学新领域——开放的复杂巨系统及其方法论[J].自然杂志,1990,13(1):3-11.
    [9]张启人,林福永.复杂性科学中复杂性根源的研究[J].系统工程理论与实践,2002,22(10):66-71.
    [10]胡斌,肖人彬.复杂系统的定性仿真[J].系统仿真技术,2006,2(1):1-11.
    [11]王子才.关于仿真理论的探讨[J].系统仿真学报,2000,12(6):604-608.
    [12]刘兴堂,吴晓燕.现代系统建模和仿真技术[M].西安:西北工业大学出版社,2001.
    [13]王军华.多尺度计算方法的初探及应用[D].西安:西北工业大学,2006.
    [14]魏玉萍,国海光,刘化章.化工过程中的多尺度效应[J].浙江化工,2002,33(4):1-4.
    [15]郭慕孙,胡英,王夔等.物质转化过程中的多尺度效应[M].哈尔滨:黑龙江教育出版社,2002.
    [16]王正中.编后记:关于复杂系统仿真方法的研究[J].系统仿真学报,2000,6:1.
    [17]陈森发.复杂系统建模理论与方法[M].南京:东南大学出版社,2005.
    [18]瞿继双,戴金海.复杂离散实时系统任务/资源图建模方法研究[J].系统仿真学报,2000,12(6):600-603.
    [19]朱六璋,陈宗海.复杂系统的定性建模和定性控制综述[J].信息与控制,2001,30(3):234-239.
    [20] Glimm J, Sharp D H. Multiscale science: A challenge for the twenty-first century [J]. SIAM News, 1997, 30(8): 1-7.
    [21]胥建龙,唐志平.离散元与有限元结合的多尺度方法及其应用[J].计算物理,2003,20(6):477-482.
    [22] O?ate E. Multiscale computational analysis in mechanics using finite calculus: an introduction [J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(28-30): 3043-3059.
    [23]黄蓓,陈伯川,黄轶伦.算法复杂性在气固流化床动力学中的多尺度分析[J].化工学报,2002,53(12):1270-1275.
    [24]张小华,欧阳洁,孔倩.聚合物流动的多尺度模拟[J].化工学报,2007,58(8):1897-1904.
    [25]孙宏伟.化学工程的发展趋势——认识时空多尺度结构及其效应[J].化工进展,2003,22(3):224-227.
    [26] Dollet A. Multiscale modeling of CVD film growth—a review of recent works [J]. Surface and Coatings Technology, 2004, 177-178:245-251.
    [27]胡英,刘洪来,叶汝强.化学化工中结构的多层次和多尺度研究方法[J].大学化学,2002,17(1):12-20.
    [28]王夔.复杂性——生命科学中的基本化学问题[J].大学化学,2001,16:7-12.
    [29] Russell C T. Multiscale coupling in planetary magnetospheres [J]. Advances in Space Research, 2002, 30(12): 2647-2656.
    [30] Kessler M A, Werner B T. Self-organization of sorted patterned ground [J].Science, 2003, 299(5605): 380-383.
    [31]岳天祥,刘纪远.生态地理建模中的多尺度问题[J].第四纪研究,2003,23(3):256-261.
    [32] Demongeot J, Bezy-Wendling J, Mattes J, et al. Multiscale modeling and imaging: the challenges of biocomplexity [J]. Proceedings of the IEEE, 2003, 91(10): 1723-1737.
    [33] Toroczkai Z, Bassler K E. Network dynamics Jamming is limited in scale-free systems [J]. Nature, 2004, 428(6984): 716.
    [34]李静海,郭慕白.过程工程量化的科学途径[J].自然科学进展,1999,9(12):1073-1078.
    [35] Filippova O, Succi S, Mazzocco F, et al. Multiscale lattice Boltzmann schemes with turbulence modeling [J]. Journal of Computational Physics, 2001, 170(2): 812-829.
    [36] Ahl V, Allen T F H. Hierarchy theory: a vision, vocabulary and epistemology [M]. New York: Columbia University Press, 1996.
    [37]吕一河,傅伯杰.生态学中的尺度及尺度转换方法[J].生态学报,2001,21:2096-2105.
    [38] Li Jinghai, Kwauk M. Exploring complex systems in chemical engineering-the multi-scale methodology [J]. Chemical Engineering Science, 2003, 58(3-6): 521-535.
    [39]张征,刘更,刘天祥等.计算材料科学中桥域多尺度方法的若干进展[J].计算力学学报,2006,23(6):652-658.
    [40]刘更,刘天祥,张征等.宏观—微观多尺度数值计算方法研究进展[J].中国机械工程,2005,16(16):1493-1499.
    [41]徐长发,李红.偏微分方程数值解法[M].武汉:华中理工人学出版社,2000.
    [42]王德伦,王淑芬,李涛.平面四杆机构近似运动综合的自适应方法[J].机械工程学报,2001,37(12):21-26.
    [43] Jenny P, Lee S H, Tchelepi H A. Multi-scale finite-volume method for elliptic problems insubsurface flow simulation [J]. Journal of Computational Physics, 2003, 187(1): 47-67.
    [44]曹海涛.多尺度有限体积法及其应用[D].苏州:苏州大学,2005.
    [45] Babu?ka I, Osborn J E. Generalized finite element methods: their performance and their relation to mixed methods [J]. SIAM Journal on Numerical Analysis, 1983, 20(3):510-536.
    [46] E Weinan, Ming Pingbing. Analysis of multiscale methods [J]. Journal of Computational Mathematics, 2004, 22(2): 210-219.
    [47] E Weinan, Engquist B, Huang Zhongyi. Heterogeneous multiscale method: A general methodology for multiscale modeling [J]. Physical Review B, 2003, 67(9): No. 092101.
    [48] Sfantos G K, Aliabadi M H. Multi-scale boundary element modelling of material degradation and fracture [J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(7): 1310-1329.
    [49] Liu W K, Hao Su, Belytschko T, et al. Multi-scale methods [J]. International Journal for Numerical Methods in Engineering, 2000, 47(7):1343-1361.
    [50]刘明才.小波分析及其应用[M].北京:清华大学出版社,2005.
    [51] Dorobantu M, Engquist B. Wavelet-based numerical homogenization [J]. SIAM Journal On Numerical Analysis, 1998, 35(2): 540-559.
    [52] Celia M A, Rajaram H, Ferrand L A. A multi-scale computational model for multiphase flow in porous media [J]. Advances in Water Resources, 1993, 16(1): 81-92.
    [53] Belak J. Multi-scale applications to high strain-rate dynamic fracture [J]. Journal of Computer-Aided Materials Design, 2002, 9(2): 165-172.
    [54] Rafii-Tabar H, Hua L, Cross M. A multi-scale numerical modelling of crack propagation in a 2D metallic plate [J]. Journal of Computer-Aided Materials Design, 1998, 4(3): 165-173.
    [55] Li Jinghai, Kwauk M. Particle-fluid two-phase flow [J]. China Particuology, 2003, 1(1):42.
    [56]王琳娜,李静海.非均匀气固两相系统中多尺度传质模型[J].化工学报,2001,52(8):708-714.
    [57]程从礼,高士秋,张忠东.气固循环流化床能量最小多尺度环核(EMMS/CA)模型[J].化工学报,2002,53(8):804-809.
    [58]宋士仓,崔俊芝,刘红生.复合材料稳态热传导问题多尺度计算的一个数值模型[J].应用数学,2005,18(4):560-56.
    [59] Cao Liqun. Iterated two-scale asymptotic method and numerical algorithm for the elastic structures of composite materials [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(27-29): 2899-2926.
    [60] Cao Liqun, Cui Junzhi. Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for second order elliptic equations in perforated domains [J]. Numerische Mathematik, 2004, 96(3): 525-581.
    [61]曹礼群.材料物性的多尺度关联与数值模拟[J].世界科技研究与发展,2002,24(6):23-30.
    [62] Hughes T J R, Mazzei L, Oberai A A. The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence [J]. Physics of Fluids, 2001, 13(2): 505-512.
    [63] Li Xiantao, E Weinan. Multiscale modeling of the dynamics of solids at finite temperature [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(7):1650-1685.
    [64] Abdulle A, E Weinan. Finite difference heterogeneous multi-scale method for homogenization problems [J]. Journal of Computational Physics, 2003,191(1):18-39.
    [65] Deymier P A, Vasseur J Q. Concurrent multiscale model of an atomic crystal coupled with elastic continua [J]. Physical Review B, 2002, 66(13): No.134106.
    [66] Rudd R E, Broughton J Q. Concurrent coupling of length scales in solid state systems [J]. Physica Status Solidi (b), 2000, 217(1): 251-291.
    [67]孙西芝,陈时锦,程凯等.多尺度仿真方法研究综述[J].系统仿真学报,2006,18(10):2699-2702.
    [68]谢海斌,张代兵,沈林成.基于MATLAB/ SIMULINK与FLUENT的协调仿真方法研究[J].系统仿真学报,2007,19(8):1824-1827.
    [69]谢海斌,沈林成.水下机器人动态系统协同建模方法研究[J].系统仿真学报,2007,19(9):2130-2133.
    [70] Singhal S C, Kendall K. High Temperature Solid Oxide Fuel Cell: Fundamentals, Design and Applications [M]., Oxford: Elsevier Science, 2003.
    [71] Bosio B, Costamagna P, Parodi F. Modeling and experimentation of molten carbonate fuel cell reactors in a scale-up process [J]. Chemical Engineering Science, 1999, 54(13-14): 2907-2916.
    [72] Chan S H, Xia Z T. Anode micro model of solid oxide fuel cell[J]. Journal of The Electrochemical Society, 2001,148(4):A388-A394.
    [73] Chan S H, Chen X J, Khor K A. Cathode micromodel of solid oxide fuel cell [J]. Journal of The Electrochemical Society, 2004,151(1):A164-A172.
    [74] Wolf T L, Wilemski G. Molten carbonate fuel cell performance model [J]. Journal of The Electrochemical Society, 1983, 130(1): 48-55.
    [75] Haynes C, Wepfer W J. Characterizing heat transfer within a commercial-grade tubular solid oxide fuel cell for enhanced thermal management [J]. International Journal of Hydrogen Energy, 2001, 26(4): 369-379.
    [76] Campanari S, Iora P. Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry [J]. Journal of Power Sources, 2004, 132(1-2): 113-126.
    [77] Li Peiwen, Suzuki K. Numerical modeling and performance study of a tubular SOFC [J]. Journal of The Electrochemical Society, 2004, 151(4): A548-A557.
    [78] Stiller C, Thorud B, Seljeb? S, et al. Finite-volume modeling and hybrid-cycle performance ofplanar and tubular solid oxide fuel cells [J]. Journal of Power Sources, 2005, 141(2): 227-240.
    [79] Sammes N M, Du Y, Bove R. Design and fabrication of a 100W anode supported micro-tubular SOFC stack [J]. Journal of Power Sources, 2005, 145(2): 428-434.
    [80] Koh J H, Kang B S, Lim H C. Effect of various stack parameters on temperature rise in molten carbonate fuel cell stack operation [J]. Journal of Power Sources, 2000, 91(2): 161-171.
    [81] King A C, Billingham J, Cooper R J. Performance modelling of solid oxide fuel cells [J]. Combustion Theory and Modelling, 2001,5(4):639-667.
    [82] Recknagle K P, Williford R E, Chick L A, et al. Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks [J]. Journal of Power Sources, 2003, 113(1): 109-114.
    [83] Ackmann T, de Haart L G J, Lehnert W, et al. Modeling of mass and heat transport in planar substrate type SOFCs [J]. Journal of The Electrochemical Society, 2003, 150(6): A783-A789.
    [84] Yamaguchi M, Saito T, Izumitan M, et al. Analysis of control characteristics using fuel cell plant simulator [J]. IEEE Transactions on Industrial Electronics, 1990, 37(5): 378-386.
    [85] Murthy S, Fedorov A G. Radiation heat transfer analysis of the monolith type solid oxide fuel cell [J]. Journal of Power Sources, 2003, 124(2):453-458.
    [86]张会生,翁史烈,苏明.燃料电池-燃气轮机混合发电装置研究现状[J].电源技术,2006,30(2):165-168.
    [87]姚秀平.燃气轮机及其联合循环发电[M].北京:中国电力出版社,2004.
    [88]翁一武,苏明,翁史烈.先进微型燃气轮机的特点与应用前景[J].热能动力工程,2003,18(104):111-115.
    [89]张兄文,李国君,李军等.高温燃料电池-燃气轮机混合循环发电技术[J].燃气轮机技术,2005,1(18):23-29.
    [90] George R A., Status of tubular SOFC field unit demonstrations [J]. Journal of Power Sources, 2000, 86(1-2): 134-139.
    [91] Scott W G. Micro-turbine generators for distribution systems [J]. IEEE Industry Applications Magazine, 1998, 4(3): 57-62.
    [92] Zhang Huisheng, Weng Shilie, Su Ming. Dynamic modeling on the hybrid molten carbonate fuel cell-gas turbine bottoming cycle[J]. Journal of Fuel Cell Science and Technology, 2005, 2(2): 94-98.
    [93] Williams M C, Strakey J P, Singhal S C.. U.S. distributed generation fuel cell program [J]. Journal of Power Source, 2004, 131(1-2): 79-85.
    [94] Rao A D, Samuelsen G S, Robson F L, et al. Coal-based power plant system configurations for the 21st century [C]. ASME Turbo Expo 2003, 2, NO:GT2003-38942:631-648.
    [95]包成,蔡宁生.固体氧化物燃料电池—燃气轮机混合发电系统建模与控制的研究现状与进展[J].机械工程学报,2008,44(2):1-7.
    [96]黄刘松.固体氧化物燃料电池—微型燃气轮机混合装置建模与仿真[D].上海:上海交通大学,2007.
    [97]卢立宁,李素芬,沈胜强等.固体氧化物燃料电池与燃气轮机联合发电系统模拟研究[J].热能动力工程,2004,19(4):358-437.
    [98]伊亭.燃料电池-燃气轮机联合循环动态仿真研究[D].上海:上海交通大学,2002.
    [99]史翊翔,蔡宁生,李振山.SOFC/Micro-GT混合循环系统性能分析[J].清华大学学报,2005,45(8):1142-1146.
    [100] Zhang W, Croiset E, Douglas P L, et al. Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models [J]. Energy Conversion and Management, 2005, 46(2): 181-196.
    [101] Magistri L, Traverso A, Cerutti F, et al. Modelling of pressurised hybrid systems based on integrated planar solid oxide fuel cell (IP-SOFC) technology [J]. Fuel Cells, 2005, 5(1): 80-96.
    [102] Stiller C, Thorud B, Seljeb? S, et al. Finite-volume modeling and hybrid-cycle performance of planar and tubular solid oxide fuel cells [J]. Journal of Power Sources, 2005, 141(2): 227-240.
    [103]李伯虎,柴旭东,朱文海等.现代建模与仿真技术发展中的几个焦点[J].系统仿真学报,2004,16(9):1871-1878.
    [104]李创,陈天宇.基于格子Boltzmann方法的混沌微混合器仿真研究[J].系统仿真学报,2004,16(7):1369-1371.
    [105]康毅力,李前贵,张箭等.多尺度科学及其在油气田开发中的应用研究[J].西南石油大学学报,2007,29(5):177-180.
    [106]郭慕孙.化学工程的多层次结构[J].化学工程,2007,35(10):75-78.
    [107]陶文铨等.传热与流动问题的多尺度数值模拟:方法与应用[M].北京:科学出版社,2008.
    [108] Ingram G D, Cameron I T, Hangos K M. Classification and analysis of integrating frameworks in multiscale modelling [J]. Chemical Engineering Science, 2004, 59(11): 2171-2187.
    [109]熊光楞,郭斌,陈晓波等.协同仿真技术与虚拟样机技术[M].北京:清华大学出版社,2004.
    [110]肖田元,张燕云,陈加栋.系统仿真导论[M].北京:清华大学出版社,2000.
    [111]韩虎.产品开发中协同仿真技术研究[D].青岛:山东科技大学,2006.
    [112]王成龙.协同仿真技术及相关支撑工具的研究[D].泰安:山东科技大学,2003.
    [113] BMS. Co-simulation boosts vehicle design efficiency at Ford [J]. Computer-Aided Engineering 1999, 18(7): 8-9.
    [114]冀荣华,王建辉,徐宇.基于Plug&sim环境的协同仿真[J].系统仿真学报,2003,15(1):59-62.
    [115]陈晓波.面向复杂产品设计的协同仿真关键技术研究[D].北京:清华大学,2003.
    [116]蒋东兴,林鄂华,陈棋德等.Windows Sockets网络程序设计大全[M].北京:清华大学出版社,1999.
    [117]曹力,刘晓平.局域网中分布式仿真系统的通讯模型[J].系统仿真学报,2007,19(13):2951-2954.
    [118]李俊红,解建军,王喜年等.并行离散事件模拟的同步机制研究[J].计算机工程与设计,2006,27(13):2375-2377.
    [119] Hairer E, Wanner G. Solving ordinary differential equationsⅡ: Stiff and differential - algebraic problems [M]. 2nd ed.影印版,北京:科学出版社, 2006.
    [120]李杨,魏敦崧,渊卫国.燃料电池发展现状与应用前景[J].能源技术,2001,22(4):158-161.
    [121] Grillo O, Magistri L, Massardo A F. Hybrid systems for distributed power generation based on pressurization and heat recovering of an existing 100 kW molten carbonate fuel cell [J]. Journal of Power Sources,2003, 115(2): 252-267.
    [122]毛宗强等.燃料电池[M].北京:化学工业出版社,2005.
    [123]衣宝廉.燃料电池——原理?技术?应用[M].北京:化学工业出版社,2003.
    [124]彭苏萍,韩敏芳,杨翠柏等.固体氧化物燃料电池[J].物理,2004,33(2):90-94.
    [125]张会生,伊亭,苏明.混合装置中高温燃料电池建模综述[J].电源技术,2002,26(4):321-325.
    [126]曾丹苓,敖越,张新铭等.工程热力学(第3版)[M].北京:高等教育出版社,2002.
    [127]吴努斌.固体氧化物燃料电池平板和圆筒单体电势场数值模拟[D].北京:华北电力大学,2006.
    [128]贾俊曦,姜任秋,沈胜强等.管式固体氧化物燃料电池非稳态数值研究[J].中国电机工程学报,2007,27(20):91-98.
    [129] Chan S H, Khor K A, Xia Z T. A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness [J]. Journal of Power Sources, 2001, 93(1-2): 130-140.
    [130] Tanaka K, Wen C, Yamada K. Design and evaluation of combined cycle system with solid oxide fuel cell and gas turbine [J]. Fuel, 2000;79(12):1493-1507.
    [131] Chan S H, Ho H K, Tian Y. Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant [J]. Journal of Power Sources, 2002, 109(1): 111-120.
    [132]韩占忠等.FLUENT:流体工程仿真计算实例与应用[M].北京:理工大学出版社,2004.
    [133]史翊翔,李晨,蔡宁生.管式固体氧化物燃料电池机理模型与性能分析[J].化工学报,2007, 58(3):722-727.
    [134]李晨,史翊翔,蔡宁生.管式固体氧化物燃料电池的数值模拟[J].动力工程,2006,26(5):742-746.
    [135]黄镜欢.固体氧化物燃料电池的传热传质数值模拟[D].南京:南京理工大学,2004.
    [136]张兄文,李军,李国君,丰镇平.管式SOFC热电特性的三维数值研究[J].热能动力工程, 2006, 21(6): 628-631.
    [137]李勇,刘志友,安亦然.介绍计算流体力学通用软件——Fluent[J].水动力学研究与进展,2001,A16(2):254~258.
    [138]杨晨,张雨英,徐泽亚.管型SOFC内部传热传质的数值仿真[J].系统仿真学报,2007,19(14):3206-3209.
    [139]李彦.固体氧化物燃料电池的电极材料研究和单电池数值模拟[D].杭州:浙江大学,2006.
    [140]贾俊曦.固体氧化物燃料电池传热传质模型研究[D].大连:大连理工大学,2005.
    [141]郭照立,郑楚光,李青等.流体动力学的格子Boltzmann方法[M].武汉:湖北科学技术出版社,2002.
    [142] Lu Zhenyu,Liao Ying,Qian Dongying, et al. Large eddy simulations of a stirred tank using the lattice Boltzmann method on a nonuniform grid [J]. Journal of Computational Physics, 2002, 181(2): 675-704.
    [143] Ladd A J C,Verberg R. Lattice-Boltzmann simulations of particle-fluid suspensions [J]. Journal of Statistical Physics, 2001, 104(5-6): 1191-1251.
    [144] Pan Chongxun, Prins J F, Miller C T. A high-performance lattice Boltzmann implementation to model flow in porous media [J]. Computer Physics Communications. 2004, 158(2): 89-105.
    [145] Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases I: Small amplitude processes in charged and neutral one-component systems [J]. Physical Review, 1954, 94(3): 511-525.
    [146]邓敏艺,刘慕仁,孔令江.一维反应扩散问题的格子Boltzmann方法模拟[J].广西师范大学学报,2000,18(4):8-13.
    [147]邓敏艺,刘慕仁,孔令江.二维反应扩散方程的格子Boltzmann方法模拟[J].广西师范大学学报,2001,19(1):1-6.
    [148]邓敏艺,张超英,孔令江等.用格子Boltzmann方法研究Selkov反应扩散模型中的非线性波[J].广西物理,2005,26(3):1-3.
    [149]马旭,杨晨,张雨英.基于现象的复杂系统建模方法[J].重庆大学学报,2008,31(1):61-66.
    [150]张小军.格子法理论及其在计算流体力学中的应用研究[D].武汉:武汉理工大学,2003.
    [151]董长虹,余啸海.Matlab接口技术与应用[M].北京:国防工业出版社,2004.
    [152]王晓东,毕开波,周须峰.基于ADAMS与Simulink的协同仿真技术及应用[J].计算机仿真,2007,24(4):271-274.
    [153]许越.化学反应动力学[M].北京:化学工业出版社,2005.
    [154]薛利超.基于120kw固体氧化物燃料电池与微型燃机复合系统性能研究[D].大连:大连理工大学,2007.
    [155]翁一武,翁史烈,苏明.以微型燃气轮机为核心的分布式供能系统[J].中国电力,2003,36(3):1-4.
    [156]李孝堂,侯凌云,杨敏等.现代燃气轮机技术[M].北京:航空工业出版社,2006.
    [157]赵豫,于尔铿.新型分散式发电装置—微型燃气轮机[J].电网技术,2004,28(4):47-50.
    [158]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002.
    [159]邱晓林,李天柁,弟宇鸣等.基于MATLAB的动态模型与系统仿真工具——Simulink 3.0/4.0[M].西安:西安交通大学出版社,2003.
    [160]沈辉.精通SIMULINK系统仿真与控制[M].北京:北京大学出版社,2003.
    [161]胡琳静,孙政顺.SIMULINK中自定义模块的创建与封装[J].系统仿真学报,2004,16(3):488-491.
    [162]余又红,孙丰瑞,张仁兴.基于MATLAB的面向对象的燃气轮机动态仿真研究[J].燃气轮机技术,2003,16(1):53-56.
    [163]王静,崔国民,李美玲.带回热微型燃气轮机系统动态过程分析[J].热能动力工程,2004,19(6):562-566.
    [164] Chan S H, Ho H K, Tian Y. Multi-level modeling of SOFC–gas turbine hybrid system [J]. International Journal of Hydrogen Energy, 2003, 28(8): 889-900.
    [165]陈启梅.MCFC-GT混合动力系统非线性特征及其协调控制研究[D].上海:上海交通大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700