网络化控制系统的若干控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络化控制系统适应了控制系统逐渐地向分散化、网络化、智能化方向发展的趋势,从而成为当前控制领域的研究热点。本文针对网络化控制系统的反馈通道和控制通道中存在网络诱导时延和数据包丢失现象,研究了网络化控制系统的状态估计、LQG最优控制、广义预测控制和时滞相关镇定问题。主要内容如下:
     1)提出了基于预测思想的网络化状态估计算法,以补偿网络诱导时延和数据包丢失的影响。分析了该预测估计算法的性能,表明了虽然该算法具有明显的补偿效果,但是随着网络诱导时延或数据包丢失的增长,预测估计偏差略微递增,讨论了估计算法的稳定条件,通过仿真和实验验证了算法的有效性和分析的正确性,从而为网络化LQG最优控制和基于状态空间模型的网络化广义预测控制的实现提供了状态估计方法。
     2)结合网络化预测状态估计算法,提出了补偿网络诱导时延和数据包丢失的网络化LQG最优控制算法。基于动态规划的思想给出了补偿网络诱导时延和数据包丢失的LQ最优控制器的设计方法,讨论了通过网络传送的控制信号对状态估计影响,给出了网络诱导时延或数据包丢失同时存在于反馈通道和控制通道的情况下网络化预测估计算法,证明了分离定理的成立,通过仿真和实验验证了算法的有效性和分析的正确性。
     3)提出了采用最小预测步长补偿网络诱导时延和采用预测控制向量补偿数据包丢失的基于多项式模型的网络化广义预测控制算法,讨论了网络诱导时延和数据包丢失与最小预测步长和预测控制向量之间的关系,基于滚动优化方法给出了基于多项式模型的网络化广义预测控制器的设计方法。基于多个数据打包传送以补偿网络诱导时延和数据包丢失的网络化递推最小二乘辨识算法,进一步讨论了网络化预测自校正控制器的设计方法。通过仿真和实验验证了算法的有效性和分析的正确性。
     4)提出了采用最小预测步长补偿网络诱导时延和采用预测控制向量补偿数据包丢失的基于状态空间模型的网络化广义预测控制算法,给出了基于状态空间模型的网络化广义预测控制器的设计方法,通过仿真和实验验证了算法的有效性和分析的正确性。
     5)提出了一种改进的补偿网络诱导时延和数据包丢失的网络化时滞相关镇定方法。以线性标称系统为受控对象,该改进方法通过考虑过去在估算Lyapunov泛函导数时被忽略的一个积分项,来克服过去求导结果的保守性,给出了基于Lyapunov方法的指数渐近稳定的条件和相关结果,仿真验证了改进方法的优越性,并通过实验结果表明了方法的有效性。对于线性不确定系统,进一步研究了基于时滞相关方法的网络化保性能控制器的设计方法,给出了最优保性能控制器的求解算法,通过仿真和实验验证了算法的有效性和分析的正确性。
Networked control systems have attracted much attention because they adapt to the distributed, networked and intelligentized development direction of control systems. This thesis is concerned with state estimation, LQG optimal control, generalized predictive control and delay-dependent stabilization of networked control systems, which takes network-induced time delay and packet loss in both the feedback channel and control channel into account. The main contents are given as follow:
     Firstly, a prediction-based networked state estimation algorithm is proposed to compensate for the influence of network-induced time delay and packet loss. The performance of the algorithm is theoretically analyzed, and it is pointed that although it achieves a good effectiveness on compensation, its estimation error appreciably increases with the increment of network-induced time delay and packet loss. The stability condition of this algorithm is also discussed. And simulation and experiment results are given to illustrate the effectiveness of algorithm and correctness of theoretical analysis.
     Secondly, using the prediction-based networked state estimate- ion algorithm, a networked LQG optimal control algorithm is proposed to compensate for the influence of network-induced time delay and packet loss on control performance. The design method of networked LQ optimal controller, which can compensate for the network-induced time delay and packet loss, is given using dynamical programming. With the analysis of the influence of control signal transported through network, the prediction-based networked state estimation is further developed under the condition that network-induced time delay and packet loss simultaneously exist in both the feedback channel and control channel. The separation theorem is proved to hold. Simulation and experimental results are given to demonstrate the effectiveness of algorithm and correctness of theoretical analysis.
     Thirdly, a polynomial-model-based networked generalized predictive control algorithm is proposed which compensates for the influence of network-induced time delay and packet loss using minimal predictive step and control increment vector, respectively. The relations between network-induced time delay and minimal predictive step, and between packet loss and control increment vector are discussed. With the iterative optimization approach, the design method of polynomial-model-based networked generalized predictive controllers is given. Furthermore, a networked generalized predictive self-tuning controller is discussed, based on the networked iterative least square identification algorithm which reduces the influence of network-induced time delay and packet loss with output prediction. Simulation and experiment results are given to show the effectiveness of algorithm and correctness of theoretical analysis.
     Fourthly, a state-space-model-based networked generalized predictive control algorithm is proposed in the similar way to the polynomial-model-based case. The design method of the controller is also given. Simulation and experiment results are given to show the effectiveness of algorithm and correctness of theoretical analysis.
     Fifthly, an improved method of networked delay-dependent stabilization, which can counteract the influence of network-induced time delay and packet loss, is proposed. With a linear nominal system as a controlled plant, the improved method overcomes the conservativeness of the derived condition by considering an integral item which was ignored in the past research of networked control systems. For an uncertain linear system, the design method of networked guaranteed cost controller is discussed with delay-dependent approach. Numerical and experiment results are given to illustrate the effectiveness of the algorithm and correctness of theoretical analysis.
引文
[1] Almutairi, N. B. Adaptive fuzzy modulation for networked PI control systems. Carolina, USA: North Carolina State University, 2002
    [2] Baillieul, J. Special issue on networked control systems. IEEE Transactions on Automatic Control, 2004,49(9): 1421-1423
    [3] Cavalieri, S., Stefano, A., Mirabella, O. Impact of feildbus on communication in robotics systems. IEEE Trans On Robotics and Automation, 1997,13(1): 30-48
    [4] Chai, S. C., Liu, G. P., Rees, D., et al. Design and practical implementation of internet-based predictive control of a servo system. IEEE Transactions on Control Systems Technology, 2008,16(1): 158-168
    [5] Chan, H., Oguner, U. Closed-loop control of systems over a communication network with queues. International Journal of Control, 1995,62(3): 493-510
    [6] Chang, S. S. L., Peng, T. K. C. Adaptive guaranteed cost control of systems with uncertain parameters. IEEE Transactions on Automatic Control, 1972, 17: 474-483
    [7] Chen, W. H., Guan, Z. H., Lu, X. M. Delay-dependent output feedback guaranteed cost control for uncertain time-delay systems. Automatica, 2004, 40: 1263-1268
    [8] Chen, W. H., Guan, Z. H., Lu, X. Delay-dependent guaranteed cost control for uncertain discrete-time systems with delay. IEEE Proceedings-Control, Theory and Applications, 2003a, 150: 412-416.
    [9] Chen, W. H., Xu, J. X., Guan, Z. H. Guaranteed cost control for uncertain Markovian jump systems with mode-dependent delays. IEEE Transactions on Automatic Control, 2003b, 48: 2270-2277
    [10] Chow, M. Y., Tipsuwan, Y. Network-based control adaptation for network QoS variation. Proceedings-IEEE Military Communications Conference MILCOM, 2001,1:257-261
    [11] Dacic, D., Nesic, D. Quadratic stabilization of linear networked control systems via simultaneous protocol and controller design. Automatica, 2007, 43: 1145-1155
    [12] Fridman, E., Shaked, U. New bounded real lemma representations for time- delay systems and their applications. IEEE Trans on Automatic Control, 2001, 46(12): 1973-1979
    [13] Gao, H. J., Chen, T. W. New results on stability of discrete-time systems with time varying state delay. IEEE Transactioins on Automatic Control, 2007, 52(2): 328-334
    [14] Gong, W. B., Basar, T. Special issue of the IEEE transactions on automatic control on systems and control methods for communication networks. IEEE Transactioins on Automatic Control, 2002,47(6): 877-879
    [15] Gupta, V., Hassibi, B., Murray, R. M. Optimal LQG control across packet-dropping links. Systems & Control Letters, 2007, 56: 439-446
    [16] Halevi, Y., Ray, A. Integrated communication and control systems: part Ⅰ-analysis. ASME Journal of Dynamic Systems, Measurement, and Control, 1988a, 110:367-373
    [17] Halevi, Y., Ray, A. Integrated communication and control systems: part Ⅱ-design considerations. ASME Journal of Dynamic Systems, Measurement, and Control, 1988b, 110:374-381
    [18] Halevi, Y., Ray, A. Performance analysis of integrated communication and control system networks. ASME Journal of Dynamic Systems, Measurement, and Control, 1990, 112(3): 365-371
    [19] He, Y, Wang, Q. G., Xie, L., et al. Further improvement of free-weighting matrices technique for systems with time-varying delay. IEEE Trans. Automat. Contr., 2007, 52(2): 293-299
    [20] He, Y, Wu, M. Delay-dependent conditions for absolute stability of Lurie control systems with time-varying delay. Acta Automatica Sinica, 2005, 31(3): 475-478
    [21] He, Y., Wu, M., She, J. H. Improved bounded-real-lemma representation and H-inf control of systems with polytopic uncertainties. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2005, 52(7): 380-383
    [22] He, Y, Wu M., She, J. H. , Liu, G. P. Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays. Systems & Control Letters, 2004, 51(1): 57-65
    [23] Hirai, K., Satoh, Y. Stability of a system with variable time delay. IEEE Transactions on Automatic Control, 1980,25 (3): 552-554
    [24] Hu, S. S., Zhu, Q. X. Stochastic optimal control and analysis of stability of networked control systems with long delay. Automatica, 2003, 39: 1877-1884
    [25] Hu, L. S., Bai, T., Shi, P., et al. Sampled-data control of networked linear control systems. Automatica, 2007,43: 903-911
    [26] Hu, S., Yam, W. Y. Stability robustness of networked control systems with respect to packet loss. Automatica, 2007,43: 1243-1248
    [27] Hu, W. S., Liu, G. P., Rees, D. Design and implementation of networked predictive control systems based on round trip time delay measurement. Proceedings of the 2006 American Control Conference Minneapolis, Minnesota, USA, 2006: 674-679
    [28] Hu, W. S., Liu, G. P., Rees, D. Event-driven networked predictive control. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1603-1613
    [29] Hu, W. S., Liu, G. P., Rees, D. Networked predictive control system with data compression. Proceedings of the 2007 IEEE International Conference on Networking, Sensing and Control, London, UK, 2007: 52-57
    [30] Huang, M., Dey, S. Stability of Kalman filtering with Markovian packet losses. Automatica, 2007,43: 598-607
    [31] Imer, O. C., Yuksel, S., Basar, T. Optimal control of LTI systems over unreliable communication links. Automatica, 2006,42: 1429-1439
    [32] Kim, D., Lee, Y., Kwon, W., et al. Maximum allowable delay bounds of networked control systems. Control Engineering Practice, 2003,11: 1301-1313
    [33] Kim, D. K., Park, P. G., Ko, J. W. Output-feedback H~∞ control of systems over communication networks using a deterministic switching system approach. Automatica, 2004,40: 1205-1212
    [34] Krtolica, R., Ozguner, U., Chan, H., Goktas, K., Winkelman, J., Liubakka, M. Stability of linear feedback systems with random communication delays. International Journal of Control, 1994, 59(4): 925-953
    [35] Lam, J., Gao, H. J., Wang, C. H. Stability analysis for continuous systems with two additive time-varying delay components. Systems & Control Letters, 2007, 56: 16-24.
    [36] Lee, K. C., Lee, S. Remote controller design of networked control system using genetic algorithm. ISIE 2001, Pusan, KOREA in IEEE, 2001 : 1845-18501
    [37] Lee, K. C., Lee, S., Lee, M. H. Remote fuzzy logic control of networked control system via profibus-DP. IEEE Transactions on Industrial Electronics, 2003, 50(4): 784-792
    [38] Lee, S., Lee, S. H., Lee, K. C. Remote fuzzy logic control for networked control system. IECON' 01: The 27th Annual Conference of the IEEE Industrial Electronics Society, 2001: 1822-18271
    [39] Lee, Y. S., Moon, Y. S., Kwon, W. H. Delay-dependent guaranteed cost control for uncertain state-delayed systems. Proceedings of the American control conference, Arlington, USA, 2001: 3376-3381
    [40] Lian, F. L., Moyne, J. R., Tilbury, D. M. Performance of evaluation of control networks: Ethernet, ControlNet, and DeviceNet. IEEE Control Systems Magzine, 2001, 21(1): 66-83
    [41] Lian, F. L., Moyne, J. R., Tilbury, D. M. Network design consideration for distributed control systems. IEEE Transactions on Control Systems Technology, 2002, 10(2): 297-307
    [42] Liou, L. W., Ray, A. On modeling of integrated communication and control systems. ASME Journal of Dynamic Systems, Measurement, and Control, 1990a, 112(4): 790-794
    [43] Liou, L. W., Ray, A. Integrated communication and control systems: part Ⅲ -nonidentical sensor and controller sampling. ASME Journal of Dynamic Systems, Measurement, and Control, 1990b, 112: 357-364
    [44] Liou, L. W., Ray, A. A Stochastic regulator for integrated communication and control systems: part Ⅰ - formulation of control law. ASME Journal of Dynamic Systems Measurement, and Control, 1991a, 113: 604-611
    [45] Liou, L. W., Ray, A. A stochastic regulator for integrated communication and control systems: part Ⅱ - numerical analysis and simulation. ASME Journal of Dynamic Systems Measurement, and Control, 1991b, 113: 612-617
    [46] Liu, G. P., Mu, J. X., Rees, D. Networked predictive control of systems with random communication delays, in UKACC2004 International Conference on Control, Bath, UK, 2004, ID-015
    [47] Liu, G. P., Xia, Y., Rees, D. Predictive control of networked systems with random delays. Proc. IFAC World Congr., Prague, Czech Republic, 2005: 1-6
    [48] Liu, G P., Mu, J. X., Rees, D., et al. Design and stability analysis of networked control systems with random communication time delay using the modified MPC. International Journal of Control, 2006, 79: 288-297
    [49] Liu, G. P., Xia, Y. Rees, D., et al. Design and stability criteria of networked predictive control systems with random network delay in the feedback channel. IEEE Transactions on System, Man, and Cybernetics- Part C: Applications and Reviews, 2007a, 37(2): 173-184
    [50] Liu, G. P., Xia, Y. Rees, D., et al. Networked predictive control of systems with random network delays in both forward and feedback channels. IEEE Transactions on Industrial Electronics, 2007b, 54(3): 1282-1297
    [51] Luck, R., Ray, A. An observer-based compensator for distributed delays. Automatica, 1990,26 (5): 903-908
    [52] Matveev, A. S., Savkin, A. V. The problem of state estimation via asynchronous communication channel with irregular transmission times. IEEE Transactions on Automatic Control, 2003,48(4): 670-676
    [53] Mercangoz, M., Doyle Ⅲ, F. J. Distributed model predictive control of an experimental four-tank system. Journal of process control, 2007,17: 297-308
    [54] Moheimani, S. O. R., Petersen, I. R. Optimal quadratic guaranteed cost control of a class of uncertain time-delay systems. IEEE Proceedings-Control, Theory and Applications, 1997, 144: 183-188
    [55] Montestruque, L. A., Antsaklis, P. J. State and output feedback control in model-based networked control systems. Proceedings of the 41~(st) IEEE Conference on Decision and Control, Las Vegas, Nevada USA, 2002: 1620-1625
    [56] Montestruque, L. A., Antsaklis, P. J. On the model-based control of networked systems. Automatica, 2003, 39: 1837-1843
    [57] Montestruque, L. A., Antsaklis, P. Stability of model-based networked control systems with time-varying transmission times. IEEE Transactions on Automatic Control, 2004,49(9): 1562-1572
    [58] Moon, Y. S., Park, P., Kwon, W. H., et al. Delay-dependent robust stabiliaztion of uncertain state-delayed systems. International Journal of Control, 2001, 74(14): 1447-1455
    [59] Nilsson, J. Real-time control systems with delays. PhD thesis. Lund Institute of Technology, Sweden, 1998
    [60] Nilsson, J., Bernhardsson, B., Wittenmark, B. Stochastic analysis and control of real-time systems with random time delays. Automatica, 1998, 34(1): 57-64
    [61] Ouyang, H., Liu, G. P., Rees, D. Robust networked predictive control for systems with random network delay. In Proceedings of 16TH IFAC World Congress, Prague, 2005
    [62] Ouyang, H., Liu, G. P., Rees, D., et al. Predictive control of networked non-linear control systems. Proc. ImechE Part Ⅰ: J. Systems and Control Engneering, 2007, 221: 453-463
    [63] Ozguner, U., Goktas, K., Chan, H. Automotive suspension control through a computer communication network. Proc. IEEE Int. Conf. Contr. Applicat., 1992
    [64] Park, H. J. Delay-dependent criterion for guaranteed cost control of neutral delay system. Journal of Optimization Theory and Application, 2005, 124(2): 491-502
    [65] Park, H. S., Kim, Y. H., Kim, D. S., et al. A scheduling method for network based control systems. IEEE Trans. Contr. Syst. Technol., 2002,10: 318-330
    [66] Ray, A. Output feedback control under randomly varying distributed delays. Journal of Guidance, Control and Dynamics, 1994,17(4): 701-711
    [67] Ray, A. Integrated communication and control systems: part I - analysis. Journal of Dynamic Systems, Measurement, and Control, Transactions ASME, 1988a, 110(4): 367-373
    [68] Ray, A., Halevi, Y. Integrated communication and control systems: part Ⅱ -design considerations. Journal of Dynamic Systems, Measurement, and Control, Transactions ASME, 1988b, 110: 374-381
    [69] Ray, A. Distributed data communication networks for real-time process control. Chem. Eng. Comm., 1988c, 65: 139-154
    [70] Ray, A., Hong, S. H., Lee, S., et al. Discrete-event/continuous-time simulation of distributed data communication and control systems. Trans. Society Cumput. Simul., 1988d, 5: 71-85
    [71] Ray, A., Liou, L. W., Shen, J. H. State estimation using randomly delayed measurements. Journal of Dynamic Systems, Measurement and Control, Transactions ASME, 1993, 115 (1): 19-26
    [72] Ray, A., Shen, J. H. Control of output feedback systems under randomly varying distributed delays. Proceedings of the American Control Conference, 1993: 1731-1735
    [73] Sahebsara, M., Chen, T. W., Shah, S. L. Optimal H_2 filtering in networked control systems with multiple packet dropout. IEEE Transactioins on Automatic Control, 2007, 52(8): 1508-1513
    [74] Shen, J. H., Ray, A. Extended discrete-time LTR synthesis of delayed control systems. Automatica, 1993,29(2): 431-438
    [75] Sinopoli, B., Schenato, L., Franceschetti, M., et al. Time varying optimal control with packet losses. 43~(rd) IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamos, 2004: 1938-1943
    [76] Sinopoli B., Schenato, L., Franceschetti, M, et al. Kalman filtering with intermittent observations. IEEE Transactioins on Automatic Control, 2004, 49(9): 1453-1464
    [77] Su, C. L., Lu, C. N. Interconnected network state estimation using randomly delayed measurement. IEEE Transactions on Power Systems, 2001, 16(4): 870-878
    [78] Su, T. J., Huang, C. G. Robust stability of delay dependence for linear uncertain systems. IEEE Transactions on Automatic Control, 1992, 37(10): 1656-1659
    [79] Suh, Y. S., Nguyen, V. H., Ro, Y. S. Modified Kalman filter for networked monitoring systems employing a send-on-delta method. Automatica, 2007, 43: 332-338
    [80] Tipsuwan, Y, Chow, M. Y On the gain scheduling for networked PI controller over IP network. IEEE/ASME Transactions on Mechatronics, 2004a, 9(3): 491-498
    [81] Tipsuwan, Y., Chow, M. Y. Gain scheduler middleware: a methodology to enable existing controllers for networked control and teleoperation - part Ⅰ: networked control. IEEE Transactions on Industrial Electronics, 2004b, 51(6): 1218-1227
    [82] Tipsuwan, Y., Chow, M. Y. A methodology to enable existing controllers for networked control and teleoperation - part Ⅱ: teleoperation. IEEE Transact- ions on Industrial Electronics, 2004c, 51(6): 1228-1237
    [83] Walsh, G. C., Ye, H., Bushnell, L. G. Stability Analysis of Networked Control Systems. Proceedings of the American Control Conference, San Diego, California, 1999: 2876-28801
    [84] Walsh, G. C., Beldiman, O., Bushnell, L. G. Error encoding algorithms for networked control system. Automatica, 2002a, 38: 261-267
    [85] Walsh, G. C., Beldiman, O., Bushnell, L. G. Stability analysis of networked control systems. IEEE Transaction on Control Systems Technology, 2002b, 10(3): 438-446
    [86] Wang, L. F., Huang, B., Tan, K. C. Fault tolerant vibration control in a networked and embedded rocked fairing system. IEEE Transactions on Industrial Electronics, 2004, 51(6): 1127-1141
    [87] Wu, J., Chen, T. W. Design of networked control systems with packet dropouts. IEEE Transactions on Automatic control, 2007, 52(7): 1314-1319
    [88] Xiong, X. L., Lam, J. Stabilization of linear systems over networks with bounded packet loss. Automatica, 2007,43: 80-87
    [89] Yang, F. W., Wang, Z. D., Huang, Y. S., et al. H-inf control for networked systems with random communication delays. IEEE Transactions on Automatic Control, 2007, 51: 511-518
    [90] Yang, F. W., Wang, Z. D., Gani, M. Robust H2/H-inf filtering for uncertain systems with missing measurement. Proceedings of the 45th IEEE Conference on Decision & Control, San Diego, CA, USA, 2006: 4769-4774
    [91] Yaz, E. Control of randamly varing systems with prescribed degree of stability. IEEE Transaction on Automatic Control, 1988, 33(4): 407-410
    [92] Yu, L., Chu, J. An LMI approach to guaranteed cost control of linear uncertain time-delay systems. Automatica, 1999,35: 1155-1159
    [93] Yue, D. Robust stabilization of uncertain systems with unknown input delay. Automatica, 2004,40: 331-336
    [94] Yue, D., Han, Q. L., Peng, C. State feedback controller design of networked control systems. IEEE Transactions on Circuits and Systems, 2004, 51(11): 640-644
    [95] Yue, D., Han, Q. L. Delayed feedback control of uncertain systems with time-varying input delay. Automatica, 2005, 41: 233-240
    [96] Yue, D., Han, Q. L., Lam, J. Network-based robust control of systems with uncertainty. Automatica, 2005,41: 999-1007
    [97] Yue, D., Lam, J. Suboptimal robust mixed H2/H~∞ controller design for uncertain descriptor systems with distributed delays. Computers and Mathematics with Applications, 2004,47: 1041-1055
    [98] Zhang, L., Varsakelis, D. H. Communication and control co-design for networked control systems. Automatica, 2006,42: 953-958
    [99] Zhang, L. Q, Shi, Y., Chen, T. W. et al. A new method for stabilization of networked control systems with random delays. IEEE transactions on automatic control, 2005, 50: 1177-1181.
    [100] Zhang, W., Branicky, M. S., Phillips, S. M. Stability of networked control systems. IEEE Control Systems Magazine, Feb. 2001, pp. 84-99
    [101]Zhang,W.A.,Yu,L.Output feedback stabilization of networked control systems with packet dropouts.IEEE Transactioins on Automatic Control,2007,52(9):1705-1710
    [102]Zhang,Y.,Li,S.Y.Networked model predictive control based on neighbourhood optimisation for serially connected large-scale process.Journal of process control,2007,17:37-50.
    [103]Zhivoglyadov,P.V.,Middleton,R.H.Networked control design for linear systems.Automatica,2003,39:743-750
    [104]陈幼平,陈冰,谢经明,等.网络化控制系统的科学问题与应用展望.控制与决策,2004,19(9):961-966
    [105]顾洪军,张佐,吴秋峰.网络控制系统的机理描述模型.控制与决策,2000,15(5):634-636
    [106]何勇,吴敏.多时变状态和控制时滞系统的绝对稳定性.控制理论与应用,2004a,21(4):595-598
    [107]何勇,吴敏.多时变时滞系统的鲁棒稳定及有界实引理的时滞相关条件.控制理论与应用,2004b,21(4):595-598
    [108]何勇,吴敏.多时变时滞系统的鲁棒稳定及有界实引理的时滞相关条件.控制理论与应用,2004,21(5):735-740
    [109]姜培刚,姜偕富,李春文,等.基于LMI方法的网络化控制系统的H∞鲁棒控制.控制与决策,2004,19(1):17-22
    [110]黎善斌,王智,张卫东,等.网络化控制系统的研究现状和展望.信息与控制,2003,32(3):239-244
    [111]彭晨,岳东.网络控制系统中基于时延辨识的模糊控制器研究.信息与控制,2004,33(5):584-589
    [112]任长清,吴平东,王晓峰,等.基于互联网的液压远程控制系统延时预测算法研究.北京理工大学学报,2002,22(1):85-89
    [113]王飞跃,王成龙.基于网络控制的若干基本问题的思考和分析.自动化学报,2002,28(增刊):171-176
    [114]王征,谈大龙,王向东.网络控制系统稳定性研究[J].控制与决策,2002,17(增刊):802-804,807.
    [115]王智,王天然,Song,Y.Q.,等.工业实时通讯网络(现场总线)的基础理论研究与现状(上).信息与控制,2002a,31(2):146-152,163
    [116]王智.工业实时通讯网络(现场总线)的基础理论研究与现状(下).信息与控制,2002b,31(3):241-249
    [117]王志贤.最优状态估计与系统辨识.西安:西北工业大学出版社,2004
    [118]王晓峰,吴平东,任长清,等.基于TCP/IP网络的远程伺服控制系统中的动态模糊控制器.计算机应用,2002,11:83-85
    [119]熊远生,俞立,余世明.网络控制系统的滑模多步预估控制.控制理论与应用,2005,22(2):301-306
    [120]杨丽曼,李运华,袁海斌.网络控制系统的时延分析及数据传输技术研究.控制与决策,2004,19(4):361-366,382
    [121]于之训,陈辉堂,王月娟.闭环网络化控制系统综述.信息与控制,2001,30(7):689-695
    [122]于之训,陈辉堂,王月娟.基于Markov延迟特性的闭环网络控制系统研究.控制理论与应用,2002,19(2):263-267
    [123]于之训,陈辉堂,王月娟.基于H∞和μ综合的闭环网络控制系统的设计.同济大学学报,2001,29(3):307-311
    [124]俞立.鲁棒控制——线性矩阵不等式处理方法.北京:清华大学出版社,2002
    [125]张奇智,张卫东.网络控制系统中的时戳预测函数控制.控制理论与应用,2006,23(1):126-130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700